Computer Structure - Spring 2004

Assignment No. 1

Course site: http://hyde.eng.tau.ac.il/Computer_Structure04

Firm Deadline: March 11 - before the beginning of the lecture

- 1. Let $B = \{0, 1, 2, 3\}$, and let $\mathcal{A} = (B, \max, \min)$. Is \mathcal{A} a boolean algebra? If so prove it is, if not what axioms does \mathcal{A} not fulfill.
- 2. Let $\mathcal{A} = (B, +, \cdot)$ be a boolean algebra, and let $a, b \in B$. Prove the following:
 - (a')' = a.
 - $a + (a \cdot b) = a$.
 - $a \cdot (a+b) = a$.
- 3. Prove the associativity of the binary operators of boolean algebra, i.e., for every $a, b, c \in B$ the following holds:
 - a + (b + c) = (a + b) + c.
 - $a \cdot (b \cdot c) = (a \cdot b) \cdot c.$

Hint: Prove that both sides equal to $((a + b) + c) \cdot (a + (b + c))$.

- 4. Prove DeMorgan's laws:
 - $(a+b)' = a' \cdot b'$.
 - $(a \cdot b)' = a' + b'$.
- 5. Answer Question 1.5 in the Lecture Notes.