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The delays, before retiming
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The techniques described above, either for removing the broadcast facility, or
removing the instant-accumulation facility (but not both in the same system), are applica-
ble to arrays of any finite dimension. Each new segment of the k-dimensional systolic
array, after the retiming, consists of 2 k segments of the initial array. Along each axis, the
retiming is identical to the 1-dimensional case, and in general, the retiming of a vertex is
the sum of the retiming of vertices at its projections on the axes.
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First construct a linear array with instant-accumulation, as follows. Initially, each
cell’s output to the instant-accumulation mechanism, is "yes"; i.e. from the point of view
of the cell, the input sequence read so far by the system is a palindrome. This remains the
cell’s output until the cell has seen two input symbols. The input symbols are fed, one at
a time to the first cell. The first symbol to reach a cell is stored, and is not fed forward.
(One can use a TP signal, which is delayed two ticks in each cell, to notify the cell that its
"first" symbol is arriving.) Every consecutive symbol is fed forward to the next cell, via a
one-tick delay. At each tick, following the storage of the cell’s first symbol, the arriving
symbol is compared to the stored one. If they are equal, a "yes" is output; if they are dif-
ferent, a "no" is output. These outputs are supplied to the instant-accumulation mechan-
ism, which supplies a "yes" answer to the host, if and only if all the (delayed) output
answers of the cells are "yes". The general layout of the array is depicted in the following
diagram:

General layout, with instant-accumulation

32 1

Cell Cell Cell

HOST

AND AND AND

TP

S

The next diagram shows, schematically, the number of delays on each edge, before
retiming.

Now apply the following retiming: The vertices in the upper level are retimed by 0,
-1, -1, -2, -2, ... , while the vertices in the lower level are retimed by -1, -1, -2, -2, -3 ...
The resulting number of delays on the edges, as determined by Equation 13, are shown in
the following diagram, as well as the division into new segments. Observe that the result-
ing system is systolic.
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have achieved our goal of building a systolic array for multiplication. This design is
exactly the Atrubin multiplier.

5. Comments on Similar Systems

The retiming used above is useful in other similar situations. For example, one can
design a systolic queue (FIFO), or a stack (FILO), by following the same route we have
taken above: First allow the broadcast facility, and design the array. Next, use the retim-
ing of the previous section to make the whole system systolic.

A similar technique is useful in handling a situation which, in a sense, is the oppo-
site of broadcast.

Instant-accumulation is a mechanism which instantaneously presents to the host, via
a single edge, a value which depends on values produced for this purpose by all the seg-
ments. A common example is an AND function of binary values produced by all the seg-
ments. However, the exact computation performed by the instant-accumulation mechan-
ism is immaterial; it may be any commutative and associative multi-variable function of
the individual values produced by the segments.

We assume that all the inputs to the instant-accumulation mechanism pass through
delays, as they come out of the segments. This is in concert with the assumption that
every edge has at least one delay, except those emanating from the host.

Let us describe, briefly, a construction of a linear systolic array to recognize palin-
dromes*. There are several known solutions (see, for example, [C], [S] and [LS]). Our
construction differs mainly in the methodology of the construction.
_ ______________
A palindrome is a word which is identical to its reversal.
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instantaneous. Thus, the upper level represents the broadcast capability. The logic boxes
represented by the vertices in the lower level are all identical. All output lines emanating
from these boxes have exactly one delay flip-flop. Thus, the lower level of the system is
completely systolic. The self-loops of the vertices in the lower level represent the
memory of the individual cells.

Our purpose is to shift the delays (as tokens in a marked graph) in such a way that
the array will divide into cells. All cells are to be identical. Each output line of a cell will
have at least one delay on it. This transformation will yield a systolic array, although
each cell may "contain" more than one stage of the original array. This shift of delays is
best described by retiming: An assignment of nonnegative integers to the vertices (cir-
cles). The meaning of a retiming value λ(v) to a vertex v is the number of ticks of the
clock by which the operation of the corresponding logic is delayed. (In the marked graph
model, this is the number of times vertex v is to be "fired" backwards.)

In the following diagram, the value of λ(v) is shown in the circle representing v,
and the corresponding delays of the edges are shown next to them. In the upper level the
sequence of {λ(v)} is 0,0,1,1,2,2,... and in the lower it is the same sequence with one
zero omitted. The new number of delays, d ′(e), on an edge u→

e v, is determined by the
formula

d ′(e) = d(e) + λ(v) − λ(u) , (13)

where d(e) is the previous number of delays on the edge e.

Observe that all the "new" cells, as between the dashed horizontal lines, are identi-
cal, and each of the edges emanating from them has a (one tick) delay on it. Thus, the
new array is systolic. It is also easy to see that, as far as the host is concerned, nothing
has changed; the host will observe the same input-output behavior. (The proof of this
claim, for general systolic systems with broadcast, is fairly involved, and can be found in
Section 6 of [EL], but is not required in the relatively simple situation at hand.) Thus, we
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respectively.

Input number 4, by the inductive hypothesis, is equal to 0 for 0 ≤ t ≤ i + 1. Beyond
some limit, all bits are 0. Thus, the (finite) number fed to the adder, from t = i, and on, is

t = i + 2
Σ
∞

S i + 1 ( t) .2t − i .

By Lemma 1, there exists an integer N i , such that for t > N i , S i ( t) ≡ 0, and

t = i + 1
Σ
∞

S i ( t) .2t − i − 1 = A( i) .B( i) +
t = i + 1
Σ

n − 1
A( i) .B( t) .2t − i +

t = i + 1
Σ

n − 1
B( i) .A( t) .2t − i +

t = i + 2
Σ
∞

S i + 1 ( t) .2t − i . (11)

It remains to show that equation (11) implies equation (8). By the inductive hypothesis,

t = i + 1
Σ
∞

S i ( t) .2t − i − 1 = A( i) .B( i) +
t = i + 1
Σ

n − 1
A( i) .B( t) .2t − i +

t = i + 1
Σ

n − 1
B( i) .A( t) .2t − i +

22 .[
t = i + 1
Σ

n − 1
A( t) .2t − i − 1 ] .[

t = i + 1
Σ

n − 1
B( t) .2t − i − 1 ]

= A( i) .B( i) + A( i) .
t = i + 1
Σ

n − 1
B( t) .2t − i + B( i) .

t = i + 1
Σ

n − 1
A( t) .2t − i +

[
t = i + 1
Σ

n − 1
A( t) .2t − i ] .[

t = i + 1
Σ

n − 1
B( t) .2t − i ]

= [
t = i
Σ

n − 1
A( t) .2t − i ] .[

t = i
Σ

n − 1
B( t) .2t − i ] .

4. From Nonsystolic to Systolic

In this section, we shall use a retiming technique. The idea is not new; it can be
found in a primitive form in papers from the seventies (see, for example, [CHEP] and
[D]). A more explicit description of the technique, and its consequences, were presented
in the work of Leiserson et. al. (see, for example, [LS] and [LRS]). We shall follow our
own approach, as in [EL].

Consider a general one dimensional array, with broadcast, as depicted in the follow-
ing diagram.

The vertices (circles) represent memoryless combinational logic boxes. The edges
(lines) represent information channels. The integer d(e), next to an edge e, is the number
of delay flip-flops (registers) on the corresponding line.

Observe that the nonsystolic multiplication array, of the previous section, fits into
the general scheme described by this diagram. Each of the vertices in the upper level
represents nothing but a simple junction, which transmits to both outputs (to the right,
and down) the information received from its input (from the left); this transmission is
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We extend this claim, to include the statement that for all t ≥ 0,
Cn − 1

1 ( t) ≡ Cn − 1
2 ( t) ≡ 0, and prove it by induction on t, from t = 0 and up.

By (6),

S n − 1 ( 0 ) , Ã n − 1 ( 0 ) , B̃ n − 1 ( 0 ) , Cn − 1
1 ( 0 ) , Cn − 1

2 ( 0 ) ≡ 0 .

For 0 ≤ t < n − 1, it is easy to see that inputs 1, 2 and 3 are all 0. Also, by the first
claim, S n ( t) ≡ 0. Thus,

S n − 1 ( t + 1 ) ≡ Cn − 1
1 ( t + 1 ) ≡ Cn − 1

2 ( t + 1 ) ≡ 0 .

For t = n − 1, the sampling is being performed, but Ã n − 1 ( t) and B̃ n − 1 ( t) are still 0.
Thus, inputs 2 and 3 are still 0. Also, input 4 is always 0. The only input that counts is
A( t) ∠ B( t) ∠ ( t = i), which is equal to A(n − 1 ) .B(n − 1 ). Thus,

Cn − 1
1 (n) ≡ Cn − 1

2 (n) ≡ 0 ,

and

S n − 1 (n) = A(n − 1 ) .B(n − 1 ) .

For t ≥ n, all 4 inputs are 0. Thus,

S n − 1 ( t + 1 ) ≡ Cn − 1
1 ( t + 1 ) ≡ Cn − 1

2 ( t + 1 ) ≡ 0 .

This completes the proof of the basis.

We turn to the proof of the inductive step. The inductive hypothesis is:

(a) There exists an integer N i + 1 , such that for all t > N i + 1 , S i + 1 ( t) ≡ 0.

(b)

t = i + 2
Σ
∞

S i + 1 ( t) .2t − i − 2 = [
t = i + 1
Σ

n − 1
A( t) .2t − i − 1 ] .[

t = i + 1
Σ

n − 1
B( t) .2t − i − 1 ] , (10)

and for 0 ≤ t ≤ i + 1, S i + 1 ( t) ≡ 0.

Let us consider the situation in the i-th cell. We first examine the time 0 ≤ t ≤ i,
and claim that

S i ( t) ≡ Ci
1 ( t) ≡ Ci

2 ( t) ≡ 0 ,

by induction on t. The basis follows from (6). For any t < i, inputs number 1, 2 and 3 are
all 0. By the inductive hypothesis, so is input number 4. Thus, the claim follows.

Now consider t ≥ i.

At t = i, input number 1 is equal to A( i) .B( i). For t > i, input number 1 is equal
to 0. Thus, the number fed sequentially to the adder, by input number 1, starting at time
t = i, in binary, least significant bit first, is simply A( i) .B( i).

At t = i, A( i) and B( i) are sampled, and become the values of Ã i and B̃ i , respec-
tively. However, inputs number 2 and 3 are still equal to 0. For t > i, they are A( i) .B( t)
and B( i) .A( t), respectively. Thus, the numbers they feed, sequentially, starting at t = i,
are

t = i + 1
Σ

n − 1
A( i) .B( t) .2t − i and

t = i + 1
Σ

n − 1
B( i) .A( t) .2t − i ,
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And a similar statement holds for B̃ i ( t).

The lower half of the diagram depicts a serial adder, just as in the previous section.
It has 4 input lines and only 2 carries, but this is acceptable for the following reason.

Input number 1 has the value A( t) ∠ B( t) ∠ ( t = i). This value is 0 if t ≠ i. Input
number 2 has the value Ã i ( t) ∠ ( t ≠ i) ∠ B( t). Thus input number 2 (and 3) are never
equal to 1, if input number 1 has the value 1, and effectively, the number of input lines is
bounded by 3. Therefore, 2 carries suffice.

Our aim is to prove the following equation:

t = 1
Σ
2n

S 0 ( t) .2t − 1 = [
t = 0
Σ

n − 1
A( t) .2t ] .[

t = 0
Σ

n − 1
B( t) .2t ] . (7)

Instead, we will first prove the following lemma. Equation (7) will follow from Equation
(8), by substituting i = 0 and observing that the equality implies that all bits after the
2n’th, must be 0.

Lemma 2:

For every n − 1 ≥ i ≥ 0, the sequence {S i ( t)} satisfies the following conditions:

(a) There exists an integer N i , such that for all t > N i , S i ( t) ≡ 0.

(b)

t = i + 1
Σ
∞

S i ( t) .2t − i − 1 = [
t = i
Σ

n − 1
A( t) .2t − i ] .[

t = i
Σ

n − 1
B( t) .2t − i ] , (8)

and for 0 ≤ t ≤ i, S i ( t) ≡ 0.

Proof:

First, let us show, by induction on t, that for every i ≥ n and for every t ≥ 0,

Ci
1 ( t) ≡ Ci

2 ( t) ≡ S i ( t) ≡ 0 . (9)

The basis, i.e. when t = 0, follows from (6). Now assume the statement holds for t,
and let us show that it holds for t + 1.

Input number 1 is A( t) ∠ B( t) ∠ ( t = i). If t < n, since i ≥ n, we have
( t = i) ≡ 0. If t ≥ n then A( t) ≡ B( t) ≡ 0. Thus, input number 1 is always 0.

Since Ã i and B̃ i are sampled at t = i, and i ≥ n, it follows that their values are
always 0. Thus, input numbers 2 and 3 are always 0. By the inductive hypothesis,
Ci

1 ( t) ≡ Ci
2 ( t) ≡ 0, and also, S i + 1 ( t) ≡ 0. Thus, by (1),

Ci
1 ( t + 1 ) ≡ Ci

2 ( t + 1 ) ≡ S i ( t + 1 ) ≡ 0 .

This completes the proof of the first claim.

We now prove the lemma by induction on i, from n-1 down to 0. For the basis it
suffices to show that:

(1) For 0 ≤ t < n, S n − 1 ( t) ≡ 0 ,

(2) for t = n, S n − 1 ( t) = A(n − 1 ) .B(n − 1 ) ,

(3) for t > n, S n − 1 ( t) ≡ 0.



- 6 -

t = i + 1

B( t)B( t)

A( t)A( t)

S&H S&H

D

D

D

D

AND AND AND
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t = i

1 2 3

4

5

6

S i ( t) S i ( t + 1 ) S i + 1 ( t)

Ci
1 ( t)

Ci
2 ( t)

Ci
1 ( t + 1 )

Ci
2 ( t + 1 )

Ã i ( t) B̃ i ( t)
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Nonsystolic multiplication array
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The host has three binary output channels and one binary input channel. On channel
A and B, the two nonnegative n-bit multiplicands are fed to the system, sequentially,
least significant bits first, one bit on every tick of the (implied global) clock. The first
bits are fed at time t = 0, and the last ones at time t = n − 1. The following bits are all
zeros. On channel TP, a timing pulse is fed to the system at time t = 0; i.e. the logical
value is 1 at t = 0, and 0 at t ≠ 0. This timing pulse is delayed one unit of time in each
of the cells of the system. Thus, the i-th cell gets it at time t = i. Cell number 0 of the
system, feeds the product of the two multiplicands to the host, via channel C. The 2n bits
of the product are delivered sequentially, least significant bit first, starting from time
t = 1 and ending at time t = 2n.

The structure of all the cells is identical, and will be described shortly. The cell is a
Moore finite automaton; i.e. its outputs go through clocked delay flip-flops. Thus, the
outputs of each cell, at time t, depend only on its state, and not on its inputs at time t. The
only nonsystolic part in this system is the broadcast channels, A and B. In the following
section, it will be shown how the broadcast channels can be removed, to make the system
completely systolic.

In addition to the global clock, we assume that there is a reset signal which is fed to
all flip flops before t = 0. These facilities are not shown in our diagrams. The "hard"
reset signal can be replaced by a "soft" one; i.e. one which travels through the system in a
systolic manner. More can be found about this feature in [EL].

The structure of a typical cell is shown in the following diagram.

The reset signal assures that

S i ( 0 ) , Ã i ( 0 ) , B̃ i ( 0 ) , Ci
1 ( 0 ) , Ci

2 ( 0 ) ≡ 0 . (6)

The sample and hold (S&H) are clocked flip-flops which sample the l.h.s. input when the
top input is equal to 1. Thus,

Ã i ( t) =


A( i)

0

if t > i

if t ≤ i
.
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S( i + 1 ) .2i + 2i + 1 .
d = 1
Σ
l

C d ( i + 1 ) =
j = 1
Σ
k

α j ( i) .2i + 2i .
d = 1
Σ
l

C d ( i) .

Adding the latter to the inductive hypothesis, completes the proof of the claim.

Thus, we have

a = 1
Σ
n

S(a) .2a − 1 + 2n .
d = 1
Σ
l

C d (n) =
j = 1
Σ
k

b = 0
Σ

n − 1
α j (b) .2b . (4)

For t ≥ n, (1) degenerates into

S( t + 1 ) + 2.
d = 1
Σ
l

C d ( t + 1 ) =
d = 1
Σ
l

C d ( t) . (5)

By induction on t, from n up, it follows (in a manner similar to the proof of the previous
claim) that:

a = 1
Σ

t + 1
S(a) .2a − 1 + 2t + 1 .

d = 1
Σ
l

C d ( t + 1 ) =
j = 1
Σ
k

b = 0
Σ

n − 1
α j (b) .2b .

And all that remains to be shown is that for t = n + m − 1, the second term on the l.h.s. is
zero. For t ≥ n, (5) implies that

d = 1
Σ
l

C d ( t + 1 ) ≤
2
1_ _ .

d = 1
Σ
l

C d ( t) .

Therefore,

d = 1
Σ
l

C d ( t + 1 ) ≤ 
2t + 1 − n

1_ ______ .
d = 1
Σ
l

C d (n)  .

Note that
d = 1
Σ
l

C d (n) ≤ l. Thus, if l < 2t + 1 − n then the r.h.s. is zero. It suffices that

log 2 l   < t + 1 − n, or log 2 l   ≤ t − n. Therefore, (3) follows, as well as the fact
that for t > n + m, S( t) = 0.

3. A Nonsystolic Version of the Multiplier

Let us describe now a nonsystolic version of the multiplier. Its overall structure is
depicted in the following diagram.
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Proof:

First, by induction on i, from 0 to n − 1, the following holds:

a = 1
Σ

i + 1
S(a) .2a − 1 + 2i + 1 .

d = 1
Σ
l

C d ( i + 1 ) =
j = 1
Σ
k

b = 0
Σ
i

α j (b) .2b .

The basis follows from (1) and (2). The inductive hypothesis is

a = 1
Σ
i

S(a) .2a − 1 + 2i .
d = 1
Σ
l

C d ( i) =
j = 1
Σ
k

b = 0
Σ

i − 1
α j (b) .2b .

Taking equation (1), for t = i, and multiplying all terms by 2 i , yields:
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The Atrubin Multiplication Array
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In spite of its reputation, the structure of the Atrubin array has remained a mystery.
It is the purpose of this paper to explain this mystery away, and prove the validity of the
multiplier. This is done by breaking the design into stages.

First, the operation and validity of a multi-input serial adder is discussed. Next, a
simplified version of the multiplier is studied, in which a broadcast capability is used.
Finally, by using retiming, the systolic version is achieved.

2. Serial Adder

One of the components used in the design of the multiplier is a serial adder. It is a
simple extension of a two-inputs serial full adder. Its structure is depicted in the diagram.

The main logic box computes the outputs
(S( t + 1 ) , C 1 ( t + 1 ) , C 2 ( t + 1 ) ,... , C l ( t + 1 )) from the inputs
(α 1 ( t) , α 2 ( t) ,... , α k ( t)) to satisfy

S( t + 1 ) + 2.[C 1 ( t + 1 ) + . . . + C l ( t + 1 ) ] = α 1 ( t) + . . . + α k ( t) + C 1 ( t) + . . . + C l ( t). (1)

Note that the carries are represented in unary. A necessary condition is that l ≥ k − 1. The
D boxes are clocked delay flip-flops (registers).

The initial conditions (which can be implemented via a global reset signal for the
flip-flops) are:

S( 0 ) ≡ C 1 ( 0 ) ≡ C 2 ( 0 ) ≡ . . . ≡ C l ( 0 ) ≡ 0 . (2)

Lemma 1:

Let the α inputs feed n-bit positive integers, in binary, least significant bits first, and
let m = log 2 l  . The following equation holds:

a = 1
Σ

n + m
S(a) .2a − 1 =

j = 1
Σ
k

b = 0
Σ

n − 1
α j (b) .2b , (3)

and for t > n + m, S( t) = 0.
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1. Introduction

In 1962, Allan J. Atrubin invented a synchronous system for real-time multiplica-
tion of integers. (It was published in 1965, [A].) The host (user) feeds the system two
binary encoded multiplicands, x and y, serially, least significant bits first, and the system
outputs the product x .y, in binary, serially, least significant bit first. Clearly, the time it
takes to multiply two n-bit multiplicands is 2.n.

Informally, a (finite, or infinite) synchronous system, serving a host, is called sys-
tolic, if it has the following characteristics. The system consists of segments, connected
to each other and to the host by communication lines. Each segment consists of a modest
amount of hardware, which realizes a Moore finite state automaton; i.e. its current output
signals, which appear on its output ports, depend only on its present state, and its next
state depends on the present state and the present input signals, which appear presently at
the input ports. Without loss of generality, we may assume that each output port of a seg-
ment is the output port of a (clocked) delay flip-flop. The lines go from one output port to
one input port; there is no fan-in or fan-out in these connections.

The Atrubin system is systolic; namely it has no long paths where a rippling effect
can happen between clock ticks. Therefore, it allows high clock rates. Furthermore, its
segments are all identical, and they are arranged in a linear array. This simplifies the
design and production of the system.

It is known how to perform multiplication in O( log n) time, but the equipment
required is of size O(n 2 ). Thus, the Atrubin multiplier, which requires equipment of size
O(n), remains competitive.

The general layout of the multiplier is depicted in the following diagram. In order to

multiply n-bit numbers, the array must consist of at least 
2
n_ _  cells. All cells have the

same structure. Each consists of a few hundreds transistors, and realizes a finite Moore
automaton.

Recently, Even showed how, with the addition of another systolic array, repeated
modular multiplication can be computed almost as fast ([E]). The combination of the two
arrays may be useful in cryptographic applications.


