
Chapter 13

A simplified DLX

In this chapter we describe a simple microprocessor called the simplified DLX.

13.1 Why use abstractions?

The term architecture according to the Collins Dictionary means the art of planning, de-
signing, and constructing buildings. Computer architecture refers to computers rather than
buildings. Computers are rather complicated. To simplify things, people focus on certain
aspects of computers and ignore other aspects. For example, the hardware designer ignores
questions such as: which programs will be executed by the computer? The programmer
often does not even know exactly which type of computer will be executing the program.
It is the task of the architect to be aware of different aspects so that the designed system
meets certain price and performance goals.

To facilitate focusing on certain aspects, abstractions are used. Several abstractions
are used in computer systems. For example, the C programmer uses the abstraction of a
computer that runs C programs, owns a private memory, and has access to various peripheral
devices (such as a printer, a monitor, a keyboard, etc.). Supporting this abstraction requires
software tools (compiler, linker, loader), an operating system (to coordinate between several
programs running in the same time), and hardware (that actually executes programs, but
not in C).

In this chapter, our starting point is actually a midpoint. We specify a microprocessor
from the programmer’s point of view. However, this is not a C programmer or a programmer
that is programming in a high level language. Instead, this is a programmer programming
in machine language. Since it is not common anymore for people to program in machine
language, the machine language programmer is actually a program!

Programs in machine language are output by a program called an assembler. The input
of an assembler is a program in assembly language. Most assembly programs are also written
by programs called compilers. Compilers are input a program in a high level and output
assembly programs.

This chain of translations starting from a C program and ending with a machine language
program has several advantages:

147



148 CHAPTER 13. A SIMPLIFIED DLX

1. The microprocessor executes programs written in a very simple language (machine
language). This facilitates the design of the microprocessor.

2. The C programmer need not think about the actual platform that executes the pro-
gram. Hence the same program can compiled and assembled so that it can be executed
on different architectures.

3. Every stage of the translation works in a certain abstraction. The amount of detail
increases as one descends to lower level abstractions. In each translation step, decisions
can be made that are optimal with respect to the current abstraction.

One can see that all these advantages have to do with good engineering practice. Namely,
a task is partitioned in smaller subtasks that are simpler and easier. Clear and precise bor-
derlines between the subtasks guarantee correctness when the subtasks are “glued” together.

Question 13.1 Explain why it is not common anymore for people to program in assembly
or machine code. Consider issues such as: cost of programming in a high level language
compared to assembly or machine code, ease of debugging programs, protections provided by
high level programming, and length and efficiency of final machine code program.

13.2 Instruction set architecture

The term instruction set architecture refers to the specification of the computer from the
point of view of the machine language programmer. This abstraction has the following
components:

• The objects that are manipulated. The objects are either words stored in registers or
in memory.

• The instructions (or commands) that tell the computer what to do to the objects.

13.2.1 Architectural Registers and Memory

Both the registers and the memory store words. A word is a 32-bit string. The memory is
often called also the main memory.

The memory is used to store both the program itself (i.e., instructions) and the data
(i.e., constant and variables used by the program). We regard the memory is an array
M [0 : 232 − 1] of words. Each element M [i] in the array holds one word. The memory is
organized like a Random Access Memory (RAM). This means that the processor can access
the memory in one of two ways:

• Read or load M [i]. Request to copy the contents of M [i] to a register called MDR.

• Write or store in M [i]. Request to store the contents of a register called MDR in M [i].

The architectural registers of the simplified DLX are all 32 bits wide and listed below.



13.2. INSTRUCTION SET ARCHITECTURE 149

• 32 General Purpose Registers (GPRs): R0 to R31. Loosely speaking, the general
purpose registers are the objects that the program directly manipulates. For example,
a high level instructions x := y + z is implemented by storing the sum of two registers
in a third register; say R1← R2 + R3.

• Program Counter (PC). The PC stores the address (i.e., location in memory) of the
instruction that is currently being executed.

• Instruction Register (IR). The IR stores the current instruction.

• Special Registers: MAR, MDR. These registers are used for specifying the interface
between the microprocessor and the memory.

Question 13.2 Parts of the main memory in many computers are read-only memory and
even nonvolatile. Read-only means that the contents cannot be changed. Nonvolatile means
that the contents are kept even when power is turned off. Can you explain why?

13.2.2 Instruction Set

The machine language of a processor is often called an instruction set. In general, a machine
language has very few rules and a very simple syntax. In the case of the simplified DLX,
every sequence of instructions constitutes a legal program (is this the case in C or in Java?).
This explains why the machine language is referred to simply as a set of instructions.

Instruction formats. Every instruction in the instruction set of the simplified DLX is
represented by a single word. There are two instruction formats: I-type and R-type. The
partitioning of each format into fields is depicted in Figure 13.1. The opcode field encodes
the instruction (e.g., load, store, add, jump). The RS1, RS2, RD fields encode indexes of
general purpose registers. The immediate field encodes a constant. The function field (in an
R-type instruction format) is used to encode the instruction.

List of instructions. We list below the instruction set of the simplified DLX. In this
list, imm denotes the immediate field in an I-Type instruction and sext(imm) denotes a
two’s complement sign extension of imm to 32 bits. The semantics of each instruction are
informally abbreviated and are formally explained after each group of instructions.

Note that every instruction (except for jump instructions and halt), has the side ef-
fect of increasing the PC. Namely, apart from doing whatever the instructions says, the

I−type:

R−type:

Opcode RS1 RD immediate
6 5 165

Opcode RS1 RDRS2 Function
6 5 65 5 5

Figure 13.1: Instruction formats of the simplified DLX.



150 CHAPTER 13. A SIMPLIFIED DLX

microprocessor also performs the operation:

〈PC〉 ← mod(〈PC〉+ 1, 232). (13.1)

Equation 13.1 means the following: (i) Add one to the binary number represented by the
PC. (ii) The sum is computed modulo 232, namely, if the sum equals 232, then replace the
sum by zero. (iii) Store the sum in binary representation in the PC.

Load/Store Instructions (I-type). Load and store instructions deal with copying words
between the memory and the GPRs.

Load/Store Semantics
lw RD RS1 imm RD := M(sext(imm)+RS1)
sw RD RS1 imm M(sext(imm)+RS1) := RD

The precise semantics of load and store instructions are rather complicated. We first
define the effective address; informally, the effective address is the index of the memory word
that is accessed in a load or store instruction.

Definition 13.1 The effective address in a load or store instruction is defined as follows.
Let j = 〈RS1〉, namely the binary number represented by the 5-bit field RS1 in the instruc-
tion. Let Rj denote the word stored in the GPR whose index is j. Let 〈Rj〉 denote the
binary number represented by Rj. Recall that [imm] denotes the two’s complement number
represented by the 16-bit field imm. We denote the effective address by ea. Then,

ea
4

= mod(〈Rj〉+ [imm] , 232).

Question 13.3 Explain the disadvantage of using 〈Rj〉+ [imm] as the effective address.

Question 13.4 Let X[31 : 0] and Y [31 : 0] be two binary strings. Prove that addition
modulo 232 is not sensitive to binary or two’s complement representation. Namely,

mod
(

〈 ~X〉+ 〈~Y 〉, 232
)

= mod
([

~X
]

+ 〈~Y 〉, 232
)

= mod
([

~X
]

+
[

~Y
]

, 232
)

.

Prove that ea = mod([imm] + [Rj] , 232)] = mod(〈sext(imm)〉+ 〈Rj〉, 232)].

Question 13.5 Consider the computation of the effective address. Suppose that we wish to
detect the event that the computation overflows. Formally,

〈Rj〉+ [imm] ≥ 232 or 〈Rj〉+ [imm] < 0.

Suggest how to compute the effective address and how to detect overflow.

The semantics of load and store instruction are as follows.



13.2. INSTRUCTION SET ARCHITECTURE 151

Definition 13.2 Let i = 〈RD〉, namely the binary number represented by the 5-bit field RD
in the instruction. Let Ri denote the word stored in the GPR whose index is i. A load
instruction has the following meaning:

Ri←M [ea].

This means that the word stored in M [ea] is copied to register Regi.

A store instruction has the following meaning:

M [ea]← Ri.

This means that the word stored in Regi is copied to M [ea].

Notation. From this point on, we will abuse notation to abbreviate. We will use RS1 to
denote the word stored in the register whose index is 〈RS1〉. This word was denoted by
Rj in the definition of the effective address. The same abbreviation is used for RS2 and
RD. Similarly, 〈RS1〉 will denote the binary number represented by RS1. This number was
denoted by 〈Rj〉 in the definition of the effective address. Finally, [RS1] will denote the
two’s complement number represented by RS2.

Immediate Instructions (I-type). The only immediate instruction we have is an addi-
tion instruction.

Instruction Semantics
addi RD RS1 imm RD := RS1 + sext(imm)

The semantics of an add-immediate instruction are as follows.

RD ← bin(mod([RS1] + [imm] , 232)). (13.2)

Equation 13.2 is too terse; we clarify it now. The goal is to add: (i) the two’s complement
number represented by the word stored in the register whose index is 〈RS1〉 and (ii) the
two’s complement number represented by the string stored in the immediate field of the
instruction. The addition is modulo 232. The binary representation of the sum is stored in
the register whose index is 〈RD〉.

This definition is a bit confusing. One might ask why not encode the sum as a two’s
complement number? The following question deals with this issue.

Question 13.6 Suppose that
[

~A
]

=
[

~B
]

and that 〈 ~C〉 = mod(
[

~B
]

, 232). Prove that ~A = ~C.

Shift Instructions (I-type). The shift instructions perform a logical shift by one position
either to the left or to the right.

Instruction Semantics
slli RD RS1 RD := RS1 << 1
srli RD RS1 RD := RS1 >> 1



152 CHAPTER 13. A SIMPLIFIED DLX

ALU Instructions (R-type). ALU instructions add, subtract, or perform logical bitwise
operations.

Instruction Semantics
add RD RS1 RS2 RD := RS1 + RS2
sub RD RS1 RS2 RD := RS1 − RS2
and RD RS1 RS2 RD := RS1 ∧ RS2
or RD RS1 RS2 RD := RS1 ∨ RS2
xor RD RS1 RS2 RD := RS1 ⊕ RS2

Test Instructions (I-type). The test instructions compare the two’s complement num-
ber stored in RS1 with the two’s complement number stored in the immediate field of the
instruction. The result of the comparison is stored in RD.

Instruction Semantics
sreli RD RS1 imm RD := 1, if condition is satisfied,

RD := 0 otherwise
if rel =lt test if RS1 < sext(imm)
if rel =eq test if RS1 = sext(imm)
if rel =gt test if RS1 > sext(imm)
if rel =le test if RS1 ≤ sext(imm)
if rel =ge test if RS1 ≥ sext(imm)
if rel =ne test if RS1 6= sext(imm)

Branch/Jump Instructions (I-type). Branch and jump instructions control the PC
according to a condition.

Instruction Semantics
beqz RS1 imm PC = PC + 1 + sext(imm), if RS1 = 0

PC = PC + 1, if RS1 6= 0
bnez RS1 imm PC = PC + 1, if RS1 = 0

PC = PC + 1 + sext(imm), if RS1 6= 0
jr RS1 PC = RS1
jalr RS1 R31 = PC+1; PC = RS1

Miscellaneous Instructions (I-type). Here we list instructions that are “special”.
Instruction Semantics
special-nop causes transition to Init/Fetch states
halt causes transition to HALT state


