Network Algorithms - Fall 2002

Dr. Guy Even http://hyde.eng.tau.ac.il/CO02/

Handout #9: Duality

Deadline: Monday 13/01/03.

- 1. Write linear programs and their dual for the following problems. Try to interpret the combinatorial meaning of the dual programs.
 - max flow,
 - min cut,
 - shortest path from s to t in an undirected graph,
 - min cost flow,
 - min weight perfect matching.

Remark: Consider two versions: one with a polynomial number of constraints and one with exponentially many constraints (e.g., max-flow with one constraint per *st*-path).

2. Consider the linear program Π defined by:

$$\min\{\mathbf{c}' \cdot \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}\}.$$

Assume that Π is feasible. Assume also that $rank(\mathbf{A}) < m$. Specifically, assume that $\mathbf{a}_m = \sum_{i=1}^{m-1} \gamma_i \cdot \mathbf{a}_i$. Moreover, assume that $\mathbf{b}_m = \sum_{i=1}^{m-1} \gamma_i \cdot \mathbf{b}_i$ (hence the last constraint is redundant).

Let Π' denote the linear program obtained by omitting the *m*th redundant constraint $\mathbf{a}'_m \cdot \mathbf{x} = \mathbf{b}_m$ from Π .

Let Δ and Δ' denote the duals of Π and Π' , respectively. Prove that Δ and Δ' are equivalent.

3. (extra bonus!) Present a demo of the Simplex Algorithm (question 1 from last set). Make sure you fully prepare the demo in advance and can explain the whole process.