Advanced Hardware Problem Set 3 submit by Dec. 16

Guy Even

December 8, 2008

- 1. Compute the precision of the intermediate computations required to compute 1/x using Newton iterations. Assume that the initial precision is 2^{-13} . Compute the intermediate precision if the final required precision is 2^{-23} with two iterations, 2^{-52} with 3 iterations, and 2^{-63} with 4 iterations.
- 2. (a) Design a semi-systolic circuit (systolic with broadcast) that implements a FIFO queue. The input in the *i*th clock cycle consists of: (1) $x_i \in \Sigma \cup \{\Lambda\}$, where Σ is the alphabet of input symbols and Λ denotes an empty symbol. (2) $op_i \in \{\text{enqueue, dequeue, nop}\}$.
 - (b) Apply retiming and tiling to transform your design into a systolic circuit.
- 3. (a) Design a semi-systolic circuit (systolic with broadcast) that implements a heap. The input in the *i*th clock cycle consists of: (1) $x_i \in \Sigma \cup \{\Lambda\}$, where Σ is the alphabet of input symbols and Λ denotes an empty symbol. (2) $op_i \in \{\text{insert, delete-min, nop}\}$.
 - (b) Apply retiming and tiling to transform your design into a systolic circuit.
- 4. (a) Design a semi-systolic circuit (systolic with instant accumulation) that implements the following functionality. The input in the *i*th clock cycle consists of $x_i \in \Sigma$, where Σ is the alphabet of input symbols. The output $y_i \in \{0,1\}$ satisfies in every cycle i > 0,

$$y_{i+1} = 1 \quad \Leftrightarrow \quad \forall 0 \le j \le i : x_j = x_{i-j}.$$

(b) Apply retiming and tiling to transform your design into a systolic circuit.