433 arorde - 2310. ar 6-20210 fr 30.11.21 $(I) \quad i_{ri} \quad (J_1 V_1) = J \quad Sre \quad u_{ri} \quad (J_1 V_1) = J$ Pikozi tos siz Pi, Pi Eston 2 · p, 0p2 = {s, t} pk p. 332 p. 35 הוכיחו שתקטימום מספר המסרצים הזרים בצעתים מיצימום מספר הצמנים שהסרען И-д Иста 22 сд модева И-2 3-5. [האם ההוכתה שלכם לתהציב את לדי ש שא מכוון ? איצה מקרה ינתר כללי?] ברימה מאגלית היט זהי שתה שתה מתקיים אשור זיאר בכימה בכש צומני הוכיתו זאב משבט הזריעה המלגצית של ינפמן : תהי א השר זרימה שם תסמים תחתונים {(ש)ם}. קיימה זריעה מששיר היציה הא שותי שר V⊇A heq"a :((A)B)d≤((A/V)B)J

יתרה עזיצת, שם כש הקיבוצים והחסאים התתתנים שאמים אצי רימת צרימה מאזית בשאמים אם קיימת זכימה מגאית הציביאית (כאשתו). הציא אלאריתם לפתרון הבגיה הבאה : (transportation problem) נתון ארף הר-צהבי (AvB,E) את לאר באין ארץ beb mild 558. set agank solo e aet f: AxB > N - nofor K3N. de EN - ens es 1) $\sum_{b} f(a,b) \leq S_{a}$: $a \leq 5 \leq 3$: $s = 5 \leq 3$ 2) $\sum f(a,b) = d_b : b = 558$

Question #4. (Bit scaling algorithm of Gabow [1985]). Let $k = \lceil \log_2 U \rceil$ in a network N. In the bit-scaling algorithm for maximum flow, each arc capacity u(e) is represented as a k-bit binary number (leading zeros are added, if needed).

The problem P_i is a flow problem over the same network but with the capacity $u_i(e)$ defined as follows. If u(e) is encoded by $b_{k-1}b_{k-2}\cdots b_0 \in \{0,1\}^k$. Then $u_i(e)$ is the binary number $b_{k-1}b_{k-2}\cdots b_{k-i}$ and $u_i(e) = \sum_{j=0}^{i-1} b_{k-i+j} \cdot 2^j$.

Let f_i^* denote a maximum flow in P_i .

The algorithm finds a max-flow in the network N by computing maximum flows f_i^* in P_i , starting with P_1 . Note that P_k is the original problem.

After computing f_i^* (a max-flow in P_i), the algorithm computes f_{i+1}^* by using $2 \cdot f_i^*$ as an initial flow in P_{i+1} .

- 1. Show that $2 \cdot f_i^*$ is a feasible flow in P_{i+1} .
- 2. Show that the difference between the maximum flow value in P_{i+1} and the flow value $2 \cdot |f_i^*|$ is at most m.
- 3. Show that f_{i+1}^* can be computed in O(mn) time using shortest augmenting paths if one starts with $2 \cdot f_i^*$.
- 4. Analyze the total running time of this algorithm.