Computer Structure
Spring 2004 Lecture Notes

by
Guy Even

Dept. of Electrical Engineering - Systems, Tel-Aviv University



il

Printed on April 22, 2004

Copyright 2004 by Guy Even
Send comments to: guy@eng.tau.ac.il



Contents

LThe digital abstraction

1.1 Transistors. . . . . . . . .. .. ...
1.2 From analog signals to digital signals
1.3 Transfer functions of gates . . . . . .
1.4 The bounded-noise model . . . . . .

1.5 The digital abstraction in presence of noise‘ ...................

1.5.1 Input and output signals‘ .

1.6 Stable signals‘ .............
1.7 Summarﬁ ...............

‘2 Foundations of combinational circuits‘

1.5.2 Redefining the digital interpretation of analog signals‘ .........

2.1 Boolean functions‘ ...........
2.3 Back to the digital world . . . . . ..
2.4 Building blocks . . . .. . ... ...
2.5 Combinational circuits‘ ........
2.6 Cost and propagation delay . . . . .
2.7 Syntax and semantics . . . . . . . ..
2.8 Summarﬂ ...............
3 Trees
‘3.1 Trees of associative Boolean gates . .
3.1.1 Associative Boolean functions
3.1.2 OR—trees‘ ............
3.1.3 Cost and delay analysis‘. C
3.2 Optimality of trees . .. ... ...
3.2.1 Definitions . . . . . . ... ..
3.2.2 Lower bounds . . .. ... ..
3.3 Summarﬂ ...............

‘4 Decoders and Encoders

‘4.1 Notation . . . . . . . ... ... ...
4.2 Values represented by binary strings
4.3 Decoders‘ ................

iii

2.2  Combinational gates - an analog approach . . . . . . ... ... .. ... ..

—_
SO OO0 IO Otw -

—_

25
25
25
26
27
30
30
31
35



iv CONTENTS
4.3.1 Brute force deSiQiI]J ............................. 41

4.3.2 An optimal decoder design . . . . . ... ... 41

4.3.3 Correctness‘ ................................ 42

4.3.4 Cost and delay analysis‘ .......................... 43

‘4.4 Encoders‘ ...................................... 44
441 Tmplementation . . . . . . . .o 45

4.4.2 Cost and delay analysis‘ .......................... 48

‘4.4.3 Yet another encoder . . . . . . . ... ... 49

45 Summarﬂ ..................................... 50

5 Selectors and Shifters 53
‘5.1 Multiplexers . . . . . . . . 53
‘5.1.1 ImplementationJ .............................. 54

52 Cyelic ShIfters . . . o o oo 55
‘5.2.1 ImplementationJ .............................. 56

‘5.3 Logical Shifters . . . . . . . . . . . . e 59
530 Implementation . . . . . . oo 59

5.4 Arithmetic SIfters . . . . . . oo 61
5.5 Summarﬁ ..................................... 62

‘6 Priority encoders‘ 63
6.1 Big Endian vs. Little Endian . . . . . . o o oo 63
‘6.2 Priority Encoders‘ ................................. 65
6.2.1 Implementation of U-PENC(T) . . . . . ..o it 67

6.2.2 Implementation of BPENG © o o oo 68

6.3 Summarﬂ ..................................... 72

‘7 Half-Decoders‘ 73
71 SPecification . . . . . .o 73
7.2 Preliminaries‘ ................................... 74
7.3 TImplementation . . . . . . . .o 75
7.4 Correctness‘ .................................... 75
7.5 Cost and delay analysis . . . . . . . . ... Lo 77
7.6 Application . . . . . . .. 78
T.7 0 SUMIATY . . . 78

79
8.1 Definition of a binary adder‘ ........................... 79
8.2 Ripple Carry Adder . . . . . . . . . . .. 80
8.2.1 Correctness Drooﬂ ............................. 80

8.2.2 Delay and cost analysis . . . . . . ... ... 81

83 CaITy BIES .« o o oot e 82
8.3.1 Redundant and non redundant representation‘ ............. 82

8.3.2 Cone of adder outputs‘ .......................... 83

‘8.3.3 Reductions between sum and carry bits‘ ................. 83




CONTENTS

8.4 Conditional Sum Adder . . . . . . . .
8.4.1 MotivationJ .................................
8.4.2 Tmplementation . . . . . . . ..o
8.4.3 Delay and cost analysis . . . . . . ... ... oL
8.5 Compound Adder . . . . . . . . . ..
8.5.1  Tmplementation . . . . . . . o oo
8.5.2 CorrectNess . . . . . .. e
8.5.3 Delay and cost analysis . . . . . . ... ... ... L.
8.6 Summarﬂ .....................................
9 Fast Addition
9.1 Reduction: sum-bits — carry—bits‘ .......................
9.2 Computing the carry—bits‘ .............................
9.2.1 Carry-Lookahead Adders . . . . . . . .. ..
9.2.2 Reduction to prefix computation‘ ....................
9.3 Parallel prefix computation . . . . . . . ..o
9.3.1 ImplementationJ ..............................
9.3.2 Correctness‘ ................................
9.3.3  Delay and cost analysis . . . . . . . ..o
9.4 Putting it all together‘ ..............................

9.5 Summarﬁ .....................................

10 Signed Addition

10.1 Representation of negative intep;ers‘ .......................
10.2 Negation in two’s complement representation‘ ..................
10.3 Properties of two’s complement representation . . . . . . . ... . ... ...
10.4 Reduction: two’s complement addition to binary addition . . . . . ... ...

10.4.1 Detecting overflow . . . . . . ..

10.4.2 Determining the sign of thesum . . . . . . . . . . .. ... ... ...
10.5 A two’s-complement adder . . . ...
10.6 A two’s complement adder/ subtracter . . . . ...
10.7 Additional questions . . . . . . . . ...
10.8 Summargﬂ .....................................

83
84
84
84
86
87
87
88
89

91
91
91
92
95
97
98
98
100
101
101



vi

CONTENTS



Chapter 1

The digital abstraction

The term a digital circuit refers to a device that works in a binary world. In the binary
world, the only values are zeros and ones. Hence, the inputs of a digital circuit are zeros
and ones, and the outputs of a digital circuit are zeros and ones. Digital circuits are usually
implemented by electronic devices and operate in the real world. In the real world, there
are no zeros and ones; instead, what matters is the voltages of inputs and outputs. Since
voltages refer to energy, they are continuous!. So we have a gap between the continuous
real world and the two-valued binary world. One should not regard this gap as an absurd.
Digital circuits are only an abstraction of electronic devices. In this chapter we explain this
abstraction, called the digital abstraction.

In the digital abstraction one interprets voltage values as binary values. The advantages
of the digital model cannot be overstated; this model enables one to focus on the digital
behavior of a circuit, to ignore analog and transient phenomena, and to easily build larger
more complex circuits out of small circuits. The digital model together with a simple set of
rules, called design rules, enable logic designers to design complex digital circuits consisting
of millions of gates.

1.1 Transistors

Electronic circuits that are used to build computers are mostly build of transistors. Small
circuits, called gates are built from transistors. The most common technology used in VLSI
chips today is called CMOS, and in this technology there are only two types of transistors:
N-type and P-type. Each transistor has three connections to the outer world, called the gate,
source, and drain. Figure 1.1/ depicts diagrams describing these transistors.

Although inaccurate, we will refer, for the sake of simplicity, to the gate and source as
inputs and to the drain as an output. An overly simple explanation of an N-type transistor in
CMOS technology is as follows: If the voltage of the gate is high (i.e., above some threshold
v1), then there is little resistance between the source and the drain. Such a small resistance
causes the voltage of the drain to equal the voltage of the source. If the voltage of the gate
is low (i.e., below some threshold vy < v1), then there is a very high resistance between the

Lunless Quantum Physics is used.



2 CHAPTER 1. THE DIGITAL ABSTRACTION

drain source
gate | If‘ gate ol If‘
source drain
N-—transistor P—transistor

Figure 1.1: Schematic symbols of an N-transistor and P-transistor

source and the drain. Such a high resistance means that the voltage of the drain is unchanged
by the transistor (it could be changed by another transistor if the drains of the two transistors
are connected). A P-type transistor is behaves in a dual manner: the resistance between
drain and the source is low if the gate voltage is below vy. If the voltage of the gate is above
v1, then the source-to-drain resistance is very high.

Note that this description of transistor behavior implies immediately that transistors
are highly non-linear. (Recall that a linear function f(z) satisfies f(a-z) = a- f(z).) In
transistors, changes of 10% in input values above the threshold v; have a small effect on the
output while changes of 10% in input values between vy and v; have a large effect on the
output. In particular, this means that transistors do not follow Ohm’s Law (i.e., V =1-R).

Example 1.1 (A CMOS inverter) Figure [1.2 depicts a CMOS inverter. If the input
voltage is above vy, then the source-to-drain resistance in the P-transistor is very high and
the source-to-drain resistance in the N-transistor is very low. Since the source of the N-
transistor is connected to low voltage (i.e., ground), the output of the inverter is low.

If the input voltage is below vy, then the source-to-drain resistance in the N-transistor is
very high and the source-to-drain resistance in the P-transistor is very low. Since the source
of the P-transistor is connected to high voltage, the output of the inverter is high.

We conclude that the voltage of the output is low when the input is high, and vice-versa,
and the device is indeed an inverter.

5 volts
—Ol P—transistor

IN— ouT
—l N-—transistor

0 volts

Figure 1.2: A CMOS inverter

The qualitative description in Example [1.1 hopefully conveys some intuition about how
gates are built from transistors. A quantitative analysis of such an inverter requires precise
modeling of the functionality of the transistors in order to derive the input-output volt-
age relation. One usually performs such an analysis by computer programs (e.g. SPICE).
Quantitative analysis is relatively complex and inadequate for designing large systems like
computers. (This would be like having to deal with the chemistry of ink when using a pen.)
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1.2 From analog signals to digital signals

An analog signal is a real function f : R — R that describes the voltage of a given point in a
circuit as a function of the time. We ignore the resistance and capacities of wires. Moreover,
we assume that signals propagate through wires immediatel}@. Under these assumptions,
it follows that, in every moment, the voltages measured along different points of a wire are
identical. Since a signal describes the voltage (i.e., derivative of energy as a function of
electric charge), we also assume that a signal is a continuous function.

A digital signal is a function g : R — {0, 1, non-logical}. The value of a digital signal
describes the logical value carried along a wire as a function of time. To be precise there are
two logical values: zero and one. The non-logical value simply means that that the signal is
neither zero or one.

How does one interpret an analog signal as a digital signal? The simplest interpretation
is to set a threshold V’. Given an analog signal f(¢), the digital signal dig(f(t)) can be
defined as follows.

0 if f(t)y <V’

L) >V (1.1)

dig(f(1)) = {
According to this definition, a digital interpretation of an analog signal is always 0 or 1, and
the digital interpretation is never non-logical.

There are several problems with the definition in Equation [1.1. One problem with this
definition is that all the components should comply with ezactly the same threshold V'. In
reality, devices are not completely identical; the actual thresholds of different devices vary
according to a tolerance specified by the manufacturer. This means that instead of a fixed
threshold, we should consider a range of thresholds.

Another problem with the definition in Equation is caused by perturbations of f(t)
around the threshold ¢. Such perturbations can be caused by noise or oscillations of f(t)
before it stabilizes. We will elaborate more on noise later, and now explain why oscillations
can occur. Consider a spring connected to the ceiling with a weight w hanging from it. We
expect the spring to reach a length ¢ that is proportional to the weight w. Assume that all
we wish to know is whether the length ¢ is greater than a threshold ¢;,. Sounds simple! But
what if ¢ is rather close to ¢;7 In practice, the length only tends to the length ¢ as time
progresses; the actual length of the spring oscillates around ¢ with a diminishing amplitude.
Hence, the length of the spring fluctuates below and above ¢; many times before we can
decide. This effect may force us to wait for a long time before we can decide if ¢ < ¢,. If
we return to the definition of dig(f(t)), it may well happen that f(¢) oscillates around the
threshold V’. This renders the digital interpretation used in Eq. 1.1 useless.

Returning to the example of weighing weights, assume that we have two types of objects:
light and heavy. The weight of a light (resp., heavy) object is at most (resp., at least) wq
(resp., wy). The bigger the gap w; — wy, the easier it becomes to determine if an object is
light or heavy (especially in the presence of noise or oscillations).

Now we have two reasons to introduce two threshold values instead of one, namely,
different threshold values for different devices and the desire to have a gap between values

2This is a reasonable assumption if wires are short.
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interpreted as logical zero and logical one. We denote these thresholds by V,,, and Vhigh>
and require that V;,,, < V},; gh- An interpretation of an analog signal is depicted in Figure/1.3.
Consider an analog signal f(¢). The digital signal dig(f(t)) is defined as follows.
0 if f(t) < Vipw
dig(f(t)) =4 1 if £(t) > Viigh (1.2)

non-logical otherwise.

logical one

Vhigh —

Viow

logical zero

Ll

Figure 1.3: A digital interpretation of an analog signal in the zero-noise model.

We often refer to the logical value of an analog signal f. This is simply a shorthand way
of referring to the value of the digital signal dig(f).

It is important to note that fluctuations of f(t) are still possible around the threshold
values. However, if the two thresholds are sufficiently far away from each other, fluctuations
of f do not cause fluctuations of dig(f(t)) between 0 and 1. Instead, we will have at worst
fluctuations of dig(f(t)) between a non-logical value and a logical value (i.e., 0 or 1). A
fluctuation between a logical value and a non-logical value is much more favorable than a
fluctuation between 0 and 1. The reason is that a non-logical value is an indication that the
circuit is still in a transient state and a “decision” has not been reached yet.

Assume that we design an inverter so that its output tends to a voltage that is bounded
away from the thresholds Vj,, ., and Vhigh' Let us return to the example of the spring with
weight w hanging from it. Additional fluctuations in the length of the spring might be caused
by wind. This means that we need to consider additional effects so that our model will be
useful. In the case of the digital abstraction, we need to take noise into account. Before
we consider the effect of noise, we formulate the static functionality of a gate, namely, the
values of its output as a function of its stable inputs.

Question 1.1 Try to define an inverter in terms of the voltage of the output as a function
of the wvoltage of the input.
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1.3 Transfer functions of gates

The voltage at an output of a gate depends on the voltages of the inputs of the gate. This
dependence is called the transfer function (or the wvoltage-transfer characteristic - VTC).
Consider, for example an inverter with an input x and an output y. To make things com-
plicated, the value of the signal y(¢) at time ¢ is not only a function of the signal x at time
t since y(t) depends on the history. Namely, y(o) is a function of x(¢) over the interval
(—o0, o).

Transfer functions are solved by modeling gates with partial differential equations, a
rather complicated task. A good approximation of transfer functions is obtain by solving
differential equations, still a complicated task that can be computed quickly only for a few
transistors. So how are chips that contain millions of chips designed?

The way this very intricate problem is handled is by restricting designs. In particular,
only a small set of building blocks is used. The building blocks are analyzed intensively,
their properties are summarized, and designers rely on these properties for their designs.

One of the most important steps in characterizing the behavior of a gate is computing
its static transfer function. Returning to the example of the inverter, a “proper” inverter
has a unique output value for each input value. Namely, if the input z(t) is stable for a
sufficiently long period of time and equals xg, then the output y(¢) stabilizes on a value yq
that is a function of xoﬁ We formalize the definition of a static transfer function of a gate
G with one input z and one output y in the following definition.

Definition 1.1 Consider a device G with one input x and one output y. The device G is a
gate if its functionality is specified by a function f : R — R as follows: there exists a A > 0,
such that, for every xo and every ty, if x(t) = xo for every t € [to— A, to], then y(ty) = f(zo).
Such a function f(x) is called the static transfer function of G.

At this point we should point the following remarks:

1. Since circuits operate over a bounded range of voltages, static transfer functions are
usually only defined over bounded domains and ranges (say, [0, 5] volts).

2. To make the definition useful, one should allow perturbations of z(¢) during the interval
[to— A, to]. Static transfer functions model physical devices, and hence, are continuous.
This implies the following definition: For every € > 0, there exist a > 0 and a A > 0,
such that

YVt € [tl,tQ] . ‘l’(t) — LE()‘ S 0 = Vte [tl +A,t2] . |y(t) — f(I0)| S €.

3If this were not the case, then we need to distinguish between two cases: (a) Stability is not reached:
this case occurs, for example, with devices called oscillators. Note that such devices must consume energy
even when the input is stable. We point out that in CMOS technology it is easy to design circuits that do
not consume energy if the input is logical, so such oscillations are avoided. (b) Stability is reached: in this
case, if there is more than one stable output value, it means that the device has more than one equilibrium
point. Such a device can be used to store information about the “history”. It is important to note that
devices with multiple equilibria are very useful as storage devices (i.e., they can “remember” a small amount
of information). Nevertheless, devices with multiple equilibria are not “good” candidates for gates, and it is
easy to avoid such devices in CMOS technology..
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3. Note that in the above definition A does not depend on z( (although it may depend on
¢). Typically, we are interested on the values of A only for logical values of z(t) (i.e.,
x(t) < Vi, and z(t) > Vhigh)' Once the value of € is fixed, this constant A is called
the propagation delay of the gate G and is one of the most important characteristic of
a gate.

Question 1.2 FExtend Definition|1.1 to gates with n inputs and m outputs.

Finally, we can now define an inverter in the zero-noise model. Observe that according to
this definition a device is an inverter if its static transfer function satisfies a certain property.

Definition 1.2 (inverter in zero-noise model) A gate G with a single input x and a
single output y is an inverter if its static transfer function f(z) satisfies the following the
following two conditions:

1. If 2 < Vigy, then f(z) > Vhigh‘
2. If z > Vhigh’ then f(2) < Viow-

The implication of this definition is that if the logical value of the input x is zero (resp., one)
during an interval [t1,t5] of length at least A, then the logical value of the output y is one
(resp., zero) during the interval [t; + A, t5].

How should we define other gates such a NAND-gates, XOR-gates, etc.? As in the definition
of an inverter, the definition of a NAND-gate is simply a property of its static transfer function.

Question 1.3 Define a NAND-gate.

We are now ready to strengthen the digital abstraction so that it will be useful also in the
presence of bounded noise.

1.4 The bounded-noise model

Consider a wire from point A to point B. Let A(t) denote the analog signal measured at
point A. Similarly, let B(t) denote the analog signal measured at point B. We would like to
assume that wires have zero resistance, zero capacitance, and that signals propagate through
a wire with zero delay. This assumption means that the signals A(t) and B(t) should be
equal at all times. Unfortunately, this is not the case; the main reason for this discrepancy
is moise.

There are many sources of noise. The main source is heat that causes electrons to move
randomly. These random movements do not cancel out perfectly, and random currents are
created. These random currents create perturbations in the voltage of a wire. The difference
between the signals B(t) and A(t) is a noise signal.

Consider, for example, the setting of additive noise: A is an output of an inverter and
B is an input of another inverter. We consider the signal A(t) to be a reference signal. The
signal B(t) is the sum A(t) + np(t), where ng(t) is the noise signal.



1.5. THE DIGITAL ABSTRACTION IN PRESENCE OF NOISE 7

The bounded-noise model assumes that the noise signal along every wire has a bounded
absolute value. We will use a slightly simplified model in which there is a constant € > 0
such that the absolute value of all noise signals is bounded by e. We refer to this model as
the uniform bounded noise model. The justification for assuming that noise is bounded is
probabilistic. Noise is a random variable whose distribution has a rapidly diminishing tail.
This means that if the bound is sufficiently large, then the probability of the noise exceeding
this bound during the lifetime of a circuit is negligibly small.

1.5 The digital abstraction in presence of noise

Consider two inverters, where the output of one gate feeds the input of the second gate.
Figure[1.4 depicts such a circuit that consists of two inverters.

Assume that the input = has a value that satisfies: (a) z > th’gh? so the logical value
of z is one, and (b) y =V, — €, for a very small ¢ > 0. This might not be possible with
every inverter, but Definition 1.2/ does not rule out such an inverter. (Consider a transfer
function with f (Vhigh> = V], and z slightly higher than Vhigh') Since the logical value of
y is zero, it follows that the second inverter, if not faulty, should output a value z that is
greater than Vhigh' In other words, we expect the logical value of z to be 1. At this point
we consider the effect of adding noise.

Let us denote the noise added to the wire y by n,. This means that the input of the
second inverter equals y(t) + ny(t). Now, if n,(t) > €, then the second inverter is fed a
non-logical value! This means that we can no longer deduce that the logical value of z is
one. We conclude that we must use a more resilient model; in particular, the functionality
of circuits should not be affected by noise. Of course, we can only hope to be able to cope
with bounded noise, namely noise whose absolute value does not exceed a certain value e.

4|>O;>07
X Z

Figure 1.4: Two inverters connected in series.

1.5.1 Input and output signals

Definition 1.3 An input signal is a signal that is fed to a circuit or to a gate. An output
signal is a signal that is output by a gate or a circuit.

For example, in Figure [1.4]the signal y is both the output signal of the left inverter and
an input signal of the right inverter. If noise is not present and there is no delay, then the
signal output by the left inverter always equals the signal input to the right inverter.
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1.5.2 Redefining the digital interpretation of analog signals

The way we deal with noise is that we interpret input signals and output signals differently.
An input signal is a signal measured at an input of a gate. Similarly, an output signal is a
signal measured at an output of a gate. Instead of two thresholds, V},,, and V},,; gh» We define

the following four thresholds:

° Vlow, in, -~ an upper bound on a voltage of an input signal interpreted as a logical zero.

° Vlow, out - an upper bound on a voltage of an output signal interpreted as a logical
Z€ero.
oV, ghyin ~ @ lower bound on a voltage of an input signal interpreted as a logical one.

oV, gh,out = 2 lower bound on a voltage of an output signal interpreted as a logical one.

These four thresholds satisfy the following equation:

Vlow,out . Vlow,z’n < th’gh,m . Vhigh,out' (1.3)

Figure depicts these four thresholds. Note that the interpretation of input signals is less
strict than the interpretation of output signals. The actual values of these four thresholds
depend on the transfer functions of the devices we wish to use.

The differences Vlow, in Vlow, oyt and th’gh, out — th’gh, in, are called noise margins.
Our goal is to show that noise whose absolute value is less than the noise margin will not
change the logical value of an output signal. Indeed, if the absolute value of the noise n(t)
is bounded by the noise margins, then an output signal f,,(¢) that is below Vlow,Out will

result with an input signal fi,(t) = fout(t) + n(t) that does not exceed Vj,,, ;-

ft)

A

logical one - output

Vhigh, out —
logical one - input
Vhigh, mn -
Vlow, mn
logical zero - input
Vlow, out -

logical zero - output

|l

Figure 1.5: A digital interpretation of an input and output signals.
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Consider an input signal f;,(t). The digital signal dig(f;,(t)) is defined as follows.

0 if fm<t) < Vlow,m
dig(fin(t)) = 1 if fm(t) > Vhigh}z’n (14)

non-logical otherwise.

Consider an output signal f,,(t). The digital signal dig(fe.(t)) is defined analogously.

0 it fout (D) < Vigw, out
dig(fout(t)) =41 if fout(t) > Vhigh}aut (15)

non-logical otherwise.

Observe that sufficiently large noise margins imply that noise will not change the logical
values of signals.

We can now fix the definition of an inverter so that bounded noise added to outputs,
does not affect the logical interpretation of signals.

Definition 1.4 (inverter in the bounded-noise model) A gate G with a single input x
and a single output y is an inverter if its static transfer function f(z) satisfies the following
the following two conditions:

1 Af 2 < Vigw in» then f(2) > Viigh out-
2. If z > Vhigh,in’ then f(z) < Vlow,out'
Question 1.4 Define a NAND-gate in the bounded-noise model.

Question 1.5 Consider the function f(x) = 1 — x over the interval [0,1]. Suppose that
f(z) is a the transfer function of a device C. Can you define threshold values Vigw out <

Viow.in < Vhigh in < Vhigh out S0 that C is an inverter according to Definition |1.47

Question 1.6 Consider a function f : [0,1] — [0,1]. Suppose that: (i) f(0) = 1, and
f(1) =0, (i) f(x) is monotone decreasing, (iii) the derivative f'(z) of f(x) satisfies the
following conditions: f'(x) is continuous and there is an interval (o, 3) such that f'(z) < —1
for every x € (o, 3). And, (iv) there exists a point x¢ € («, 3) such that f(zq) = xq.

Prove that one can define threshold values Vlow,out < Vlow,in < Vhigh,in < Vhigh,out
so that C' is an inverter according to Definition|1.4.

Hints: (a) The derivative f'(z) is continuous. Hence, there exists constants ¢ < —1 and
d > 0 such that, in the interval (xog — Jd,x0 + 0), the derivate f'(x) is less than or equal to c.
(b) Set Viow,in = %o — 6 and Vhigh,in = o0 + J.

Question 1.7 * Try to characterize transfer functions g(z) that correspond to inverters.
Namely, if C, is a device, the transfer function of which equals g(z), then one can define
threshold values that satisfy Definition |1.4.
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1.6 Stable signals

In this section we define terminology that will be used later. To simplify notation we define
these terms in the zero-noise model. We leave it to the curious reader to extend the definitions
and notation below to the bounded-noise model.

An analog signal f(t) is said to be logical at time t if dig(f(t)) € {0,1}. An analog
signal f(t) is said to be stable during the interval [t1, t5] if f(¢) is logical for every ¢ € [tq,ts].
Continuity of f(t) and the fact that V;,,, <V}, gh imply the following claim.

Claim 1.1 If an analog signal f(t) is stable during the interval [t1,ts] then one of the fol-
lowing holds:

1. dig(f(t)) =0, for everyt € [t1,1s], or
2. dig(f(t)) =1, for every t € [t1,ts].

From this point we will deal with digital signals and use the same terminology. Namely,
a digital signal x(t) is logical at time ¢ if 2(t) € {0,1}. A digital signal is stable during an
interval [ty,t5] if z(t) is logical for every ¢ € [tq,ts].

1.7 Summary

In this chapter we presented the digital abstraction of analog devices. For this purpose we
defined analog signals and their digital counterpart, called digital signals. In the digital
abstraction, analog signals are interpreted either as zero, one, or non-logical.

We discussed noise and showed that to make the model useful, one should set stricter
requirements from output signals than from input signals. Our discussion is based on the
bounded-noise model in which there is an upper bound on the absolute value of noise.

We defined gates using transfer functions and static transfer functions. This functions
describe the analog behavior of devices. We also defined the propagation delay of a device
as the amount of time that input signals must be stable to guarantee stability of the output
of a gate.



Chapter 2

Foundations of combinational circuits

In this chapter we define and study combinational circuits. Our goal is to prove two theorems:
(A) Every Boolean function can be implemented by a combinational circuit, and (B) Every
combinational circuit implements a Boolean function.

2.1 Boolean functions

Let {0,1}"™ denote the set of n-bit strings. A Boolean function is defined as follows.
Definition 2.1 A function B : {0,1}" — {0,1}* is called a Boolean function.

2.2 Combinational gates - an analog approach

By Definition 1.1} a gate is a device whose static functionality is specified by a static transfer
function. This means that the output is a function of the inputs, provided that the input
values do not change for a sufficiently long amount of time.

Our goal now is to define combinational gates. The difference between a gate and a
combinational gate is that we require that if the inputs are stable (and, in particular, logical),
then the output is not only well defined but also logical. Hence, not only is the output a
function of the present value of the inputs - the output is logical if the inputs are stable. We
now formalize the definition of a combinational gate.

First, we extend the definition of the digital interpretation of an analog signal to real
vectors. Let ¥ € R, where ¥ = (y1,¥2, -, ¥n). The function dig, : R* — {0, 1, non-logical }"
is defined by

dig,(y1, Y.+~ yn) = (dig(yn), dig(ye), -~ . dig((ya)))-
To simplify notation, we denote dig,, simply by dig when the length n of the vector is clear.

Definition 2.2 Consider a gate G with n inputs and k outputs. Let f : R* — RF denote
the static transfer function of the gate G. The gate G is a combinational gate if its static
transfer function satisfies the following condition:

dig(#) € {0,1}" = dig(f(Z)) € {0,1}*. (2.1)

11
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A static transfer function f : R® — RF of a combinational circuit induces a Boolean
function By : {0,1}" — {0,1}* as follows. Given a Boolean vector (by,---,b,) € {0,1}",
define z; as follows:

o [Vigw—¢  ifbi=0
Ti = .
Vhigh +¢e if b =1.

The Boolean function By is defined by

-

By(b) = dig(f(2)).

Since G is a combinational circuit, it follows that every component of dig(f(¥)) is logical,
and hence By is a Boolean function, as required.
After defining the Boolean function By, we can rephrase Equation as follows:

dig(%) € {0,1}" = dig(f (%)) = By(dig()).
The discussion so far proves the following claim.

Claim 2.1 In a combinational gate, the relation between the logical values of the outputs
and the logical values of the inputs is specified by a Boolean function.

Recall that the propagation delay is an upper bound on the amount of time that elapses
from the moment that the inputs (nearly) stop changing till the moment that the output
(nearly) equals the value of the static transfer function. Hence, one must allow some time
till the logical values of the outputs of a combinational gate properly reflect the value of
the Boolean function. We say that a combinational gate is consistent if this relation holds.
Formally,

Definition 2.3 A combinational gate G with inputs Z(t) and outputs y(t) is consistent at
time t if dig(z(t)) € {0,1}" and dig(y(t)) = By(dig(Z(t))).

2.3 Back to the digital world

In the previous section we defined combinational gates using analog signals and their digital
interpretation. This approach is useful when one wishes to determine if an analog device can
be used as a digital combinational gate. Here we change the approach and avoid reference
to analog signals.

To simplify notation, we consider a combinational gate G with 2 inputs, denoted by
x1, T, and a single output, denoted by y. Instead of using analog signals, we refer only
to digital signals. Namely, we denote the digital signal at terminal x; by z1(¢). The same
notation is used for the other terminals.

Our goal is to specify the functionality of combinational gate G by a Boolean function,
to define when a combinational gate G is consistent, and to define the the propagation delay

of G.
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We use a looser definition of the propagation delay. Recall that we decided to refer only
to digital signals. Hence, we are not sensitive to the analog value of the signals. This means
that a (logically) stable signal is considered to have a fixed value, and the analog values of
inputs may change as long as they remain with the same logical value.

In the looser definition of propagation delay we only ask about the time that elapses from
the moment the inputs are stable till the gate is consistent.

Definition 2.4 A combinational gate G is consistent with a Boolean function B at time ¢
if the input values are digital at time t and

y(t) = B (1), za(1)).

The following definition defines when a combinational gate implements a Boolean function
with propagation delay t,q.

Definition 2.5 A combinational gate G implements a Boolean function B : {0,1}* — {0,1}
with propagation delay t,q if the following holds.
For every o1,09 € {0,1}, if x;(t) = 0, for i = 1,2, during the interval [t1,ts], then

Vit € [tl -+ tpd,tg] . ’y(t) = B(Ul,UQ).
The following remarks should be well understood before we continue:

1. The above definition can be stated in a more compact form. Namely, a combinational
gate G implements a Boolean function f : {0,1}" — {0, 1} with propagation delay ¢,
if stability of the inputs of G in the interval [¢, t5] implies that the combinational gate
G is consistent with f in the interval [ty + tpq, t2].

2. If t3 < t; +1pq, then the statement in the above definition is empty. It follows that the
inputs of a combinational gate must be stable for at least a period of ¢,4, otherwise,
the combinational gate need not reach consistency.

3. Note that the propagation delay is an upper bound on the amount of time that elapses
till a combinational gate becomes consistent (provided that its inputs are stable). The
actual amount of time that passes till a combinational gate is consistent is very hard
to compute. It depends on z(¢) during the interval (—oo,t) (i.e., how fast does the
input change?). This is why upper bounds are used for propagation delays rather than
the actual times.

Suppose that a combinational gate G implements a Boolean function B : {0,1}" —
{0,1} with propagation delay ¢,4. Assume that t" > t,;. Then G also implements the
Boolean function B(z) with propagation delay ¢'. It is legitimate to use upper bounds
on the actual propagation delay, and pessimistic assumptions should not render a
circuit incorrect. Timing analysis, on the the other hand, depends on the upper bounds
we use; the tighter the bounds, the more accurate the timing analysis is.
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4. Assume that the combinational gate G is consistent at time to, and that at least one
input is not stable in the interval (ts,?3). We can not assume that the output of G
remains stable after t5. However, in practice, an output may remain unchanged for a
short while after an input becomes instable. We formalize this as follows.

Definition 2.6 The contamination delay of a combinational device is a lower bound
on the amount of time that the output of a consistent gate remains stable after its
inputs stop being stable.

Throughout this course, unless stated otherwise, we will make the most “pessimistic”
assumption about the contamination delay. Namely, we do not rely on an output
remaining stable after an input becomes instable. Formally, we will assume that the
contamination delay is zero.

Figure 2.1/ depicts the propagation delay and the contamination delay. The z-axis corre-
sponds to time. The dark (or red) segments signify that the signal is not logical; the light
(or green) segments signify that the signal is stable. The outputs become stable at most
tpq time units after the inputs become stable. The outputs remain stable at least ¢.,,; time
units after the inputs become instable.

inputs I I

—’ tpd

outputs NN N

> tcont

Figure 2.1: The propagation delay and contamination delay of a combinational gate.

Example 2.1 Consider an AND-gate with inputs x1(t) and z2(t) and an output y(t). Sup-
pose that the propagation delay of the gate is tpyq = 2 seconds. (All time units are in seconds
in this example, so units will not be mentioned anymore in this example).

o Assume that the inputs equal 1 during the interval [100,109] . Since t,q = 2, it follows
that y(t) = 1 during the interval [102,109]. It may very well happen that y(t) = 1
before t = 102, however, we are not certain that this happens. During the interval
[100, 102), we are uncertain about the value of y(t); it may be 0, 1, or non-logical, and
it may fluctuate arbitrarily between these values.

o Assume that x1(t) = 1 during the interval [109, 115], z5(t) = non-logical during the
interval (109, 110), and x2(t) = 0 during the interval [110, 115].

During the interval (109, 110) we know nothing about the value of the output y(t) since
xo(t) is non-logical. The inputs are stable again starting t = 110. Since tyq = 2, we
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are only sure about the value of y(t) during the interval [112,115] (during the interval
[112,115], y(t) = 0). Hence, we are uncertain about the value of y(t) during the interval
(109, 112).

o Assume that xo(t) remains stable during the interval [110,120], x1(t) becomes non-
logical during the interval (115,116), and z1(t) equals 1 again during the interval
116, 120].

Since x5(t) is stable during the interval [110,120], we conclude that it equals 0 during
this interval. The truth-table of an AND-gate implies that if one input is zero, then the
output is zero. Can we conclude that that y(t) = 0 during the interval [110,120] ¢

There are some technologies in which we could draw such a conclusion. However,
our formalism does not imply this at all! As soon as x1(t) becomes non-logical (after
t = 115), we cannot conclude anything about the value of y(t). We remain uncertain
for two seconds after both inputs stabilize. Both inputs stabilize at t = 116. Therefore,
we can only conclude that y(t) = 0 during the interval [118,120)].

The inability to determine the value of y(t) during the interval (115,118) is a shortcom-
ing of our formalism. For example, in a CMOS NAND-gate, one can determine that
the output is zero if one of the outputs is one (even if the other input is non-logical).
The problem with using such deductions is that timing becomes dependent on the values
of the signals. On one hand, this improves the estimates computed by timing analysis.
One the other hand, timing analysis becomes a very hard computational problem. In
particular, instead of a task that can be computed in linear time, it becomes an NP-hard
task (i.e., a task that is unlikely to be solvable in polynomial time).

2.4 Building blocks

The building blocks of combinational circuits are combinational gates and wires. In fact, we
will need to consider nets that are generalizations of wires.

Combinational gates or gates. A combinational gate, as seen in Definition (2.5 is a
device that implements a Boolean function. Since the only type of gate we consider are
combinational gates, we refer to a combinational gate, in short, as a gate.

The inputs and outputs of a gate are often referred to as terminals, ports, or even pins.
The fan-in of a gate G is the number of input terminals of G (i.e., the number of bits in the
domain of the Boolean function that specifies the functionality of GG). The basic gates that
we will be using as building blocks for combinational circuits have a constant fan-in (i.e., at
most 2 — 3 input ports). The basic gates that we consider are: inverter (NOT-gate), OR-gate,
NOR-gate, AND-gate, NAND-gate, XOR-gate, NXOR-gate, multiplexer (MUX).

The input ports of a gate G are denoted by the set {in(G);}"_;, where n denotes the
fan-in of G. The output ports of a gate G are denoted by the set {out(G);}r_,, where k
denotes the number of output ports of G.
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Wires and nets. A wire is a connection between two terminals (e.g., an output of one
gate and an input of another gate). In the zero-noise model, the signals at both ends of a
wire are identical.

Very often we need to connect several terminals (i.e., inputs and outputs of gates) to-
gether. We could, of course, use any set of edges (i.e., wires) that connects these terminals
together. Instead of specifying how the terminals are physically connected together, we use
nets.

Definition 2.7 A net is a subset of terminals that are connected by wires.

In the digital abstraction we assume that the signals all over a net are identical (why?). The
fan-out of a net N is the number of input terminals that are connected by N.

The issue of drawing nets is a bit confusing. Figure 2.2|depicts three different drawings of
the same net. All three nets contain an output terminal of an inverter and 4 input terminals
of inverters. However, the nets are drawn differently. Recall that the definition of a net is
simply a subset of terminals. We may draw a net in any way that we find convenient or
aesthetic. The interpretation of the drawing is that terminals that are connected by lines or
curves constitute a net.

o
4‘>Oi
L Do
e >0

Figure 2.2: Three equivalent nets.

>0

Consider a net N. We would like to define the digital signal N(t) for the whole net. The
problem is that due to noise (and other reasons) the analog signals at different terminals of
the net might not equal each other. This might cause the digital interpretations of analog
signals at different terminals of the net to be different, too. We solve this problem by defining
N(t) to logical only if there is a consensus among all the digital interpretations of analog
signals at different terminals of the net. Namely, N(t) is zero (respectively, one) if the
digital values of all the analog signals along the net are zero (respectively, one). If there is
no consensus, then N(t) is non-logical. Recall that, in the bounded-noise model, different
thresholds are used to interpret the digital values of the analog signals measured in input
and output terminals.

We say that a net N feeds an input terminal ¢ if the input terminal ¢ is in N. We say that
anet N is fed by an output terminal ¢ if ¢ is in N. Figure[2.3 depicts an output terminal that
feeds a net and an input terminal that is fed by a net. The notion of feeding and being fed
implies a direction according to which information “flows”; namely, information is “supplied”
by output terminals and is “consumed” by input terminals. Direction of signals along nets
is obtained in “pure” CMOS gates as follows. Output terminals are fed via resistors either
by the ground or by the power. Input terminals, one the other hand, are connected only to
capacitors.
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a net that feeds G

}5}

Figure 2.3: A terminal that is fed by a net and a terminal that feeds a net.

The following definition captures the type of nets we would like to use. We call these
nets simple.

Definition 2.8 A net N is simple if (a) N is fed by exactly one output terminal, and (b) N
feeds at least one input terminal.

A simple net N that is fed by the output terminal ¢ and feeds the input terminals {¢;};cr,
can be modeled by wires {w;};c;. Each wire w; connects ¢ and ¢;. In fact, since information
flows in one direction, we may regard each wire w; as a directed edge t — t;.

It follows that a circuit, all the nets of which are simple, may be modeled by a directed
graph. We define this graph in the following definition.

Definition 2.9 Let C denote a circuit, all the nets of which are simple. The directed graph
DG(C) is defined as follows. The vertices of the graph DG(C') are the gates of C'. The
directed edges correspond to the wires as follows. Consider a simple net N fed by an output
terminal t that feeds the input terminals {t;};c;. The directed edges that correspond to N
are u — v;, where u is the gate that contains the output terminal t and v; is the gate that
contains the input terminal t;.

Note that the information regarding which terminal is connected to each wire is not
maintained in the graph DG(C). One could of course label each endpoint of an edge in
DG(C) with the name of the terminal the edge is connected to.

2.5 Combinational circuits

Question 2.1 Consider the circuits depicted in Figure|2.4. Can you explain why these are
not valid combinational circuits?

Before we define combinational circuits, it is helpful to define two types of special gates:
an input gate and an output gate. The purpose of these gates is to avoid endpoints in nets
that seem to be not connected. (For example, consider the the circuit on the right side in
Figure 2.4. Every net in this circuit has one endpoint that is connected to a gate and one
endpoint that “hangs” without a connection.)

Definition 2.10 (input and output gates) An input gate is a gate with zero inputs and
a single output. An output gate is a gate with one input and zero outputs.
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e D
},

Figure 2.4: Two examples of non-combinational circuits.

Figure 2.5 depicts an input gate and an output gate. Inputs from the “external world” are
fed to a circuit via input gates. Similarly, outputs to the “external world” are fed by the

circuit via output gates.

Input Gate Output Gate

Figure 2.5: An input gate and an output gate

Consider a fixed set of gate-types (e.g.,inverter, NAND-gate, etc.); we often refer to such
a set of gate-types as a library. We associate with every gate-type in the library the number
of inputs, the number of outputs, and the Boolean function that specifies its functionality.

Let G denote the set of gates in a circuit. Every gate G € G is an instance of a gate
from the library. Formally, the gate-type of a gate G indicates the library element that
corresponds to G (e.g., “the gate-type of G is an inverter”). To simplify the discussion, we
simply refer to a gate G as an inverter instead of saying that its gate-type is an inverter.

We now present a syntactic definition of combinational circuits.

Definition 2.11 (syntactic definition of combinational circuits) A combinational cir-
cuit is a pair C = (G, N') that satisfies the following conditions:

1. G is a set of gates.

2. N is a set of nets over terminals of gates in G.

3. Every terminal t of a gate G € G belongs to ezactly one net N € N.
4. Every net N € N is simple.

5. The directed graph DG(C) is acyclic.
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Note that Definition is independent of the gate types. One need not even know the
gate-type of each gate to determine whether a circuit is combinational. Moreover, the ques-
tion of whether a circuit is combinational is a purely topological question (i.e., are the
interconnections between gates legal?).

Question 2.2 Which conditions in the syntactic definition of combinational circuits are
wiolated by the circuits depicted in Figure 2.47

We list below a few properties that explain why the syntactic definition of combinational
circuits is so important. In particular, these properties show that the syntactic definition of
combinational circuits implies well defined semantics.

1. Completeness: for every Boolean function B, there exists a combinational circuit that
implements B. We leave the proof of this property as an exercise for the reader.

2. Soundness: every combinational circuit implements a Boolean function. Note that
it is NP-Complete to decide if the Boolean function that is implemented by a given
combinational circuit with one output ever gets the value 1.

3. Simulation: given the digital values of the inputs of a combinational circuit, one can
simulate the circuit in linear time. Namely, one can compute the digital values of the
outputs of the circuit that are output by the circuit once the circuit becomes consistent.

4. Delay analysis: given the propagation delays of all the gates in a combinational circuit,
one can compute in linear time an upper bound on the propagation delay of the circuit.
Moreover, computing tighter upper bounds is again NP-Complete.

The last three properties are proved in the following theorem by showing that in a
combinational circuit every net implements a Boolean function of the inputs of the circuit.

Theorem 2.2 (Simulation theorem of combinational circuits) Let C' = (G,N) de-
note a combinational circuit that contains k input gates. Let {x;}%_ | denote the output ter-
minals of the input gates in C. Assume that the digital signals {z;(t)}¥_, are stable during
the interval [ty,ts]. Then, for every net N € N there exist:

1. a Boolean function By : {0,1}* — {0,1}, and
2. a propagation delay t,q(N)

such that
N(t) = By(z1(t), z2(t), . . ., 2(1)),
for every t € [t; + tpa(N), to].

We can simplify the statement of Theorem 2.2 by considering each net N € N as an output
of a combinational circuit with k inputs. The theorem then states that every net implements
a Boolean function with an appropriate propagation delay.

We use Z(t) to denote the vector xy(t),. .., xk(t).
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Proof: Let n denote the number of gates in G and m the number of nets in A'. The
directed graph DG(C) is acyclic. It follows that we can topologically sort the vertices of
DG(C). Let vy, v, ..., v, denote the set of gates G according to the topological order. (This
means that if there is a directed path from v; to v; in DG(C), then i < j.) We assume,
without loss of generality, that the inputs are ordered first, namely, vy, ..., v; is the set of
input gates.

Let ; denote the subset of nets in A that are fed by gate v;. Note that if v; is an output
gate, then N is empty. Similarly, if v; is an input gate, then N; contains a single net. Let
€1, €, ...,e, denote an ordering of the nets in A/ such that nets in N; precede nets in N1,
for every v < n. In other words, we first list the nets fed by gate vy, followed by a list of the
nets fed by gate vy, etc.

Having defined a linear order on the gates and on the nets, we are now ready to prove
the theorem by induction on m (the number of nets).

Induction hypothesis: For every ¢ < m’ there exist:
1. a Boolean function B, : {0,1}* — {0,1}, and
2. a propagation delay t,4(e;)

such that the network e; implements the Boolean function B,, with propagation delay ¢,4(e;).

Induction Basis: We prove the induction basis for m’ = k. Consider an ¢ < k. Note that,
for every ¢ < k, e; is fed by the input gate v;. Let x; denote the output terminal of v;. It
follows that the digital signal along e; always equals the digital signal z;(¢). Hence we define
Be, to be simply the projection on the ith component, namely B.,(oy,...,0,) = 0;. The
propagation delay t,4(e;) is zero. The induction basis follows.

Induction Step: Assume that the induction hypothesis holds for m’ < m. We wish to
prove that it also holds for m/+ 1. Consider the net e,, 1. Let v; denote the gate that feeds
the net e, 1. To simplify notation, assume that the gate v; has two input terminals that
are fed by the nets e; and e, respectively. Assume also that gate v; has a single output;
this output feeds the net e,, 1. The ordering of the nets guarantees that j, k& < m’. By the
induction hypothesis, the net e; (resp., e;) implements a Boolean function B, (resp., B.,)
with propagation delay t,4(e;) (resp., tpa(ex)). This implies that both inputs to gate v; are
stable during the interval

[tl + max{tpd(ej), tpd<ek>}7 tg] .

Gate v; implements a Boolean function B,, with propagation delay t,q4(v;). It follows that
the output of gate v; equals

By, (B, (£(t)), Be, (Z(t)))
during the interval
[t1 + max{t,a(e;), tpalex) } + tpa(vi), ta].
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We define B, , , to be the Boolean function obtained by the composition of Boolean func-
tions B, ,, (7)) = By,(Be,;(7), B, (7). We define tpa(€n 1) to be max{tya(e;), tpalex)} +
tpa(v;), and the induction step follows. O

The proof of Theorem 2.2 leads to two related algorithms. One algorithm simulates a
combinational circuit, namely, given a combinational circuit and a Boolean assignment to
the inputs Z, the algorithm can compute the digital signal of every net after a sufficient
amount of time elapses. The second algorithm computes the propagation delay of each net.
Of particular interest are the nets that feed the output gates of the combinational circuit.
Hence, we may regard a combinational circuit as a “macro-gate”. All instances of the same
combinational circuit implement the same Boolean function and have the same propagation
delay.

The algorithms are very easy. For convenience we describe them as one joint algorithm.
First, the directed graph DG(C) is constructed (this takes linear time). Then the gates are
sorted in topological order (this also takes linear time). This order also induced an order on
the nets. Now a sequence of relazation steps take place for nets e, es, ..., €,,. In a relaxation
step the propagation delay of a net e; two computations take place:

1. The Boolean value of ¢; is set to
ij (IU]' ) I
where v; is the gate that feeds the net e; and ljv]. is the binary vector that describes
the values of the nets that feed gate v;. We usually assume that the Boolean function
B,, is efficiently computable (i.e., its value is computable in a time that is linear in the
number of inputs plus outputs).

2. The propagation delay of the gate that feeds e; is set to
tpa(ei) < tpa(v;) + max{tpd(e')}{e, feeds v;}-

We define the circuit size to be the number of gates plus the sum of the sizes of the nets.
This implies that the total amount of time spent in the relaxation steps is linear in the circuit
size, and hence the running time of the algorithm for computing the propagation delay is
linear. Simulation requires computing the Boolean function implemented by each gate. To
maintain linear running time, we must assume that each Boolean function is computable in
time that is linear in the number of inputs plus outputs.

Question 2.3 Prove that the total amount of time spent in the relaxzation steps is linear in
the number nodes if the fan-in of each gate is constant (say, at most 3).

Note that it is not true that each relaxation step can be done in constant time if the fan-in
of the gates is not constant.

Prove linear running time in the number of nodes if (i) every net feeds a single input
terminal and (ii) the number of outputs of each gate is constant. (You may not assume that
the fan-in of every gate is constant.)
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2.6 Cost and propagation delay

In this section we define the cost and propagation delay of a combinational circuit.

We associate a cost with every gate. We denote the cost of a gate G by ¢(G).
Definition 2.12 The cost of a combinational circuit C = (G, N) is defined by

Geg

The following definition defined the propagation delay of a combinational circuit.

Definition 2.13 The propagation delay of a combinational circuit C = (G, N') is defined by

tpa(C) = I]?e% tpa(N).

We often refer to the propagation delay of a combinational circuit as its depth or simply its
delay.

Definition 2.14 A sequence p = {vo,v1,...,vx} of gates from G is a path in a combina-
tional circuit C = (G, N) if p is a path in the directed graph DG(C)).

The propagation delay of a path p is defined as

faP) = 3 tya(0).

vep
The proof of the following claim follows directly from the proof of Theorem 2.2.

Claim 2.3 The propagation delay of a combinational circuit C = (G, N') equals

tpa(C) = max tpu(p)
paths p

Paths, the delay of which equals the propagation delay of the circuit, are called critical paths.
Note that critical paths always end in output gates.

Question 2.4 1. Describe a combinational circuit with n gates that has at least 2"/
paths. Can you describe a circuit with 2" different paths?

2. In Claim 2.3 the propagation delay of a combinational circuit is defined to be the
mazximum delay of a path in the circuit. The number of paths can be exponential in n.
How can we compute the propagation delay of a combinational circuit in linear time?

Miiller and Paul compiled a table of costs and delays of gates. These figures were obtained
by considering ASIC libraries of two technologies and normalizing them with respect to the
cost and delay of an inverter. They referred to these technologies as Motorola and Venus.

Table summarizes the normalized costs and delays in these technologies according to
Miiller and Paul.
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Gate Motorola Venus
cost ‘ delay | cost ‘ delay
INV 1 1 1 1
AND,OR 2 2 2 1
NAND, NOR | 2 1 2 1
XOR, NXOR | 4 2 6 2
MUX 3 2 3 2

Table 2.1: Costs and delays of gates

2.7 Syntax and semantics

In this chapter we have used both explicitly and implicitly the terms syntax and semantics.
These terms are so fundamental that they deserve a section.

The term semantics (in our context) refers to the function that a circuit implements.
Often, the semantics of a circuit is referred to as the functionality or even the behavior of
the circuit. In general, the semantics of a circuit is a formal description that relates the
outputs of the circuit to the inputs of the circuit. In the case of combinational circuits,
semantics are described by Boolean functions. Note that in non-combinational circuits, the
output depends not only on the current inputs, so semantics cannot be described simply by
a Boolean function.

The term syntax refers to a formal set of rules that govern how “grammatically correct”
circuits are constructed from smaller circuits (just as sentences are built of words). In the
syntactic definition of combinational circuits, the functionality (or gate-type) of each gate is
not important. The only part that matters is that the rules for connecting gates together
are followed. Following syntax in itself does not guarantee that the resulting circuit is useful.
Following syntax is, in fact, a restriction that we are willing to accept so that we can enjoy
the benefits of well defined functionality, simple simulation, and simple timing analysis. The
restriction of following syntax rules is a reasonable choice since every Boolean function can
be implemented by a syntactically correct combinational circuit.

2.8 Summary

Combinational circuits were formally defined in this chapter. We started by considering
the basic building blocks: gates and wires. Gates are simply implementations of Boolean
functions. The digital abstraction enables a simple definition of what it means to implement
a Boolean function B. Given a propagation delay t,4 and stable inputs whose digital value
is 7, the digital values of the outputs of a gate equal B(Z) after ¢,4 time elapses.

Wires are used to connect terminals together. Bunches of wires are used to connect
multiple terminals to each other and are called nets. Simple nets are nets in which the
direction in which information flows is well defined; from output terminals of gates to input
terminals of gates.
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The formal definition of combinational circuits turns out to be most useful. It is a syn-
tactic definition that only depends on the topology of the circuit, namely, how the terminals
of the gates are connected. One can check in linear time whether a given circuit is indeed a
combinational circuit. Even though the definition ignores functionality, one can compute in
linear time the digital signals of every net in the circuit. Moreover, one can also compute in
linear time the propagation delay of every net.

Two quality measures are defined for every combinational circuit: cost and propagation
delay. The cost of a combinational circuit is the sum of the costs of the gates in the circuit.
The propagation delay of a combinational is the maximum delay of a path in the circuit.



Chapter 3

Trees

In this chapter we deal with combinational circuits that have a topology of a tree. We begin
by considering circuits for associative Boolean function. We then prove two lower bounds;
one for cost and one for delay. These lower bounds do not assume that the circuits are trees.
The lower bounds prove that trees have optimal cost and balanced trees have optimal delay.

3.1 Trees of associative Boolean gates

In this section, we deal with combinational circuits that have a topology of a tree. All the
gates in the circuits we consider are instances of the same gate that implements an associative
Boolean function.

3.1.1 Associative Boolean functions

Definition 3.1 A Boolean function f :{0,1}* — {0,1} is associative if
f(flo1,02),03) = f(o1, f(02,03)),

for every o1, 09,03 € {0,1}.

Question 3.1 List all the associative Boolean functions f : {0,1}* — {0,1}.

A Boolean function defined over the domain {0,1}? is often denoted by a dyadic operator,
say ®. Namely, f(oy,09) is denoted by o1 ® 0. Associativity of a Boolean function ® is
then formulated by

Voi,09,03 € {0,1} : (01 ®02) ® 03 =01 O (02 ® 03).

This implies that one may omit parenthesis from expressions involving an associative Boolean
function and simply write o1 ® 09 ® 3. Thus we obtain a function defined over {0, 1}" from
a dyadic Boolean function. We formalize this composition of functions as follows.

Definition 3.2 Let f : {0,1}*> — {0,1} denote a Boolean function. The function f, :
{0,1}" — {0,1}, for n > 2 is defined by induction as follows.

25
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1. If n = 2 then fy = f (the sign = is used instead of equality to emphasize equality of
functions).

2. If n > 2, then f, is defined based on f,_1 as follows:
fn(ﬂfl, To, ... .I‘n) é f(fn,l(xl, Ce ,.I‘nfl), .I‘n)

If f(x1,z2) is an associative Boolean function, then one could define f,, in many equivalent
ways, as summarized in the following claim.

Claim 3.1 If f: {0,1}* — {0,1} is an associative Boolean function, then
o, o, oxy) = f(fu(xr, oo 2r)s fook(That, - - Tn)),
for every k € [2,n — 2].
Question 3.2 Prove that each of the following functions f : {0,1}™ — {0,1} is associative:
f € {constant 0, constant 1, x1, x,,, AND,,, ORy,, XOR,,, NXORy, } .

The implication of Question is that there are only four non-trivial associative Boolean
functions f,, (which?). In the rest of this section we will only consider the Boolean function
OR,. The discussion for the other three non-trivial functions is analogous.

3.1.2 OR-trees

Definition 3.3 A combinational circuit C = (G, N') that satisfies the following conditions
is called an OR-tree(n).

1. Input: z[n—1:0].
Output: y € {0,1}
Functionality: y = Or(z[0], z[1],- - ,x[n — 1]).

Gates: All the gates in G are OR-gates.

Topology: The underlying graph of DG(C) (i.e., undirected graph obtained by ignoring
edge directions) is a tree.

Consider the binary tree T' corresponding to the underlying graph of DG(C'), where C' is
an OR-tree(n). The leaves

The root of T' corresponds to the output gate of C'. The leaves of T correspond to the
input gates of C, and the interior nodes in 7" correspond to OR-gates in C.

Claim provides a “recipe” for implementing an OR-tree using OR-gates. Consider a
rooted binary tree with n leaves. The inputs are fed via the leaves, an OR-gate is positioned
in every node of the tree, and the output is obtained at the root. Figure 3.1/ depicts two
OR-tree(n) for n = 4.

One could also define an OR-tree(n) recursively, as follows.
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z[0] =[1] z[2] =[3] z[0] =[1]
|| || ||
OR OR OR
| | z[2)
|| |
OR OR
| z[3]
v |
OR
|
Y

Figure 3.1: Two implementations of an OR-tree(n) with n = 4 inputs.

Definition 3.4 An OR-tree(n) is defined recursively as follows (see Figure |3.2):

1. Basis: a single OR-gate is an OR-tree(2).
2. Step: an OR(n)-tree is a circuit in which

(a) the output is computed by an OR-gate, and

(b) the inputs of this OR-gate are the outputs of OR-tree(ni) € OR-tree(ns), where
n =mnjp+ ns.

Question 3.3 Design a zero-tester defined as follows.
Input: z[n —1:0].
Output: y

Functionality:
y=1 iff z[n—1:0]=0"

1. Suggest a design based on an OR-tree.
2. Suggest a design based on an AND-tree.

3. What do you think about a design based on a tree of NOR-gates?

3.1.3 Cost and delay analysis

You may have noticed that both OR-trees depicted in Figure [3.1 contain three OR-gates.
However, their delay is different. The following claim summarizes the fact that all OR-trees
have the same cost.

Claim 3.2 The cost of every OR-tree(n) is (n — 1) - ¢(OR).
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| |

OR

S

OR-tree(n; ) OR-tree(ns)

' '

OR

|

Figure 3.2: A recursive definition of an OR-tree(n).

Proof: The proof is by induction on n. The induction basis, for n = 2, follows because
OR-tree(2) contains a single OR-gate. We now prove the induction step.

Let C' denote an OR-tree(n), and let g denote the OR-gate that outputs the output of
C'. The gate g is fed by two wires e; and e;. The recursive definition of OR-gate(n) implies
the following. For i = 1,2, the wire e; is the output of C;, where C; is an OR-tree(n;).
Moreover, ny; + ny = n. The induction hypothesis states that ¢(Cy) = (ny — 1) - ¢(OR) and
c(Cy) = (ng — 1) - ¢(OR). We conclude that

c(C) = c(g) + ¢(Ch) + e(Cy)
(I+n;—14+mny—1)-¢(OR)
— (n—1) - c(oR),

and the claim follows. O

Claim 3.2 is re-statement of the well known relationship between the number of leaves and
interior nodes in rooted binary trees. To make sure that the connection is well understood,
we describe this relationship in the following lemma. We begin with trees that are not rooted.

Lemma 3.3 Let T = (V, E) denote a tree. A leaf is a vertex of degree 1. An interior vertex
is a vertex that is not a leaf. We denote the set of leaves in V' by leaves(V') and the set of
interior vertices in V' by interior(V').

If the degree of every vertex in T is at most three, then

linterior(V')| > |leaves(V')| — 2.
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Proof: The proof is by induction on |V|. The induction basis for |V| < 2 trivially holds
because the right hand side is nonpositive, and the left hand side is nonnegative. The
induction step is proved as follows. Pick an arbitrary vertex r and call it the root. Now
assign directions to all the edges as follows: an edge (u,v) is assigned the direction u — v
if u belongs to the path from r to v (check that the direction of each edge is well defined!).
We refer to v as a child of u if (u,v) € E and the edge is assigned the direction u — v.

Consider a vertex v that is furthest away from the root r. It follows that v must be a leaf
(why?). Let u denote the vertex that appears before v along the path from r to v. Namely,
v is a child of u. Since v is furthest away from the root r, it follows that every child of u is
a leaf.

Let T = (V', E’) denote the tree obtained from T by deleting the children of u and the
edges incident to the children of w. The induction hypothesis, applied to T”, gives

|linterior(V')| > |leaves(V")| — 2.

But, |interior(V’)| = |interior(V')| —1 and |leaves(V")| = |leaves(V')| — |children(u)|+ 1. Since
u has at most two children (recall that its degree is at most 3), the induction step follows.
O

In a binary tree, the degree of every vertex is at most three. Hence Lemma 3.3 is a lemma
about binary trees. Usually, we consider binary trees with roots; in that case, the root is
not counted as a leaf but as interior node. In our applications, it turns out that the root
corresponds to the output gate (which is a trivial gate), so we prefer to partition the nodes
into leaves and interior vertices and not mention the root.

Let C denote an OR-tree(n). Let DG(C) denote the directed acyclic graph that corre-
sponds to C. Let G = (V, E) denote the underlying graph that corresponds to DG(C) (i.e.,
the undirected graph obtained by ignoring edge directions). Since C' is an OR-tree(n), it
follows that G = (V, E) satisfies the following properties: (1) G is a tree, (2) the degree of
every vertex in G is either one or three, (3) the leaves of G correspond to the input gates and
the output gate of C' (hence G has n+1 leaves), and (4) the interior vertices of G correspond
to OR-gates in C'. It now follows that Lemma (3.3 implies Claim 3.2l

The following question shows that the delay of an OR-tree(n) can be [log, n] - t,q4(OR), if
a balanced tree is used.

Question 3.4 This question deals with different ways to construct balanced trees. The goal
is to achieve a depth of [logyn].

1. Prove that if T,, is a rooted binary tree with n leaves, then the depth of T, is at least
[log, n].
2. Assume that n is a power of 2. Prove that the depth of a complete binary tree with n

leaves is logy n.

3. Prove that for every n > 2 there exists a pair of positive integers a,b such that (1)
a+b=mn, and (2) max{[log,al, [log,b]} < [logsn] — 1.

4. Consider the following recursive algorithm for constructing a binary tree with n > 2
leaves.
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(a) The case that n < 2 is trivial (two leaves connected to a root).

(b) If n > 2, then let a,b be any pair of positive integers such that (i) n = a+ b and
(i) max{[log,al, [log,b]} < [logon] — 1. (Such a pair exists by the previous
item.)

(c) Compute trees T, and T,. Connect their roots to a new root to obtain T,.

Prove that the depth of T,, is at most [logyn].

3.2 Optimality of trees

In this section we deal with the following questions: What is the best choice of a topology
for a combinational circuit that implements the Boolean function ORr,? Is a tree indeed the
best topology? Perhaps one could do better if another implementation is used? (Say, using
other gates and using the inputs to feed more than one gate.)

We attach two measures to every design: cost and delay. In this section we prove lower
bounds on the cost and delay of every circuit that implements the Boolean function OR,,.
These lower bounds imply the optimality of using balanced OR-trees.

3.2.1 Definitions

In this section we present a few definitions related to Boolean functions.

Definition 3.5 (restricted Boolean functions) Let f :{0,1}" — {0, 1} denote a Boolean
function. Let o € {0,1}. The Boolean function g : {0,1}"~1 — {0,1} defined by

g(U)(), Ce 7wn,2) é f(ll}o, e, Wi, 0, W4y .. 7wn,2)

is called the restriction of f with x; = 0. We denote it by fiz,=0-

Example 3.1 Consider the Boolean function f(Z) = XOR,(x1,...,2,). The restriction of
f with x, = 1 is the Boolean function

frxn:1(9€1, ey Tpq) = XORy (21, ..., p-1,1)
= INV(XORy,—1(Z1, ..., Tp-1))-

Definition 3.6 (cone of a Boolean function) A boolean function f : {0,1}" — {0,1}
depends on its ith input if

fm:o ?‘é f[xizl-
The cone of a Boolean function f is defined by

cone(f) = {i: fieimo # flai=1}-

The following claim is trivial.
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Claim 3.4 The Boolean function OR,, depends on all its inputs, namely
|cone(OR,,)| = n.

Example 3.2 Consider the following Boolean function:

FE) = {o if 3, xli] < 3

1 otherwise.

Suppose that one reveals the input bits one by one. As soon as 3 ones are revealed, one can
determine the value of f(Z). Nevertheless, the function f(Z) depends on all its inputs, and
hence, cone(f) = {1,...,n}.

The following trivial claim deals with the case that cone(f) = 0.
Claim 3.5 cone(f) =0 < f is a constant Boolean function.

3.2.2 Lower bounds

The following claim shows that, if a combinational circuit C' implements a Boolean function
f, then there must be a path in DG(C') from every input in cone(f) to the output of f.

Claim 3.6 Let C' = (G, N) denote a combinational circuit that implements a Boolean func-
tion f : {0,1}" — {0,1}. Let g; € G denote the input gate that feeds the ith input. If
i € cone(f), then there is a path in DG(C) from g; to the output gate of C.

Proof: 1If DC(C) lacks a path from the input gate g; that feeds an input i € cone(f) to the
output y of ', then C' cannot implement the Boolean function f. Consider an input vector
w € {0,1}"! for which fiz,—o(w) # fiz=1(w). Let w’ (resp., w”) denote the extension of
w to n bits by inserting a 0 (resp., 1) in the ith coordinate. The proof of the Simulation
Theorem of combinational circuits (Theorem [2.2) implies that C' outputs the same value
when given the input strings w’ and w”, and hence C' does not implement f, a contradiction.

O

The following theorem shows that every circuit, that implements the Boolean function
OR,, in which the fan-in of every gate is bounded by two, must contain at least n — 1 non-
trivial gates (a trivial gate is an input gate, an output gate, or a gate that feeds a constant).
We assume that the cost of every non-trivial gate is at least one, therefore, the theorem is
stated in terms of cost rather than counting non-trivial gates.

Theorem 3.7 (Linear Cost Lower Bound Theorem) Let C denote a combinational cir
cuit that implements a Boolean function f. Then

c(C) > |cone(f)| — 1.

Before we prove Theorem [3.7 we show that it implies the optimality of OR-trees. Note that
it is very easy to prove a lower bound of n/2. The reason is that every input must be fed to
a non-trivial gate, and each gate can be fed by at most two inputs.

Corollary 3.8 Let C), denote a combinational circuit that implements OR,, with input length
n. Then
c(Cp) >n—1.
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Proof: Follows directly from Claim 3.4 and Theorem a

We prove Theorem by considering the directed acyclic graph (DAG) DG(C). We
use the following terminology for DAGs: The in-degree (resp., out-degree) of a vertex is the
number of edges that enter (resp., emanate from) the vertex. A source is a vertex with
in-degree zero. A sink is a vertex with out-degree zero. An interior verter is a vertex that
is neither a source or a sink. See Figure 3.3/ for an example.

sources

interior vertices

o—>0

Figure 3.3: A DAG with two sources, two interior vertices, and two sinks.

Proof of Theorem [3.7: We first suppose that the underlying graph G = (V, E) of DG(C)
is a tree. By Lemma 3.3 it follows that

linterior(V)| > |leaves(V)| — 2.

Recall that leaves correspond to the input gates and the output gate. Hence, the number
of leaves is n 4 1, and the right hand side equals n — 1. Moreover, every interior vertex
corresponds to a non-trivial gate. Hence, it follows that there are at least n — 1 non-trivial
gates, as required.

If the underlying graph of DG(C) is not a tree, then we construct a DAG T' = (V', E')
that is a subgraph of DG(C') such that (i) the sources in V' are all the input gates that feed
inputs z; such that i € cone(f), (ii) the output gate is the sink, and (iii) the underlying
graph of T' is a binary tree.

The DAG T is constructed as follows. Pick a source v € V that feeds an input x; such
that i € cone(f). By Claim [3.6, there is a path in DG(C') from v to the output gate. Add
all the edges and vertices of this path to T. Now continue in this manner by picking, one
by one, sources that feed inputs x; such that i € cone(f). Each time consider a path p that
connects the source to the output gate. Add the prefix of the path p to T up to the first
vertex that is already contained in 7. We leave it as an exercise to show that 7" meets the
three required conditions.

In the underlying graph of 7" we have the inequality |interior vertices| > |leaves| —2. The
interior vertices of T are also interior vertices of DG(C'), and the theorem follows. a

Question 3.5 State and prove a generalization of Theorem 3.7 for the case that the fan-in
of every gate is bounded by a constant c.
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We now turn to proving a lower bound on the delay of a combinational circuit that
implements OR,,. Again, we will use a general technique. Again, we will rely on all gates in
the design having a constant fan-in.

The following theorem shows a lower bound on the delay of combinational circuits that
is logarithmic in the size of the cone.

Theorem 3.9 (Logarithmic Delay Lower Bound Theorem) Let C' = (G, N) denote a
combinational circuit that implements a non-constant Boolean function f :{0,1}™ — {0,1}.
If the fan-in of every gate in G is at most c, then the delay of C is at least log, |cone(f)].

Before we prove Theorem we show that the theorem implies a lower bound on the delay
of combinational circuits that implement OR,,.

Corollary 3.10 Let C,, denote a combinational circuit that implements OR,,. Let ¢ denote
the maximum fan-in of a gate in C,. Then

tpa(Crn) > [log.n] .

Proof: The corollary follows directly from Claim (3.4 and Theorem a
Proof of Theorem [3.9: The proof deals only with the graph DG(C) and shows that
there must be a path with at least log,|cone(f)| interior vertices in DG(C'). Note that
input/output gates and constants have zero delay, so we have to be careful not to count
them. However, zero delay vertices can appear only as end-points of a path; this is why we
count interior vertices along paths.

The proof involves strengthening the theorem to every vertex v as follows. Following the
notion of cones, we denote by cone(v) the subset of sources from which v is reachable. Let
d(v) denote the maximum number of interior vertices of DG(C) along a path from a source
in cone(v) to v (including v). We now prove that, for every vertex v,

d(v) > log,. |cone(v)|. (3.1)

Claim implies there must be a path in DG(C) from every input x; € cone(f) to the
output y of C. Hence |cone(f)| < |cone(y)|. Therefore, Equation implies the theorem.
We prove Equation [3.1 by induction on d(v). The induction basis, for d(v) = 0, is trivial
since d(v) = 0 implies that v is a source. The cone of a source v consists v itself, and
log1 = 0.
The induction hypothesis is

dlv) <i = d(v) > log,|cone(v)|. (3.2)

In the induction step, we wish to prove that the induction hypothesis implies that Equa-
tion [3.2 holds also if d(v) = i + 1. Consider a vertex v with d(v) = ¢ + 1 (see Figure 3.4
for a depiction of the induction step). We first assume that v is an interior vertex. There
are at most ¢ edges that enter v. Denote the vertices that precede v by vy, ..., v., where
¢ < c. Namely, the edges that enter v are v; — v, ..., v, — v. Since v is an interior vertex,
it follows by definition that

d(v) = max{d(v;)}¢_, + 1. (3.3)



34 CHAPTER 3. TREES

Figure 3.4: The induction step in the proof of Theorem 3.9

Since v is not a source, it follows by definition that

C/
cone(v) = U cone(v;).
i=1
Hence
c/
|cone(v)| < Z |cone(v;)]
i=1

< ¢ - max{|cone(vy)|, ..., |cone(vy)|}. (3.4)

Let v" denote a predecessor of v that satisfies |cone(v')| = max{|cone(v;)|}5,. The induction
hypothesis implies that

d(v') > log, |cone(v")]. (3.5)
But,
d(v) > 1+d(v') by Eq.
> 1+ log, | cone(v')| by Eq. 3.5]
> 1+ log, |cone(v)|/c by Eq.

> log,. |cone(v)].

To complete the proof we consider the case the v is an output gate. In this case, v has a
unique predecessor v that satisfies: d(v) = d(v') and cone(v) = cone(v'). The induction step
applies to v/, and therefore we also get d(v) > log, |cone(v)|, as required, and the theorem
follows. a

Question 3.6 Prove the following statement. Let U C V denote a subset of vertices of a
directed graph G = (V, E), and let r € V.. There exists a vertex u € U such that dist(u,r) >
log,. |U|, where ¢ denotes the mazimum degree of G. (dist(u,r) denotes the length of the
shortest path from w to r; if there is no such path, then the distance is infinite.)
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3.3 Summary

In this chapter we started by considering associative Boolean functions. We showed how
associative dyadic functions are extended to n arguments. We argued that there are only
four non-trivial associative Boolean functions; and we decided to focus on OR,. We then
defined an OR-tree(n) to be a combinational circuit that implements OR,, using a topology
of a tree.

Although it is intuitive that OR-trees are the cheapest designs for implementing OR,,,
we had to work a bit to prove it. It is also intuitive that balanced OR-trees are the fastest
designs for implementing OR,,, and again, we had to work a bit to prove that too.

We will be using the lower bounds that we proved in this chapter also in the next chapters.
To prove these lower bounds, we introduced the term cone(f) for a Boolean function f. The
cone of f is the set of inputs the function f depends on.

If all the gates have a fan-in of at most 2, then the lower bounds are as follows. The
first lower bound states that the number of gates of a combinational circuit implementing a
Boolean function f must be at least |cone(f)| — 1. The second lower bound states that the
propagation delay of a circuit implementing a Boolean function f is at least log, |cone(f)|.
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Chapter 4

Decoders and Encoders

In this chapter we present two important combinational circuits called decoders and encoders.
Decoders and encoders are often used as part of bigger circuits. Along the way we will define
buses and develop a notation for buses.

4.1 Notation

We begin this section by describing what buses are. Consider two blocks in a circuit (such
blocks are often called “modules”) that are connected by many wires. A good example is
an adder and a register (a memory device) in which the output of the adder is input to
the register (namely, we wish to store the sum). Suppose that the adder outputs a binary
number with 8 bits. This means that there are 8 different nets that are fed by the adder and
feed inputs of the register. Since the nets are different, we must assign a different name to
each net. Instead of naming the nets a,b,c, ..., one uses the names a[0], a[1],. .., al7].

Definition 4.1 A bus is a set of nets that are connected to the same modules. The width
of a bus is the number of nets in the bus.

In VLSI-CAD tools and hardware description languages (such as VHDL), one often uses
indexes to represent buses. Indexing of buses is often a cause of confusion. For example,
assume that the terminals on one side of a bus are called a0 : 3] and the terminals on the
other side of the bus are called b[3 : 0]. Does that mean that a[0] is connected to b[0] or does
it mean that a[0] is connected to b[3]7 Obviously, naming rules are well defined in hardware
description languages, but these rules are too strict for our purposes (for example, negative
indexes are not allowed, and connections are not implied).

Our convention regarding indexing of terminals and their connection by buses is as follows:

1. Connection of terminals is done by assignment statements. For example, the terminals
a0 : 3] are connected to the terminals b[0 : 3] by the statement b[0 : 3] < a[0 : 3]. This
statement is meaningful if a[0 : 3] are output terminals and b[0 : 3] are input terminals.

2. “Reversing” of indexes does not take place unless explicitly stated. Hence, unless stated
otherwise, assignments of buses in which the index ranges are the same or reversed,
such as: b[i : j] « ali : jl and bli : j] < a[j : ¢], simply mean b[i] < a[i], ..., b[j] < a[j].
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3. “Shifting” is done by default. For example, will often write a[0 : 3] < b[4 : 7], meaning
that a[0] < b[4], a[1] < b[5], etc. Similarly, assignments in which the index ranges are
shifted, such as: b[i +5 : j+ 5] < a[i : j|, mean b[i + 5] < ali], ..., b[j + 5] < alj]. We
refer to such an implied re-assignment of indexes as hardwired shifting.

Recall that we denote the (digital) signal on a net N by N(t). This notation is a bit
cumbersome in buses, e.g., a[i](t) means the signal on the net ali]. To shorten notation,
we will often refer to ali](t) simply as a[i]. Note that a[i](¢) is a bit (this is true only after
the signal stabilizes). So, according to our shortened notation, we often refer to ali] as a
bit meaning actually “the stable value of the signal a[i](¢)”. This establishes the somewhat
confusing convention of referring to buses (e.g., a[n—1 : 0]) as binary strings (e.g., the binary
string corresponding to the stable signals a[n — 1 : 0](¢)).

We will often use an even shorter abbreviation for signals on buses, namely, vector nota-
tion. We often use the shorthand @ for a binary string a[n — 1 : 0] provided, of course, that
the indexes of the string a[n — 1 : 0] are obvious from the context.

Consider a gate G with two input terminals ¢ and b and one output terminal z. The
combinational circuit G(n) is simply n instances of the gate GG, as depicted in part (A) of
Figure4.1l The ith instance of gate G in G(n) is denoted by G;. The two input terminals of
G; are denoted by a; and b;. The output terminal of G; is denoted by z;. We use shorthand
when drawing the schematics of G(n) as depicted in part (B) of Figure 4.1. The short
segment drawn across a wire indicates that the line represents a bus. The bus width is
written next to the short segment.

ao bo a1 b1 An-1  bn_1 al0:n—1] b0:n—1]
\ \ | f
Go Gy | mmmees Gn-1 G(n)
1
20 21 Zn_1 z[0:n —1]

(A) (B)

Figure 4.1: Vector notation: multiple instances of the same gate.

We often wish to feed all the second input terminals of gates in G(n) with the same
signal. Figure [4.2 denotes a circuit G(n) in which the value b is fed to the second input
terminal of all the gates.

Note that the fanout of the net that carries the signal b in Figure 4.2 is n. In practice, the
capacity of a net increases linearly with the fanout, hence large fanout increases the amount
of time that is needed to stabilize the signal along a net. To keep our delay model simple,
we usually ignore this important phenomenon in this course.
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ao ai An—1 b al0:n —1] b

—®
—®
—®
3
I N—
—
I N—

Go Gy | mmmees Gn-1 G(n)
1
20 z1 Zn_1 z[0:n —1]

(A) (B)

Figure 4.2: Vector notation: b feeds all the gates.

The binary string obtained by concatenating the strings a and b is denoted by a - b. The
binary string obtained by i concatenations of the string a is denoted by a’.

Example 4.1 Consider the following examples of string concatenation:
e [fa=01 and b= 10, then a-b = 0110.
e Ifa=1andi=>5, then a' = 11111.

e Ifa =01 andi=3, then a* = 010101.

4.2 Values represented by binary strings

There are many ways to represent the same value. In binary representation the number
6 is represented by the binary string 101. The unary representation of the number 6 is
111111. Formal definitions of functionality (i.e., specification) become cumbersome without
introducing a simple notation to relate a binary string with the value it represents.

The following definition defines the number that is represented by a binary string.

Definition 4.2 The value represented in binary representation by a binary string ajn—1: 0]
is denoted by (aln —1:0]). It is defined as follows

(aln —1:0]) éZai-Qi.

One may regard (-) as a function from binary strings in {0,1}" to natural numbers in the
range {0,1,...,2" — 1}. We omit the parameter n, since it is not required for defining
the value represented in binary representation by a binary string. However, we do need the
parameter n in order to define the inverse function, called the binary representation function.
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Definition 4.3 Binary representation using n-bits is a function bin, : {0,1,...,2" -1} —
{0,1}™ that is the inverse function of (-}. Namely, for every ajn —1:0] € {0,1}",

bin,({(a[n —1:0])) =a[n —1:0].

One advantage of binary representation is that it is trivial to divide by powers of two as well
as compute the remainders. We summarize this property in the following claim.

Claim 4.1 Let x[n — 1 : 0] € {0,1}" denote a binary string. Let i denote the number
represented by ¥ in binary representation, namely, i = (x[n — 1:0]). Let k denote an index
such that 0 < k <n —1. Let q and r denote the quotient and remainder, respectively, when
dividing i by 2%. Namely, i = 2% - ¢ +r, where 0 < r < 2F.

Define the binary strings xg[k —1:0] and zp[n —1:n —k — 1] as follows.

xrlk —1:0] «— x[k —1:0]
xpn—k—1:0 «—zn—1:k].
Then,

qg=(xrn—k—1:0])
= (xzg[k —1:0]).

4.3 Decoders

In this section we present a combinational module called a decoder. We start by defining
decoders. We then suggest an implementation, prove its correctness, and analyze its cost
and delay. Finally, we prove that the cost and delay of our implementation is asymptotically
optimal.

Definition 4.4 A decoder with input length n is a combinational circuit specified as follows:
Input: z[n —1:0] € {0,1}".

Output: y[2" —1:0] € {0,1}*"

Functionality:

yli| =1 <= () = 1.

Note that the number of outputs of a decoder is exponential in the number of inputs. Note
also that exactly one bit of the output 7 is set to one. Such a representation of a number is
often termed one-hot encoding or 1-out-of-k encoding.

We denote a decoder with input length n by DECODER(n).

Example 4.2 Consider a decoder DECODER(3). On input x = 101, the output y equals
00100000.
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4.3.1 Brute force design

The simplest way to design a decoder is to build a separate circuit for every output bit y[i].
We now describe a circuit for computing y[i]. Let b[n—1 : 0] denote the binary representation
of i (i.e., bjn — 1 : 0] = bin(z)).

Let z; ; be defined by

L 2 {xm blij=1
Y veelil) plil=o.

The following claim implies a simple circuit for computing y/[i].

Claim 4.2
’y[l] = AND(Zivo, Zily- - Zi,n—1)~

Proof: By definition y[i] = 1 iff (Z) = i. Now (&) = i iff # = b. We compare Z and b by
requiring that z[i] = 1 if b[i] = 1 and INnv(z[i]) = 1 if b[i] = 0. O

The brute force decoder circuit consists of (i) n inverters used to compute INV(Z), and
(ii) an AND(n)-tree for every output y[i]. The delay of the brute force design is ¢,4(INV) +
tpa(AND(n)-tree). The cost of the brute force design is ©(n-2"), since we have an AND(n)-tree
for each of the 2" outputs.

Intuitively, the brute force design is wasteful because, if the binary representation of ¢
and j differ in a single bit, then the corresponding AND-trees share all but a single input.
Hence the AND of n — 1 bits is computed twice. In the next section we present a systematic
way to share hardware between different outputs.

4.3.2 An optimal decoder design

We design a DECODER(n) using recursion on n. We start with the trivial task of designing a
DECODER(n) with n = 1. We then proceed by designing a DECODER(n) based on “smaller”
decoders.

DECODER(1): The circuit DECODER(1) is simply one inverter where: y[0] «+— INV(x[0]) and
y[1] — z[0].

DECODER(n): We assume that we know how to design decoders with input length less than
n, and design a decoder with input length n.

The method we apply for our design is called “divide-and-conquer”. Consider a parameter
k, where 0 < k < n. We partition the input string z[n — 1 : 0] into two strings as follows:

1. The right part (or lower part) is xg[k—1 : 0] and is defined by xg[k—1: 0] = z[k—1: 0].

2. The left part (or upper part) is zz[n — k — 1 : 0] and is defined by zpn —k — 1 :
0] = z[n — 1 : k]. (Note that hardwired shift is applied in this definition, namely,
zp[0] « x[k],...,zr[n — k — 1] « x[n — 1].)
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We will later show that, to reduce delay, it is best to choose k as close to n/2 as possible.
However, at this point we consider k£ to be an arbitrary parameter such that 0 < k < n.

Figure depicts a recursive implementation of an DECODER(n). Our recursive design
feeds x[n—k—1: 0] to DECODER(n—k). We denote the output of the decoder DECODER (n—
k) by Q[2" % —1:0]. (The letter 'Q’ stands “quotient”.) In a similar manner, our recursive
design feeds zr[k—1 : 0] to DECODER(k). We denote the output of the decoder DECODER (k)
by R[2% —1:0]. (The letter 'R’ stands for “remainder”.)

The decoder outputs Q[2" % — 1 : 0] and R[2F — 1 : 0] are fed to a 2"~* x 2¥ array of
AND-gates. We denote the AND-gate in position (g, 7) in the array by AND,,. The rules for
connecting the AND-gates in the array are as follows. The inputs of the gate AND,, are @[]
and R[r]. The output of the gate AND,,. is y[q - 2% + r].

Note that we have defined a routing rule for connecting the outputs Q[2" % — 1 : 0] and
R[2% — 1 : 0] to the inputs of the AND-gates in the array. This routing rule (that involves
division with remainder by 2*) is not computed by the circuit; the routing rule defines the
circuit and must be computed by the designer.

In Figure 4.3, we do not draw the connections in the array of AND-gates. Instead,
connections are inferred by the names of the wires (e.g., two wires called R[5] belong to the
same net).

Tplk—1:01 2 z[k—1:0]

%{

Decoder(k)
' R
Ri2*—1:0]12" 7]
] i
IL[n - ]{? —1: 0] n—k 2n—k 2n—k X 2k Q[q] H ANDq,r
2 L
= ———= Decoder(n — k) - array of L l
xn—1:k
z[n ] Q2 * —1:0] AND-gates  {o T |
ylg- 2" +7]

Figure 4.3: A recursive implementation of DECODER(n).

4.3.3 Correctness

In this section we prove the correctness of the DECODER(n) design.

Claim 4.3 The DECODER(n) design is a correct implementation of a decoder.

Proof: Our goal is to prove that, for every n and every 0 < i < 2", the following holds:

ylil=1 <= (z[n—1:0]) =1.
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The proof is by induction on n. The induction basis, for n = 1, is trivial. We proceed
directly to the induction step. Fix an index ¢ and divide i by 2* to obtain i = ¢ - 2* + r,
where r € [2F —1:0].

By Claim

qg=(xpn—k—1:0])
= (zglk —1:0]).

We apply the induction hypothesis to DECODER(k) to conclude that R[r] = 1iff (xg[k — 1 : 0]) =
r. Similarly, the induction hypothesis when applied to DECODER(n—k) implies that Q[q] = 1
iff (xz[n —k —1:0]) = ¢. This implies that

ylil=1<= R[rj]=1and Q[¢] =1
< (xglk—1:0]) =rand (z [n—k—1:0]) =q.
< (z[n—1:0]) =1,

and the claim follows. O

4.3.4 Cost and delay analysis

In this section we analyze the cost and delay of the DECODER(n) design. We denote the cost
and delay of DECODER(n) by ¢(n) and d(n), respectively.
The cost ¢(n) satisfies the following recurrence equation:

e(n) = {C(INV) if n=1

c(k) 4+ c(n — k) + 2" - ¢(AND) otherwise.
It follows that
c(n) =c(k) +c(n—k)+ 6(2")

Obviously, ¢(n) = Q(2") (regardless of the value of k), so the best we can hope for is to
find a value of k such that ¢(n) = O(2"). In fact, it can be shown that ¢(n) = O(2"), for
every choice of 1 < k < n. We show below that ¢(n) = O(2") if k = n/2. (If n is odd, then
we choose k = |n/2]|.) To simplify, we assume that n is a power of 2, namely, n = 2¢. If
k = n/2 we open the recurrence to get:

=n-c(l)+ (2"+2.2"/2_|_4.2"/4_|_..._|_n.2"/”)
=0(2").
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The last line is justified by

M 42202 g A 2V <97 4 2(log, n) - 272

. 2logyn
e (1 2mn)

= 2"(1 + o(1)).

The delay of DECODER(n) satisfies the following recurrence equation:

d(n) d(INV) if n=1
n) =

max{d(k),d(n — k)} + d(AND) otherwise.
Set k =n/2, and it follows that d(n) = O(logn).

Question 4.1 Prove that DECODER(n) is asymptotically optimal with respect to cost and
delay. Namely, prove that, for every decoder G of input length n, the following hold:
(@)
d(G)

> Q(2")
> Q(logn).

4.4 Encoders

An encoder implements the inverse Boolean function of a decoder. Note however, that the
Boolean function implemented by a decoder is not surjective. In fact, the range of the
decoder function is the set of binary vectors in which exactly one bit equals 1. It follows
that an encoder implements a partial Boolean function (i.e., a function that is not defined
for every binary string).

We first define the (Hamming) weight of binary strings.

Definition 4.5 The weight of a binary string equals the number of non-zero symbols in the
string. We denote the weight of a binary string a by wt(a).Formally,

wt(a[n —1:0])) = |{i : ali] # 0}).
We define the encoder partial function as follows.

Definition 4.6 The function ENCODER,, : {7 € {0,1}*" : wt(¢) = 1} — {0,1}" is defined
as follows: (ENCODER,,(¥)) equals the index of the bit of i that equals one. Formally,

wt(y) = 1 = y[(ENCODER,,(¥))] = 1.

Definition 4.7 An encoder with input length 2" and output length n is a combinational
circuit that implements the Boolean function ENCODER,,.

An encoder can be also specified as follows:
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Input: y[2" —1:0] € {0,1}*".
Output: z[n —1:0] € {0,1}"™

Functionality: If wi(y) = 1, let ¢ denote the index such that y[i] = 1. In this case & should
satisfy (Z) = i. Formally:

wi(y) =1 = y[(@)] =1
If wt(y) # 1, then the output Z is arbitrary.

Note that the functionality is not uniquely defined for all inputs 3. However, if 7/ is output
by a decoder, then wit(y) = 1, and hence an encoder implements the inverse function of a
decoder. We denote an encoder with input length 2" and output length n by ENCODER(n).

Example 4.3 Consider an encoder ENCODER(3). On input 00100000, the output equals
101.

4.4.1 Implementation

In this section we present a step by step implementation of an encoder. We start with
a rather costly design, which we denote by ENCODER'(n). We then show how to modify
ENCODER/(n) to an asymptotically optimal one.

As in the design of a decoder, our design is recursive. The design for n = 1, is simply
z[0] < y[1]. Hence, for n = 1, the cost and delay of our design are zero. We proceed with
the design for n > 1.

Again, we use the divide-and-conquer method. We partition the input g into two strings
of equal length as follows:

yr[2" Tt —1:0] =y[2" —1:2"1] yr[2" P —1:0]=y[2" ' —1:0].

The idea is to feed these two parts into two encoders ENCODER'(n — 1) (see Figure 4.4).
However, there is a problem with this approach. The problem is that even if i is a “legal”
input (namely, wt(y) = 1), then one of the strings ¢, or ¢ is all zeros, which is not a legal
input. An “illegal” input can produce an arbitrary output, which might make the design
wrong.

To fix this problem we augment the definition of the ENCODER,, function so that its range
also includes the all zeros string 02". We define

ENCODER,,(0%") = 0".

Note that ENCODER/(1) also meets this new condition, so the induction basis of the correct-
ness proof holds.

Let a[n —2: 0] (resp., bjn — 2 : 0]) denote the output of the ENCODER/(n — 1) circuit that
is fed by yr (resp., ).

Having fixed the problem caused by inputs that are all zeros, we proceed with the “con-
quer” step. We distinguish between three cases, depending on which half contains the bit
that is lit in ¢, if any.
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1.

. If wi(yy) = 1 and wi(yr) = 0, then the induction hypothesis implies that y.[(b)] =
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yr[27t —1:0] yr[2" ™ —1:0]
2 yn—1: 20 Syt —1:0]
2nli gn1 J(
ENCODER/(n — 1) ENCODER/(n — 1)
bn—2:0] yn-1 aln —2:0] yn—1
||

OR-tree(2" 1) OR(n — 1)
%1 %n 1
x[n — 1] x[n —2:0]

Figure 4.4: A recursive implementation of ENCODER’(n).

If wt(ij,) = 0 and wi({z) = 1, then the induction hypothesis implies that b = 0"~ and
yr[(@)] = 1. Tt follows that y[(@)] = 1, hence the required output is ¥ = 0-a. The
actual output equals the required output, and correctness holds in this case.

by = 1
and @ = 0" Tt follows that y[2" L + (b)] = 1, hence the required output is Z = 1 - b.
The actual output equals the required output, and correctness holds in this case.

. If wt((y)) = 0, then the required output is & = 0". The induction hypothesis implies

that @ = b = 0"~!. The actual output is £ = 0", and correctness follows.

We conclude that the design ENCODER/(n) is correct.

Claim 4.4 The circuit ENCODER'(n) depicted in Figure 4.4 implements the Boolean function
ENCODER,, .

The problem with the ENCODER'(n) design is that it is too costly. We summarize the cost
of ENCODER'(n) in the following question.

Question 4.2 This question deals with the cost and delay of ENCODER’(n).

1.

2.

Prove that c(ENCODER'(n)) = O(n - 2").
Prove that d(ENCODER'(n)) = ©(n).

Can you suggest a separate circuit for every output bit x[i] with cost O(2"™) and delay
O(n)? If so then what advantage does the ENCODER'(n) design have over the trivial
design in which every output bit is computed by a separate circuit?
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Question 4.3 (hard) An ENCODER'(n) contains an OR-tree(2") and an ENCODER'(n — 1)
that are both fed by yr[2"~* — 1 : 0]. This implies that if we “open the recursion” we will
have a chain of OR-trees, where small trees are sub-trees of larger trees. This means that an
ENCODER’(n) contains redundant duplications of OR-trees. Analyze the reduction in cost that
one could obtain if duplicate OR-trees are avoided. Does this reduction change the asymptotic
cost?

Question 4.2 suggests that the ENCODER/(n) design is not better than a brute force
design. Can we do better? The following claim serves as a basis for reducing the cost of an
encoder.

Claim 4.5 If wt(y[2" —1:0]) <1, then

ENCODER,,_1(OR (YL, Yr)) = OR(ENCODER,,_1(¥r,), ENCODER,,_1(¥R))-

Proof: The proof in case § = 0%" is trivial. We prove the case that wt(¢;) = 0 and
wt(yr) = 1 (the proof of other case is analogous). Hence,

—

ENCODER,,_1 (OR(#L, 7)) = ENCODER,,_1(OR(0*" ", 7))
= ENCODER,,_1(¥R))-

However,

OR(ENCODER,,—1(§i1), ENCODERy 1 ({jr)) = OR(ENCODER,, 1 (0*""), ENCODER -1 (7))
— OR(0"!, ENCODER,,_1(7r))
= ENCODER,,_1 (¥/r),

and the claim follows. O

Figure [4.5] depicts the design ENCODER*(n) obtained from ENCODER'(n) after commut-
ing the OR and the ENCODER(n — 1) operations. We do not need to prove the correctness
of the ENCODER*(n) circuit “from the beginning”. Instead we rely on the correctness of
ENCODER’(n) and on Claim [4.5 that shows that ENCODER’(n) and ENCODER*(n) are func-
tionally equivalent.

Question 4.4 Provide a direct correctness proof for the ENCODER*(n) design (i.e., do not
rely on the correctness of ENCODER'(n)). Does the correctness of ENCODER*(n) require that
ENCODER*(n — 1) output an all-zeros string when the input is an all-zeros string?

The following questions are based on the following definitions:
Definition 4.8 A binary string x’'[n — 1 : 0] dominates the binary string x”[n — 1 : 0] if
Vien—1:0: 2"[ij=1=2]]=1

Definition 4.9 A Boolean function f is monotone if ' dominates =" implies that f(z')
dominates f(z").
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— —

YL YR

271,71 271,—1

OR(2"71)

271,71

OR-tree(2"~1) ENCODER*(n — 1)

f "

zn — 1] xn —2:0]

Figure 4.5: A recursive implementation of ENCODER*(n).

Question 4.5 Prove that if a combinational circuit C' contains only gates that implement
monotone Boolean functions (e.g., only AND-gates and OR-gates, no inverters), then C im-
plements a monotone Boolean function.

Question 4.6 The designs ENCODER'(n) and ENCODER*(n) lack inverters, and hence are
monotone circuits. Is the Boolean function ENCODER,, a monotone Boolean function? Sup-
pose that G is an encoder and is a monotone combinational circuit. Suppose that the input
y of G has two ones (namely, wt(y) = 2). Can you immediately deduce which outputs of G
must equal one?

4.4.2 Cost and delay analysis

The cost of ENCODER*(n) satisfies the following recurrence equation:

(ENCODER"(n)) 0 if n=1
c n)) =
¢(ENCODER*(n — 1)) 4+ 2" - ¢(OR) otherwise.

We expand this recurrence to obtain:
¢(ENCODER"(n)) = ¢(ENCODER"(n — 1)) + 2" - ¢(OR)
=(2"+2""+...4+4)-c(or)
=(2-2"—=3)-c(0R))
= 0O(2").
The delay of ENCODER*(n) satisfies the following recurrence equation:
0 if n=1

d(ENCODER" =
( (n)) {max{d(OR—tree(Qn_l), d(ENCODER*(n — 1) + d(OR))} otherwise.
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Since d(OR-tree(2""!) = (n — 1) - d(OR), it follows that
d(ENCODER"(n)) = O(n).
The following question deals with lower bounds for an encoder.

Question 4.7 Prove that the cost and delay of ENCODER*(n) are asymptotically optimal.

4.4.3 Yet another encoder

In this section we present another encoder design. We denote this design by ENCODER"(n).
The design is a variation of the ENCODER’(n) design and saves hardware by exponentially
reducing the cost of the OR-tree. Figure 4.6/ depicts a recursive implementation of the
ENCODER"(n) design.

yo[2nt —1:0] yr[2" —1: 0]
S y2r—1:201 Syt —1:0]
271,—1 271—1 %
y[0]
! ENCODER” (n — 1 ENCODER” (n — 1)
b[n—Q:O]in—l aln —2:0] yn-1
' | ||
OR-tree(n) OR(n — 1)
/‘/ 1 fn 1
x[n — 1] xn —2:0]

Figure 4.6: A recursive implementation of ENCODER"(n).

Question 4.8 Prove the correctness of the ENCODER”(n) design. Hint: the idea behind this
design. is to check if ij;, = 02" by checking if bjn — 2 : 0] = 0"~! and y[0] = 0. Note that
bln —2 : 0] = 0" implies that yo[2"* — 1 : 1] = 02" ', So we only need to check if

The advantage of the ENCODER”(n) design is that it has an optimal asymptotic cost. In
particular its cost satisfies the recurrence:

" 0 if n=1
¢(ENCODER"(n)) = . (4.1)
2. ¢(ENCODER"(n — 1)) +2-(n—1)-¢(OR) otherwise.



50 CHAPTER 4. DECODERS AND ENCODERS

It follows that
c(ENCODER”(n)) = c(OR) - (2-2" 24+ 4-2" 3 4. 4+ 2.(i—1)- 2"+ ...+ 2. (n—1))
1 2 1—1 n—1
— ¢(OR) - 2" - <§+Z+”'+W+”'+W)
< ¢(OR)-2" -2,
The disadvantage of the ENCODER”(n) design is that is it slow.

Question 4.9 1. Write the recurrence equation for the delay of the ENCODER” (n) design.
2. Prove that d(ENCODER"(n)) < n -log, n.

3. Prove that d(ENCODER"(n)) > In2-(n—1)-(In(n —1) — 1) +1n2. Hint: Z?:_; Ini >
flnfl(ln x)dx. (Any other Q(nlogn) lower bound is fine too).

4.5 Summary

In this chapter, we introduced bus notation that is used to denote indexed signals (e.g.,
a[n—1:0]). We also defined binary representation. We then presented decoder and encoder
designs using divide-and-conquer.

The first combinational circuit we described is a decoder. A decoder can be viewed
as a circuit that translates a number represented in binary representation to a l-out-of-2"
encoding. We started by presenting a brute force design in which a separate AND-tree is
used for each output bit. The brute force design is simple yet wasteful. We then presented
a recursive decoder design with asymptotically optimal cost and delay.

There are many advantages in using recursion. First, we were able to formally define the
circuit. The other option would have been to draw small cases (say, n = 3,4) and then argue
informally that the circuit is built in a similar fashion for larger values of n. Second, having
recursively defined the design, we were able to prove its correctness using induction. Third,
writing the recurrence equations for cost and delay is easy. We proved that our decoder
design is asymptotically optimal both in cost and in delay.

The second combinational circuit we described is an encoder. An encoder is the inverse
circuit of a decoder. We presented a naive design and proved its correctness. We then reduced
the cost of the naive design by commuting the order of two operations without changing the
functionality. We proved that the final encoder design has asymptotically optimal cost and
delay.

Three main techniques were used in this chapter.

e Divide & Conquer. We solve a problem by dividing it into smaller sub-problems. The
solutions of the smaller sub-problems are “glued” together to solve the big problem.

e Extend specification to make problem easier. We encountered a difficulty in the en-
coder design due to an all zeros input. We bypassed this problem by extending the
specification of an encoder so that it must output all zeros when input an all zeros.
Adding restrictions to the specification made the task easier since we were able to use
these restrictions to smaller encoders in our recursive construction.
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e Evolution. We started with a naive and correct design. This design turned out to be
too costly. We improved the naive design while preserving its functionality to obtain
a cheaper design. The correctness of the improved design follows from the correctness
of the naive design and the fact that it is functionally equivalent to the naive design.
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Chapter 5

Selectors and Shifters

In this chapter we present combinational circuits that manipulate the input bits. These
manipulations are referred to as shifts. There are different types of shifts: cyclic shifts, logical
shifts, and arithmetic shifts. We present shifter designs that are based on multiplexers.

5.1 Multiplexers

In this section we present designs of (n : 1)-multiplexers. Multiplexers are often also called
selectors.
We first review the definition of a MUX-gate (also known as a (2 : 1)-multiplexer).

Definition 5.1 A MUX-gate is a combinational gate that has three inputs D[0], D[1], S and
one output Y. The functionality is defined by

Y:{Dm ifS=0
D[1] ifS=1.

Note that we could have used the shorter expression Y = D[S] to define the functionality of
a MUX-gate.
An (n:1)-MUX is a combinational circuit defined as follows:

Input: D[n —1:0] and S[k — 1 : 0] where k = [log,n].
Output: Y € {0,1}.

Functionality:
Y = D[(S)].

We often refer to D as the data mput and to S as the select imput. The select input S
encodes the index of the bit of the data input D that should be output. To simplify the
discussion, we will assume in this section that n is a power of 2, namely, n = 2*.

Example 5.1 Let n =4, D[3:0] = 0101, and S[1 : 0] = 11. The output Y should be 0.

93
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5.1.1 Implementation

We describe two implementations of (n:1)-muX. The first implementation is based on trans-

lating the number (S) to 1-out-of-n representation (using a decoder). The second implemen-
tation is basically a tree.

A decoder based implementation. Figure[5.1/depicts an implementation of a (n:1)-MUX
based on a decoder. The input S[k — 1 : 0] is fed to a DECODER(k). The decoder outputs
a l-out-of-n representation of <§) Bitwise-AND is applied to the output of the decoder and
the input D[n — 1 : 0]. The output of the bitwise-AND is then fed to an OR-tree to produce

Y.

Din—1:0] Slk—1:0]

z

DECODER(k)

Figure 5.1: An (n:1)-MUX based on a decoder (n = 2F).

Question 5.1 The following question deals with the implementation of (n:1)-MUX suggested
in Figurel5.1.

1. Prove the correctness of the design.
2. Analyze the cost and delay of the design.

3. Prove that the cost and delay of the design are asymptotically optimal.

A tree-like implementation. A second implementation of (n:1)-MUX is a recursive tree-
like implementation. The design for n = 2 is simply a MUX-gate. The design for n = 2% is
depicted in Figure The input D is divided into two parts of equal length. Each part is

fed to an (% : 1)-MUX controlled by the signal S[k — 2 : 0]. The outputs of the (§ : 1)-MUXs
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Dln—1: %] D[% —1:0]
/~/n/2 n/2
Slk—2:00— (5 :1)-MUX Slk—2:00— (5 :1)-MUX
1 Yy, Yr 1
1 0
Sk —1] — MUX
iz
Y

Figure 5.2: A recursive implementation of (n:1)-MUX (n = 2%).

are Y7, and Yg. Finally a MUX selects between Yy, and Yy according to the value of S[k — 1].

Question 5.2 Answer the same questions asked in Question 5.1 but this time with respect
to the implementation of the (n:1)-MUX suggested in Figure 5.2.

Both implementations suggested in this section are asymptotically optimal with respect
to cost and delay. Which design is better? A cost and delay analysis based on the cost and
delay of gates listed in Table 2.1/ suggests that the tree-like implementation is cheaper and
faster. Nevertheless, our model is not refined enough to answer this question sharply. On
one hand, the tree-like design is simply a tree of multiplexers. The decoder based design
contains, in addition to an OR(n)-tree with n inputs, also a line of AND-gates and a decoder.
So one may conclude that the decoder based design is worse. On the other hand, OR-gates
are typically cheaper and faster than MUX-gates. Moreover, fast and cheap implementations
of MUX-gates in CMOS technology do not restore the signals well; this means that long paths
consisting only of MUX-gates are not allowed. We conclude that the model we use cannot be
used to deduce conclusively which multiplexer design is better.

Question 5.3 Compute the cost and delay of both implementations of (n:1)-MUX based on
the data in Table 2.1 for various values of n (e.g., n = 4,8,16,32).

5.2 Cyclic Shifters

We explain what a cyclic shift is by the following example. Consider a binary string a[l : 12]
and assume that we place the bits of a on a wheel. The position of a[l] is at one o’clock,
the position of a[2] is at two o’clock, etc. We now rotate the wheel, and read the bits in
clockwise order starting from one o’clock and ending at twelve o’clock. The resulting string
is a cyclic shift of a[l : 12]. Figure 5.2 depicts an example of a cyclic shift.
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! ” 1) 2 ’
N © N .
rotate clockwise
> — |« by3positions o o
» X » X
< S < S
9 9
"clock"reads: "clock"reads:
5,3,1,11,....8,10,12 8,10,12,...,2,4,6

Figure 5.3: An example of a cyclic shift. The clock “reads” the numbers stored in each clock
notch in clockwise order starting from the one o’clock notch.

Definition 5.2 The string bn — 1 : 0] is a cyclic left shift by i positions of the string
aln —1:0] if
Vi O] = a[mod(j —i,n)].

Example 5.2 Let a[3 : 0] = 0010. A cyclic left shift by one position of @ is the string 0100.
A cyclic left shift by 3 positions of @ is the string 0001.

Definition 5.3 A BARREL-SHIFTER(n) is a combinational circuit defined as follows:
Input: z[n —1:0] € {0,1}" and salk —1: 0] € {0, 1}* where k = [logyn].
Output: y[n —1:0] € {0,1}".

Functionality: ¥ is a cyclic left shift of ¥ by (sa) positions. Formally,

Viemn—1:0: y[j] ==x[mod(j— (sa),n)].

We often refer to the input 7 as the data input and to the input sa as the shift amount
input. To simplify the discussion, we will assume in this section that n is a power of 2,
namely, n = 2%,

5.2.1 Implementation

We break the task of designing a barrel shifter into smaller sub-tasks of shifting by powers
of two. We define this sub-task formally as follows.

A cLs(n, ) is a combinational circuit that implements a cyclic left shift by zero or 2° positions
depending on the value of its select input.

Definition 5.4 A cLS(n,i) is a combinational circuit defined as follows:
Input: z[n —1:0] and s € {0,1}.

Output: y[n—1:0].
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Functionality: '
Vien—1:0: y[j]=xmod(j —s-2'n).

A cLs(n, 1) is quite simple to implement since y[j] is either z[j] or x[mod(j — 2¢,n)]. So
all one needs is a MUX-gate to select between z[j] or z[mod(j —2%,n)]. The selection is based
on the value of s. It follows that the delay of CcLS(n,%) is the delay of a MUX, and the cost
is n times the cost of a MUX. Figure depicts an implementation of a cLs(4,1). It is
self-evident that the main complication with the design of CcLS(n.q) is routing (i.e., drawing
the wires).

z[3] z[2] z[1] z[0]
\ .
# .
|
1 0 1 0 1 0 1 0
ST MUX ST MUX C MUX ST MUX
r r r p
y[3] y[2] y[1] y[0]

Figure 5.4: A row of multiplexers implement a cLS(4,1).

The following claim shows how to design a barrel shifter using CLS(n, ) circuits. In the
following claim we refer to CLS,,; as the Boolean function that is implemented by a cLS(n, )
circuit.

Claim 5.1 Define the strings y;[n — 1: 0], for 0 < i < k — 1, recursively as follows:

yo[n — 1 : 0] < CLS, o(x[n — 1, 0], sa[0])
yiﬂ[n —1: O] — CLSn,iH(yi[n — 1, 0], Sa[i + 1])

The string y;[n — 1 : 0] is a cyclic left shift of the string x[n — 1 : 0] by (sa[i : 0]) positions.

Proof: The proof is by induction on ¢. The induction basis, for ¢ = 0, holds because of the
definition of cLs(2,0).
The induction step is proved as follows.

yilj] = oLS,.i(yi—1[n — 1, 0], sali])[/] (by definition of ;)
= yi_1[mod(j — 2" - sali],n)] (by definition of CLS,, ;).

Let £ = mod(j — 2 - sali],n). The induction hypothesis implies that
Yi—1[¢] = x[mod(¢ — (sali — 1 : 0]), n)].
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Note that
mod(¢ — (sa[i —1:0]),n) = mod(j — 2" - sali] — (sali — 1:0]),n)
= mod(j — (sa[i : 0]),n).
Therefore
yilj] = z[mod(j — (sali : 0]), n)],
and the claim follows. O

Having designed a CLS(n, i) we are ready to implement a BARREL-SHIFTER(n). Figure[5.5
depicts an implementation of a BARREL-SHIFTER(n). The implementation is based on k
levels of cLs(n, i), for i € [k — 1 : 0], where the ith level is controlled by sali].

xn—1:0]

sal0] — cLs(n, 0)

sa[l] — cLs(n, 1)
salk — 1] —  cus(n,k—1)

yln—1:0]

Figure 5.5: A BARREL-SHIFTER(n) built of k levels of cLS(n,i) (n = 2F).

Question 5.4 This question deals with the design of the BARREL-SHIFTER(n) depicted in
Figure 5.5.

1. Prove the correctness of the design.
2. Is the functionality preserved if the order of the levels is changed?

3. Analyze the cost and delay of the design.
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4. Prove the asymptotic optimality of the delay of the design.

5. Prove a lower bound on the cost of a combinational circuit that implements a cyclic
shifter.

5.3 Logical Shifters

Logical shifting is used for shifting binary strings that represent unsigned integers in binary
representation. Shifting to the left by s positions corresponds to multiplying by 2° followed
by modulo 2". Shifting to the right by s positions corresponds to division by 2 followed by
truncation.

A bi-directional logical shifter is defined as follows.

Definition 5.5 A LOG-SHIFT(n) is a combinational circuit defined as follows:
Input:

e zn—1:0]€{0,1}",
e salk —1:0] € {0,1}*, where k = [logyn], and
e /c{0,1}.

Output: y[n —1:0] € {0,1}".

Functionality: The output i is a logical shift of T by (sa) positions. The direction of the
shift is determined by €. Formally, If ¢ = 1, then perform a logical left shift as follows:

yn—1:0] = z[n — 1 — (s4) : 0] - 0%,
If £ =0, then perform a logical right shift as follows:
yln—1:0] =05 . g[n — 1 (sa)].

Example 5.3 Let z[3 : 0] = 0010. If sa[l : 0] = 10 and ¢ = 1, then LOG-SHIFT(4) outputs
y[3 : 0] = 1000. If £ = 0, then the output equals y[3 : 0] = 0000.

5.3.1 Implementation

As in the case of cyclic shifters, we break the task of designing a logical shifter into sub-tasks
of logical shifts by powers of two.

Loosely speaking, an LBS(n, ) is a logical bi-directional shifter that outputs one of three
possible strings: the input shifted to the left by 2¢ positions, the input shifted to the right
by 2! positions, or the input without shifting. We now formally define this circuit.

Definition 5.6 An LBS(n,i) is a combinational circuit defined as follows:

Input: z[n—1:0] and s,¢ € {0,1}.
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Output: y[n —1:0].

Functionality: Define 2'[n — 1+ 2¢: —2i] € {0,1}"+22" as follows:

0 otherwise.
The value of the output y[n — 1: 0] is specified by

Viem—1:00: ylj]=aj+ (-1 -s-2] (5.1)

Note that the vector Z’ is an extension of the input & in which 2¢ zeros are padded to the
left and to the right of Z. The indexes of the bit string 2’ are also negative; this non-standard
indexing is very useful in the context of logical shifters. It enables us to very easily express
the fact that, in a logical shift, zeros are padded to one of the sides of the output.

The role of ¢ in Equation [5.1]is to determine if the shift is a left shift or a right shift. If
¢ =1 then (—1)* = —1, and the shift is a left shift (since increasing indexes from j — 2 to j
has the effect of a left shift). If £ = 0, then (—1)* = 1, and decreasing indexes from j + 2¢ to
J has the effect of a right shift.

The role of s in Equation is to determine if a shift (in either direction) takes place at
all. If s = 0, then y[j] = z[j], and no shift takes place. If s = 1, then the direction of the
shift is determined by /.

A bit-slice of an implementation of an LBS(n, %) is depicted in Figure [5.6. By the term
“bit-slice” we mean that the figure depicts only how a single output bit y[j] is computed.
The whole circuit is obtained by combining such circuits for every output bit y[j]. We do
not depict the whole circuit to avoid a messy figure with lots of wires that are hard to follow.

(7] d[j+27]  a'fj -2
2 . 2 [ 2 1 0
s,0 —*— decoding (3:1)-MUX
ylil

Figure 5.6: A bit-slice of an implementation of LBS(n,1).

Figure depicts a circuit for computing y[j] that consists of two blocks.

1. The first block is a (3 : 1)-MUX. Since 3 is not a power of 2, such a multiplexer can be
constructed by a “pruned” tree-like construction. On the other hand, many libraries
contain a (3 : 1)-MUX as a basic gate; in such cases we can simply consider a (3 : 1)-
MUX as a basic gate. In either case, a (3 : 1)-MUX is a simple circuit with a constant
number of inputs and outputs, so the best option can be easily determined based on
the technology at hand.
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2. The second block is a decoding circuit. This circuit is not a decoder as defined in
Chapter 4. Instead, this is a simple circuit that is input two bits (¢ and s) and outputs
two bits. The output of the decoding circuit controls the selection performed by the
(3 : 1)-mux. The decoding must cause the (3 : 1)-MUX to select the correct input based
on the values of s and ¢. We leave it as an exercise to design the decoding circuit.

Question 5.5 This question deals with various aspects and details concerning the design of
a logical shifter.

1. Design a “pruned” tree-like (3 : 1)-MUX.
2. Design the decoding box depicted in Figure!5.0.

3. Show how LBS(n, i) circuits can be cascaded to obtain a LOG-SHIFT(n). Hint: follow
the design of a BARREL-SHIFTER(n).

5.4 Arithmetic Shifters

Arithmetic shifters are used for shifting binary strings that represent signed integers in two’s
complement representation. Since left shifting is the same in logical shifting and in arithmetic
shifting, we discuss only right shifting (i.e., division by a power of 2).

An arithmetic right shifter is defined as follows.

Definition 5.7 An ARITH-SHIFT(n) is a combinational circuit defined as follows:
Input: x[n —1:0] € {0,1}" and sa[k — 1:0] € {0,1}*, where k = [log,n].
Output: yn—1:0] € {0,1}".

Functionality: The oulput ¥ is a (sign-extended) arithmetic right shift of ¥ by (sa) posi-
tions. Formally,

yln —1:0] = z[n — 119 . z[n — 1 : (sa)].

Example 5.4 Let z[3 : 0] = 1001. If sa[l : 0] = 10, then ARITH-SHIFT(4) outputs y[3 : 0] =
1110.

Question 5.6 Consider the definitions of CLS(n,i) and LBS(n,i). Suggest an analogous
definition ARS(n, 1) for arithmetic right shift (i.e., modify the definition of ¥’ and use (2 : 1)-
MUXSs). Suggest an implementation of an arithmetic right shifter based on cascading ARS(n.7)
crrcusts.
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5.5 Summary

We began this chapter by defining (n : 1)-multiplexers. We presented two optimal imple-
mentations. One implementations is based on a decoder, the other implementation is based
on a tree of multiplexers.

We continued by defining three types of shifts: cyclic, logical, and arithmetic shifts. The
method we propose for designing such shifters is to cascade a logarithmic number of shifters
(with parameter 4) that either perform a shift by 2° positions or no shift at all.



Chapter 6

Priority encoders

In this chapter we present designs of an important combinational module called priority
encoders. Priority encoders have many uses, among them: (1) allocating usage of a shared
resource according to a policy that is defined by priorities, and (2) determining the required
amount of left shift needed to normalize a fraction so that it represents a number in the
interval [1/2,1).

We begin this chapter with a discussion of the confusion that may be caused by inter-
changing bit orders in which the least significant bit appears first and orders in which the
most significant bit appears first.

6.1 Big Endian vs. Little Endian

A long standing source of confusion is the question of how large strings of bits are serially
communicated or stored in memories. Consider the following two scenarios.

In the first setting Alice wishes to send to Bob a binary string a[n — 1 : 0]. The channel
that Alice and Bob use for communication is a serial channel. This means that Alice can
only send one bit at a time. Now Alice has two “natural” choices:

e She can send a[n — 1] first and a[0] last. Namely, she can send the bits in descending
index order. This order is often referred to as most significant bit first or just MSB
first.

e She can send a[0] first and a[n — 1] last. Namely, she can send the bits in ascending
index order. This order is often referred to as least significant bit first or just LSB first.

In the second setting computer words are stored in memory. A memory is a vector of
storage places. We denote this vector by M]0], M[1],.... Suppose that each storage place
is capable of storing a byte (i.e., 8 bits). The typical word size in modern computers is 32
bits (and even 64 bits). This means that a word is stored in 4 memory slots. The question
is how do we store a word a[31 : 0] in 4 memory slots?

Obviously, it is a good idea to store the word in 4 consecutive slots, say M[i : i + 3].

63
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There are two “natural” options. In the first option storage is as follows:

] —a
Mi+ 1] < a|
M]i+ 2] < a[l5 : §]
M]i + 3] < a7 : 0]
This option is referred to as Big Endian.
In the second option storage is as follows:
MTi] < al0: 7]
M[i+ 1] < a8 : 15]
M[i + 2] « a[16 : 23]
M{i+ 3] < a[24 : 31]

This option is referred to as Little Endian. Note that, for the sake of aesthetics, we used
increasing bit indexes in the second option.

It is highly recommended that you read the treatise “On holy wars and a plea for peace”
by Danny Cohen (URLs have short lives, so I hope that you can find Cohen’s treatise in
http://www.networksorcery.com/enp/ien/ien137.txt). It was Danny Cohen who coined
the terms Big Endian and Little Endian.

Each of these options has certain advantages and disadvantages. For example, if an
architecture supports multiple word lengths, then it is convenient to have the most significant
bit (MSB) stored in a fixed position relative to the address of the word (in our example we
can see that in Big Endian the MSB is stored in M [i] regardless of the number of bytes in @.)
On the other hand, if multiple word lengths are supported and we wish to add a half word
(i.e., two-byte string) with a word (i.e., four-byte string), then Little Endian may simplify
the task of aligning the two words (i.e., making sure that bits of the same weight are placed
in identical offsets).

It is of no surprise that both conventions are used in commercial products. Architectures
from the X86 family (such as Intel processors) use Little Endian byte ordering, while Mo-
torola 68000 CPUs follow the Big Endian convention. Interestingly, the Power-PC supports
both! Nevertheless, operating systems also follow different conventions: Microsoft operating
systems follow Little Endian and Apple operating systems follow Big Endian. So a MAC
with a Power-PC CPU that runs an Apple operating system runs in Big Endian mode.

This confusion spreads beyond hardware to software (e.g., Java uses Big Endian) and to
file formats (e.g., GIFF uses Little Endian and JPEG uses Big Endian).

What does this story have to do with us? You might have noticed that we use both
ascending indexes and descending indexes (e.g. a[n — 1 : 0] vs. a[0 : n — 1]) to denote the
same string. These two conventions are simply an instance of the Big Endian vs. Little
Endian controversy.

Following Oliver Swift (at the risk of not obeying Danny Cohen’s plea), we use both
ascending and descending bit orders according to the task we are considering. When consid-
ering strings that represent integers in binary representation, descending indexes are used
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(i.e., leftmost bit is the MSB). However in many parts of this chapter ascending indexes are
used; the reason is to simplify handling of indexes in the text. We can only hope that this
simplification does not lead to confusion.

6.2 Priority Encoders

Consider a binary string z[0 : n —1]. (Note that we use ascending indexes here! So the index
of the leftmost bit is 0.) The index of the leading one is the index of the leftmost non-zero
bit in z[0 : n — 1]. We often abbreviate and refer to the index of the leading one simply as
the leading one. Formally,

Definition 6.1 The leading one of a binary string x[0 : n — 1] is defined by

min{i | z[i] =1} ifz[0:n —1] #0"

LEADING-ONE(z[0 : n — 1]) = .
n otherwise.

Example 6.1 Consider the string x[0 : 6] = 0110100. The leading one is the index [1]. Note
that indezxes are in ascending order and that x[0] is the leftmost bit.

The following claim follows immediately from the definition of the leading one.

Claim 6.1 For every binary string x[n — 1 : 0]
LEADING-ONE(d@) = LEADING-ONE(@ - 1).

A priority encoder is a combinational circuit that computes the leading one. We consider
two types of priority encoders: A unary priority encoder outputs the leading one in unary
representation. A binary priority encoder outputs the leading one in binary representation.

Definition 6.2 A binary string x[0 : n — 1] represents a number in unary representation if
z[0 : n— 1] € 1* - 0*. The value represented in unary representation by the binary string
18- 07 is .

Example 6.2 The binary string 01001011 does not represent a number in unary represen-
tation. Only a string that is obtained by concatenating an all-ones string with an all-zeros
string represents a number in unary representation.

Before we define a unary priority encoder, we define a parallel prefix OR circuit.

Definition 6.3 A parallel prefix OR circuit of length n is a combinational circuit specified
as follows.

Input: z[0:n —1].

Output: y[0:n —1].
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Functionality:
yli] = or(z[0 : 7).

We denote parallel prefix OR circuit of length n by PPC-OR(n).

We denote unary priority encoder by U-PENC(n) and define it as follows. Note that the
output of U-PENC(n) is simply the inversion of the outputs of PPC-OR(n).

Definition 6.4 A unary priority encoder U-PENC(n) is a combinational circuit specified as
follows.

Input: z[0:n —1].
Output: y[0:n —1].

Functionality:
yli] = INv(OR(z[0 : 7])).

Example 6.3 Consider the string z[0 : 6] = 0110100. The output of a PPC-OR(T7) is
0111111. The output of a U-PENC(7) is 1000000.

Example 6.4 If ¥ # 0", then the output of U-PENC(n) satisfies y[0 : n — 1] = 17 - 0",
where j = min{i | x[i] = 1}. If ¥ = 0", then iy = 1" and i is a unary representation of n.

We denote binary priority encoder by B-PENC(n) and define it as follows.

Definition 6.5 A binary priority encoder B-PENC(n) is a combinational circuit specified as
follows.

Input: z[0:n —1].
Output: y[k: 0], where k = |logyn|. (Note that if n =2, then k = (.)

Functionality:
() = LEADING-ONE(Z)

Note that if n = 2%, then the length of the output of a B-PENC(n) is k+ 1 bits; otherwise,
the number n could not be represented by the output.

Example 6.5 Given input x[0 : 5] = 000101, a U-PENC(6) outputs y[0 : 5] = 000111, and
B-PENC(6) outputs y[2 : 0] = 011.
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6.2.1 Implementation of U-PENC(n)

We can design a unary priority encoder by inverting the outputs of a parallel prefix PPC-OR(n).
A brute force design of a PPC-OR(n) uses a separate OR-tree for each output bit. The de-
lay of such a design is O(logn) and the cost is O(n?). The issue of efficiently combining
these trees will be discussed in detail when we discuss parallel prefix computation in the
context of fast addition. In the meantime, we present here a (non-optimal) design based on
divide-and-conquer.

The method of divide-and-conquer is applicable for designing a PPC-OR(n). We apply
divide-and-conquer in the following recursive design. If n = 1, then PPC-OR(1) is the trivial
design in which y[0] < x[0]. A recursive design of PPC-OR(n) for n > 1 that is a power of
2 is depicted in Figure 6.1. Proving the correctness of the proposed PPC-OR(n) design is a
simple exercise in associativity of OR,,, so we leave it as a question.

z[0: 3 —1] z[3 :n—1]
/‘/n/2 /‘/n/Q
PPC-OR(Z) PPC-OR(7)
n/2 (5 —1] yr[3 :n—1] n/2
lj[
OR(%)
/\/n/Z
yl0: 5 —1] ylg in—1]

Figure 6.1: A recursive implementation of PPC-OR(n).

Question 6.1 This question deals with the recursive design of the PPC-OR(n) circuit de-
picted in Figure 6.1

1. Prove the correctness of the design.
2. Extend the design for values of n that are not powers of 2.
3. Analyze the delay of the design.

4. Prove the asymptotic optimality of the delay of the design.

Cost analysis. The cost ¢(n) of the PPC-OR(n) depicted in Figure (6.1 satisfies the follow-
ing recurrence equation.

on) {0 if n=1

2-c(3)+ (n/2) - c(OR) otherwise.
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It follows that

n
() =2 e(5) +O(n)
= O(n -logn).
The following question deals with the asymptotic optimality of the PPC-OR(n) design
depicted in Figure 6.1.

Question 6.2 Prove a lower bound on the cost of a parallel prefix computation circuit
PPC-OR(n).

In the chapter on fast addition we will present a cheaper implementation of PPC-OR(n) (with
logarithmic delay).

6.2.2 Implementation of B-PENC

In this section we present two designs for a binary priority encoder. The first design is based
on a reduction to a unary priority encoder. The second design is based on divide-and-conquer.

Reduction to PPC—OR

Consider an input z[0 : n — 1] to a binary priority encoder. If ¥ = 0", then the output
should equal bin(n). If & # 0", then let j = min{i | z[i] = 1}. The output ¥ of a B-PENC(n)
should satisfy (¢) = j. Our design is based on the observation that the output u[0 : n — 1]
of a PPC-OR(n) satisfies @ = 0/ - 1”77, In Figure 6.2 we depict a reduction from the task of
computing 7 to the task of computing .

The stages of the reduction are as follows. We first assume that the input z[n — 1: 0] is
not 0" and denote LEADING-ONE(Z) by j. We then deal with the case that © = 0" separately.

1. The input 7 is fed to a PPC-OR(n) that outputs the string u[0 : n — 1] = 07 - 1",
2. A difference circuit is fed by « and outputs the string «’[0 : n—1]. The string «'[0 : n—1]
is defined as follows:
W[i] = u[O] . if 1= 0.
uli] —u[i — 1] otherwise.
Note that the output w'[0 : n — 1] satisfies:
W0:n—1=0-1.0""17,

Hence u' constitutes a 1-out-of-n representation of the index of the leading one (pro-

vided that & # 0").

3. If n is not a power of 2, then obtain the string v”[0 : 2**! — 1] from w by padding zeros
from the right as follows:

W'[0:n—1] «—u'[0:n—1] W[ 2 1] — 02,

Namely, v”[0 : 2571 —1] = 07 - 1-0""~1. (Recall that k = |log,n|.) Note that the
cost and delay of padding zeros is zero.
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z[0:n —1]
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Figure 6.2: A binary priority encoder
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based on a unary priority encoder.
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4. The string «”[0 : 2¥*1 — 1] is input to an ENCODER(k + 1). The encoder outputs the
string ¢'[k : 0] that satisfies <gj’) equals the index of the bit in «” that equals one.
Namely, (gj’) = 4, which is the desired output if ¥ # 0™. In the next item deal also
with the case of an all-zeros input.

5. The input z[n — 1 : 0] is fed to a zero-tester that outputs 1 if ¥ = 0. In this case,
the output y[k : 0] should satisfy () = n. The selection between bin(n) and y’ is
performed by the multiplexer according to the output of the zero-tester.

Cost and delay analysis. The cost of the binary priority encoder depicted in Figure 6.2
satisfies:

¢(n) = ¢(PPC-OR(n)) + ¢(DIFF(n)) 4+ ¢(ENCODER(k)) + ¢(MUX(k)) + ¢(ZERO-TEST(n))
= ¢(PPC-OR(n)) + O(n).

Hence, the cost of the reduction from a binary priority encoder to a unary priority encoder
is linear. This implies that if we knew how to implement a linear cost PPC-OR(n) then we
would have a linear cost B-PENC(n).

The delay of the binary priority encoder depicted in Figure 6.2 satisfies:

d(n) = max{d(PPC-OR(n)) + d(DIFF(n)) + d(ENCODER(k)), d(ZERO-TEST(n))} + d(MUX)
= d(pPC-OR(n)) + O(logn).

Hence, the delay of the reduction from a binary priority encoder to a unary priority encoder
is logarithmic.

A divide-and-conquer implementation

We now present a divide-and-conquer design. For simplicity, assume that n = 2*.

Figure 6.3 depicts a recursive design for a binary priority encoder. Consider an input
z[0 : n — 1]. We partition it into two halves: the left part z[0 : § — 1] and the right part
x[5 : n — 1]. BEach of these two parts is fed to a binary priority encoder with n/2 inputs.
We denote the outputs of these binary priority encoders by y.[k —1: 0] and yg[k —1:0].
The final output y[k : 0] is computed as follows: ylk] = 1 iff y [k — 1] = yr[k — 1] = 1,
ylk — 1] = AND(yL[k — 1], INV(yg[k —1])), and y[k — 2 : 0] equals yr [k — 2 : 0] if y[k—1] =0
and yr[k — 2 : 0] otherwise. We now prove the correctness of the binary priority encoder
design based on divide-and-conquer. Note that we omitted a description for n = 2. We leave
the recursion basis as an exercise.

Claim 6.2 The design depicted in Figure|6.3 is a binary priority encoder.

Proof: The proof is by induction. We assume that we have a correct design for n = 2 so
the induction basis holds. We proceed with the induction step. We consider three cases:

L 2[0:5—1] # 0"/2. By the induction hypothesis, the required output in this case equals

0 -yr. Note that y,[k — 1] = 0 since the index of the leading one is less than n/2. It
follows that y[k] = y[k — 1] = 0 and y[k —2: 0] = y.[k — 2 : 0]. Hence (¢) = (y1,), and
the output equals the index of the leading one, as required.
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z[0: 3 —1] z[2:n—1]

n/2 n/2

B-PENC(Z) B-PENC(%)

k yrlk —2:0] yrlk —2:0] k
yrlk — 1] INV(yr[k — 1)) yrlk — 1] %kfl /fkfl yrlk — 1)
0 1
‘ l e MUX(k — 1)
AND AND
%1
| |
y[k] ylk —1] ylk —2:0]

Figure 6.3: A recursive implementation of a binary priority encoder.

2. z[0: 2 —1] = 0"? and z[2 : n — 1] # 0"/%. In this case the index of the leading one
is n/2 + (yr). By the induction hypothesis, we have y.[k — 1] = 1 and yg[k — 1] = 0.
It follows that y[k] = 0, y[k — 1] = 1, and y[k — 2 : 0] = ygrlk — 2 : 0]. Hence
(1) = 251 + (yR), as required.

3. 2[0: 2 —1] = 0"? and z[2 : n — 1] = 0™2. By the induction hypothesis, we have
yrlk—1:0] = yr[k—1:0] = 1.0*"L. Hence y[k] = 1, y[k—1] = 0, and y[k—2 : 0] = 0F 1,
as required.

Since the design is correct in all three cases, we conclude that the design is correct. O

Cost and delay analysis. The cost of the binary priority encoder depicted in Figure 6.3
satisfies (recall that n = 2%):

¢(NOR) + ¢(AND) + ¢(INV) if n=2
2 ¢(B-PENC(n/2)) + 2 - ¢(AND) + (k — 1) - ¢(MUX) otherwise.

¢(B-PENC(n)) = {

Consider the substitution v(k) = ¢(2¥). Then ~y(k) satisfies the recurrence
(k) =2-7(k=1) + O(k).

This recurrence is identical to the recurrence in Equation 4.1. Hence (k) = ©(2F) and
¢(B-PENC(n)) = ©(n). This implies the asymptotic optimality of the design.
The delay of the binary priority encoder depicted in Figure[6.3 satisfies:

tpa(NOR) if n=2
d(B-PENC(n/2)) + max{d(MUX) + d(AND)} otherwise.

d(B-PENC(n)) = {

Hence, the delay is logarithmic, and the design is asymptotically optimal also with respect
to delay.
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6.3 Summary

In this section we presented designs of priority encoders. Priority encoders are circuits that
compute the position of a leading one in a binary string. We considered two types of priority
encoders: unary and binary. The difference between these two types of priority encoders
is in how the position of the leading one is represented (i.e. in binary representation or in
unary representation).

We first considered unary priority encoders. In the unary case, it is more convenient to
consider parallel prefix OR circuits. The only difference between these two circuits is the
inversion of the outputs. We presented a divide-and-conquer design for a parallel prefix OR
circuit PPC—(OR)(n). When we discuss fast addition we will return to this circuit and present
an even cheaper design.

We then considered binary priority encoders. Two designs were presented. The first one
is simply a reduction to PPC—(OR)(n). The overhead in cost is linear and the overhead in
delay is logarithmic. Hence, this design leads to an asymptotically optimal binary priority
encoder provided that a linear cost and logarithmic delay PPC—(OR)(n) design is used.

The second binary priority encoder design is a divide-and-conquer design. The cost of
this design is linear cost and the delay is logarithmic, hence this design is asymptotically
optimal.



Chapter 7

Half-Decoders

In this chapter we deal with the design of half-decoders. Recall that a decoder is a com-
binational circuit that computes a 1-out-of-2" representation of a given binary number. A
half-decoder computes a unary representation of a given binary number. Half-decoders can
be used for reducing the task of a logical shift to a cyclic shift.

7.1 Specification

Definition 7.1 A half-decoder with input length n is a combinational circuit defined as
follows:

Input: z[n —1:0].

Output: y[0: 2" — 1]

Functionality:
y[0: 27 — 1] = 1leln=10)  g2"~(eln—1:0])

We denote a half-decoder with input length n by H-DEC(n).

Example 7.1 e Consider a half-decoder H-DEC(3). Given z[2 : 0] = 101, H-DEC(3)
outputs y[0 : 7] = 11111000.

e Given ¥ = 0", H-DEC(n) outputs j = 0%".
e Given ¥ = 1", H-DEC(n) outputs ij = 1>"71. 0.

Remark 7.1 Observe that y[2™ — 1] = 0, for every input string. One could omit the bit
y[2" — 1] from the definition of a half-decoder. We left it in to make the description of the
design slightly simpler.

The next question deals with designing a half-decoder using a decoder and a unary
priority encoder. The delay of the resulting design is too slow.

Question 7.1 Suggest an implementation of a half-decoder based on a decoder and a unary
priority encoder. Analyze the cost and delay of the design. Is it asymptotically optimal with
respect to cost or delay?
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7.2 Preliminaries

In this section we present a few claims that are used in the design of asymptotically optimal
half-decoders.
The following claim follows trivially from the definition of a half-decoder.

Claim 7.1
yli| =1 <=1 < (7).

Assume that the binary string z[0 : n — 1] represents a number in unary representation
(namely, 2= 17-0""7). Let wt(Z) denote the value represented by Z in unary representation.
The following claim shows that it is easy to compare wi(Z) with a fixed constant ¢ € [0, n—1].
(By easy we mean that it requires constant cost and delay.)

Claim 7.2 Foriec[0:n—1]:

wt(?) <i<=z[i—1]=0
wt(2) > i< z[i] =1
wt(2) =i <= z[i] =0 and z[i — 1] = 1.

Question 7.2 Prove Claim|7.2.

Claim [7.2| gives a simple recipe for a “comparison box”. A comparison box, denoted
by COMP(Z,1i), is a combinational circuit that compares wt(Z) and i and has three outputs
GT,EQ, LT. The outputs have the following meaning: GT - indicates whether wt(z) > 1,
EQ - indicates whether wi(2) = i, and LT - indicates whether w#(Z) < i. In the sequel we
will only need the GT and EQ outputs. (Note that the GT output simply equals z[i]).

We now follow the technique of division with a remainder (see Claim [4.1). Consider a
partitioning of a string z[n — 1 : 0] according to a parameter k into two sub-strings of length
k and n — k. Namely

xpn—k—1:0=2x[n—1:k| and xplk—1:0] =z[k—1:0].
Binary representation implies that
(7) = 2° - (T1) + (Tr).

Namely the quotient when dividing (¥) by 2* is (¥), and the remainder is (Zg).

Consider an index i, and divide it by 2* to obtain i = 2% - g+ r, where r € {0,...,2F —1}.
(The quotient of this division is ¢, and r is simply the remainder.) Division by 2* can be
interpreted as partitioning the numbers into blocks, where each block consists of numbers
with the same quotient. This division divides the range [2" — 1 : 0] into 2"~* blocks, each
block is of length 2¥. The quotient ¢ can be viewed as an index of the block that i belongs
to. The remainder r can be viewed as the offset of ¢ within its block.

The following claim shows how to easily compare i and (Z) given ¢, 7, (¥), and (Zg).

Claim 7.3
i <(Z) <= q<(ZL) or(q=(ZL) andr < (Tg))



7.3. IMPLEMENTATION 75

The interpretation of the above claim in terms of “blocks” and “offsets” is the following.
The number (Z) is a number in the range [2" — 1 : 0]. The index of the block this number
belongs to is (Z1). The offset of this number within its block is (¥g). Hence, comparison of
() and i can be done in two steps: compare the block indexes, if they are different, then
the number with the higher block index is bigger. If the block indexes are identical, then
the offset value determines which number is bigger.

7.3 Implementation

In this section we present an asymptotically optimal half-decoder design. Our design is a
recursive divide-and-conquer design.

A H-DEC(n), for n = 1 is the trivial circuit y[0] < z[0]. We now proceed with the
recursion step. Figure 7.1 depicts a recursive implementation of a H-DEC(n). The parameter
k equals k = [5] (in fact, to minimize delay one needs to be a bit more precise since the
paths may not be perfectly balanced for £ = [§]). The input string z[n — 1 : 0] is divided
into two strings zp[n —k —1:0] = z[n —1: k] and xglk — 1 : 0] = [k — 1 : 0]. These
strings are fed to a half-decoders H-DEC(n — k) and H-DEC(k), respectively. We denote the
outputs of the half-decoders by z7[2"7% —1: 0] and zz[2* — 1 : 0], respectively. Each of these
string are fed to comparison boxes. The “rows” comparison box is fed by z7, and compares
Z;, with i € [0: 2°7% —1]. The “columns” comparison box is fed by 7z and compares 2z with
j €[0:2F —1]. Note that we only use the GT and EQ outputs of the rows comparison box,
and that we only use the GT output of the columns comparison box. (Hence the columns
comparison box is trivial and has zero cost and delay.) We denote the outputs of the rows
comparison box by Qar[0 : 2" % — 1] and Qgg[0 : 2"7% — 1]. We denote the output of the
columns comparison box by Rer[0 : 28 —1]. Finally, the outputs of the comparison boxes fed
an array of 2" % x 2% G-gates. Consider the G-gate G, positioned in row ¢ and in column
r. The gate G, outputs y[q - 2¥ + r] that is defined by

yla- 2" + 1] = or(Qerldl, AND(Qpoldl, Rerlr]))- (7.1)

Example 7.2 Let n = 4 and k = 2. Consider « = 6. The quotient and remainder of 1
when divided by 4 are 1 and 2, respectively. By Claim yl6] = 1 iff (x[3:0]) > 6. By
Claim 7.3, () > 6 iff ((z[3:2]) > 1) or ((z[3:2]) =1 and (z[1:0]) > 2). It follows that if
Qcr[l] =1, then y[6] = 1. If Qpoll] = 1, then y[6] = Rer[2].

7.4 Correctness
Claim 7.4 The design depicted in Figure 7.1 is a correct implementation of a half-decoder.

Proof: The proof is by induction on n. The induction basis, for n = 1, is trivial. We now
prove the induction step. By Claim [7.1 it suffices to show that y[i| = 1 iff i < (), for every
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zplk—1:0] = z[k —1:0]

H-DEC(k)
N k
ZR -
A
- \2k—1
COMP(ZR7.7)j:0
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Rer
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_ 7] G
= ——— = 15| g array of
x[n —1: k]| | S = -
o AL g S G-gates
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O

Figure 7.1: A recursive implementation of H-DEC(n). Note that the comparison boxes
COMP(Zp, j) are trivial, since we only use their GT outputs.
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i € [2" —1:0]. Fix an index 4 and let i = ¢ - 2¥ + 7. By Claim[7.3,
i <(T) <= (¢ < (7r)) or ((¢ = (7)) and (r < (TR)))-

The induction hypothesis implies that:

q<(Zp) <= z[q] =1
q=(TL) <= 2z lg) =0and 2z [g— 1] =1
r < (Zgr) < zg[r] = 1.

Observe that:
e The signal Qgr|q] equals z1[g], and hence indicates if ¢ < (7).

e The signal Qgglq| equals AND(INV(z.[q]), z[¢ — 1]), and hence indicates if ¢ = (ZL).

e The signal Ror|r] equals zg[r], and hence indicates if r < (Zg).
[

Finally, by Eq. yli] = 1 iff OrR(Qerlg], AND(QEglq], Rarr])). Hence y[i] is correct, and
the claim follows. O

7.5 Cost and delay analysis

The cost of H-DEC(n) satisfies the following recurrence equation:

0 it n=1
c(H-DEC(n)) = < ¢(H-DEC(k)) + ¢(H-DEC(n — k))
+2"F . ¢(EQ) + 2" - ¢(G) otherwise.

The cost of computing the EQ signals is ¢(INV) + ¢(AND). The cost of a G-gate is ¢(AND) +
c(or). It follows that

¢(H-DEC(n)) = ¢(H-DEC(k)) + ¢(H-DEC(n — k)) + O(2")

We already solved this recurrence in the case of decoders and showed that ¢(H-DEC(n)) =
O(2").

The delay of H-DEC(n) satisfies the following recurrence equation:

0 if n=1
d(H-DEC(n)) = { max{d(H-DEC(k)),d(H-DEC(n — k)) + d(EQ)}
+d(G) otherwise.

The delay of computing EQ as well as the delay of a G-gate is constant. Set k = [§], then
the recurrence degenerates to
d(H-DEC(n)) = d(H-DEC(n/2)) + O(1)
= O(logn).
It follows that the delay of H-DEC(n) is asymptotically optimal since all the inputs belong

to the cone of a half-decoder.
The following question deals with the asymptotically optimal cost of a half-decoder design.
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Question 7.3 Prove that every implementation of a half-decoder design must contain at
least 2" — 2 non-trivial gates. (Here we assume that every mon-trivial gate has a single
output, and we do not have any fan-in or fan-out restrictions).

Hint: The idea is to show that all the outputs must be fed by distinct non-trivial gates.
Well, we know that y[2"—1] = 0, so that rules out one output. What about the other outputs?
We need to show that:

1. The other outputs are not constant - so they can’t be fed by a trivial constant gate.
2. The other outputs are distinct - so every two outputs can’t be fed by the same gate.

3. The other outputs do no equal the inputs - so they can’t be directly fed from input gates
(which are trivial gates).

It is not hard to prove the first two items. The third item is simply false! There does exist
an output bit that equals one of the input bits. Can you prove which output bit this is? Can
you prove that it is the only such output bit?

7.6 Application

In the following question half-decoders are used to implement shifters that support all types
of shifts.

Question 7.4 CPUs often support all three types of shifting: cyclic, logical, and arithmetic
shifting.

1. Write a complete specification of a shifter that can perform all three types of shifts.

2. Propose an implementation of such a shifter.

7.7 Summary

This chapter deals with the design of optimal half-decoders. A half-decoder outputs a unary
representation of a binary number. Our divide-and-conquer design is a variation of a decoder
design. It employs the fact that comparison with a constant is easy in unary representation.



Chapter 8
Addition

In this chapter we define binary adders. We start by considering a Ripple Carry Adder. This
is a design with linear delay and linear cost. We then present designs with logarithmic delay
but super-linear cost.

8.1 Definition of a binary adder

Definition 8.1 A binary adder with input length n is a combinational circuit specified as
follows.

Input: Aln—1:0],Bn—1:0] € {0,1}", and C[0] € {0,1}.
Output: S[n—1:0] € {0,1}" and C[n] € {0,1}.

Functionality: .
(S) +2"- C[n] = (A) + (B) + C[0] (8.1)

We denote a binary adder with input length n by ADDER(n). The inputs A and B are
the binary representations of the addends. The input C[0] is often called the carry-in bit.
The output S is the binary representation of the sum (more precisely, S is the binary
representation of the sum modulo 2"), and the output C[n] is often called the carry-out
bit.

Question 8.1 Verify that the functionality of ADDER(n) is well defined. Namely, for every
Aln—1:0],B[n—1:0], and C[0] there exist S[n—1: 0] and C[n] that satisfy Equation|8.1.

Hint: Show that the set of numbers that can be represented by sums (A) + (B) + C[0]
equals the set of numbers that can be represented by sums (§> +2". Cln].

There are many ways to implement an ADDER(n). In this chapter we present a few
ADDER(n) designs.

Question 8.2 Prove lower bounds on the cost and delay of combinational circuits that im-
plement an ADDER(n).
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8.2 Ripple Carry Adder

Ripple Carry Adders are built by chaining a row of Full-Adders. We denote a Ripple Carry
Adder that implements an ADDER(n) by RCA(n). A Full-Adder is a combinational circuit
that adds three bits and represents their sum in binary representation.

We do not discuss here how to build a Full-Adder from gates. Since a Full-Adder has
a constant number of inputs and outputs, every (reasonable) implementation has constant
cost and delay. Optimizing these constants is a technology dependent issue and is not within
the scope of our discussion.

Definition 8.2 (Full-Adder) A Full-Adder is a combinational circuit with 3 inputs x,y, z €
{0,1} and 2 outputs c,s € {0, 1} that satisfies:

2c+s=x+y+ z.

The output s of a Full-Adder is often called the sum output. The output ¢ of a Full-Adder
is often called the carry-out output. We denote a Full-Adder by FA.

A Ripple Carry Adder, RCA(n), is built by chaining a row of n Full-Adders. An RCA(n)
is depicted in Figure[8.1. Note that the carry-out output of the ith Full-Adder is denoted
by cli + 1]. The weight of c[i + 1] is 271, This way, the weight of every signal is two to the
power of its index. One can readily notice that an RCA(n) adds numbers using the same
addition algorithm that we use for adding numbers by hand.

Bn—1] A[n—1] B[n—2] Aln —2] B[1] A[1] B[0] A[0]
| | | |
(o]
FA,,_1 FApo2 | | FA1 FAq
I e e [
ClnlSin—-1 Cln-1] Sn—-2 Clr-2| cE s[ cnl s

Figure 8.1: A Ripple Carry Adder RCA(n).

8.2.1 Correctness proof

In this section we prove the correctness of an RCA(n). To facilitate the proof, we use an
equivalent recursive definition of RCA(n). The recursive definition is as follows.

Basis: an RCA(1) is simply a Full-Adder. Step: a recursive description of RCA(n), for
n > 1, is depicted in Figure 8.2.
The following claim deals with the correctness of RCA(n).

Claim 8.1 RCA(n) is a correct implementation of ADDER(n).
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Bln—1 Aln—1 Bn—2:0] An-—2:0]
L fr g

FA,_1 RCA(n — 1)

C S

L

C[n] S[n—=1] C[n—-1] S[n—2:0]

o]

Figure 8.2: A recursive description of RCA(n).

Proof: The proof is by induction on n. The induction basis, for n = 1, follows directly
from the definition of a Full-Adder. The induction step is proved as follows.
The induction hypothesis, for n — 1, is

(Aln —2:0]) +(B[n—2:0)) + C[0] = 2" ' - Cn — 1] + (S[n — 2 : 0]). (8.2)
The definition of a Full-Adder states that
An—1+Bn—1+Cn—1=2-C[n] + Sn — 1]. (8.3)
Multiply Equation [8.3] by 2"t to obtain
2" A —1]+2"1Bn—1]+2""-Cln—1]=2"-C[n]+2""-Sn—1].  (84)

Note that 27! - Aln — 1] + (A[n—2:0]) = (A[n—1:0]). By adding Equations 8.2
and 8.4 we obtain:

2" L.Cln—1]+(Aln — 1: 0])+(Bln — 1: 0])+C[0] = 2"-C[n]+2""*-Cln—1]+(S[n — 1 : 0]).

Cancel out 2"~! - C[n — 1], and the claim follows. O

8.2.2 Delay and cost analysis

The cost of an RCA(n) satisfies:

c(RCA(n)) = n - c(FA) = O(n).
The delay of an RCA(n) satisfies

d(RCA(n)) =n-d(FA) = O(n).

The answer to Question 8.2 implies that the asymptotic cost of RCA(n) is optimal, but
its delay is exponentially far away from the optimum delay. The clock rates in modern
microprocessors correspond to the delay of 15-20 gates (in more aggressive designs, the
critical paths are even shorter). Most microprocessors easily add 32-bit numbers within one
clock cycle. Obviously, adders in such microprocessors are not Ripple Carry Adders. In the
rest of the chapter we present faster ADDER(n) designs.
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8.3 Carry bits

We now define the carry bits associated with the addition
(Aln —1:0)) +(Bn—1:0]) + C[0] = (S[n —1:0]) + 2" - Cn]. (8.5)

Our definition is based on the values of the signals C'[n — 1 : 1] of an RCA(n). This
definition is well defined in light of the Simulation Theorem of combinational circuits.

Definition 8.3 The carry bits Cln : 0] corresponding to the addition in Eq.[8.5 are defined
as the values of the stable signals Cln : 0] in an RCA(n).

Note that there are n+ 1 carry-bits associated with the addition defined in Equation
these bits are indexed from zero to n. The first carry bit C[0] is an input, the last carry bit
Cln] is an output, and the remaining carry bits C'[n — 1 : 0] are internal signals.

We now discuss a few issues related to the definition of the carry bits and binary addition.

8.3.1 Redundant and non redundant representation

Consider Eq. 85 and let 2 = (A) + (B) + C[0]. Equation 8.5 means that the sum z admits
two representations. The representation of x on the right hand side is the standard binary
representation. This representation is non-redundant. This means that every number that
is representable by n + 1 bits has a unique representation. (Note that we need to restrict
ourselves to n+ 1 bits, otherwise leading zeros create multiple representations. For example:
1, 01, and 001 are different representations of the same number).

One nice characteristic of non-redundant representation is that comparison is easy. Sup-
pose that X[n — 1 : 0] is a binary representation of x and that Y[n — 1 : 0] is a binary
representation of y. If we wish to check if x = y, all we need to do is check if the binary
strings X and Y are identical.

The left hand side represents the same value represented by C[n] and S[n — 1 : 0].
However, on the left hand side we have two binary strings and a carry-in bit. Given z, there
are many possible combinations of values of (A4), (B) and C[0] that represent z. For example:
8=4+3+1andalso8=5+3+0.

We refer to such a representation as redundant representation. Comparison of values
represented in redundant representation is not as easy as it is with non-redundant represen-
tation. For example, assume that

x:/TJré
7 =A+ B

It is possible that * = 2’ even though A # A’ and B # B’. Namely, in redundant rep-
resentation inequality of the representations does not imply inequality of the represented
values.

Some of you might wonder at this point whether redundant representations are useful at
all. We just saw that redundant representation makes comparison non-trivial. The answer is
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that redundant representation is most useful. Probably the most noted application of redun-
dant representation is fast multiplication. In fast multiplication, redundant representation
is used for fast (redundant) addition.

We summarize this discussion by noting that an alternative way to interpret an RCA(n)
(or an ADDER(n), in general) is to say that it translates a redundant representation to a
non-redundant binary representation.

8.3.2 Cone of adder outputs
The correctness proof of RCA(n) implies that, for every 0 <i <n — 1,
(Afi: 0]) + (B[i : 0]) + C[0] = 2" - C[i + 1] + (S[i : 0]). (8.6)
Equation 8.6 implies that, for every 0 < i <n — 1,
(S[i : 0]) = mod({Ali : 0]) + (B[i : 0]) + C[0],2""1).

These equations imply that the cone of each of the outputs C[i 4+ 1] and S[i] is the set of
inputs corresponding to Ai : 0] | B[i : 0] | C[0] (see the following question).

Question 8.3 Prove that the cone of each of the outputs C[i+ 1] and S[i] consists of 2i + 1
inputs corresponding to Ali : 0]|J B[i : 0] J C[0].

8.3.3 Reductions between sum and carry bits
The correctness of RCA(n) implies that, for every 0 <i <n —1,

S[i] = xor(A[i], Bi], C[i]). (8.7)
This immediately implies that, for every 0 <i¢ <n —1,

Ci] = xor(Ali], BJi], S[i]). (8.8)

Equations 8.7 and 8.8 imply constant-time linear-cost reductions between the problems
of computing the sum bits S[n — 1 : 0] and computing the carry bits C[n — 1 : 0]. (This
reduction uses the addends A and é) The task of computing the sum bits is the task of
an adder. In an RCA(n), the carry bit C[i] is computed first, and then the sum bit S|[i]
is computed according to Eq. 8.7. We will later design an asymptotically optimal adder
that first computes all the carry bits and then obtains the sum bits from the carry-bits by
applying Eq.

Question 8.4 Prove Equation|8.8.

8.4 Conditional Sum Adder

A Conditional Sum Adder is a recursive adder design that is based on divide-and-conquer.
One often uses only one “level” of recursion. Namely, three adders with input length n/2
are used to construct one adder with input size n.



84 CHAPTER 8. ADDITION

8.4.1 Motivation

The following “story” captures the main idea behind a conditional sum adder.

Imagine a situation in which Alice positioned on Earth holds the strings A[k—1 : 0], B[k—
1:0],CI0]. Bob, stationed on the Moon holds the strings Ajn —1: k], Bjn—1 : k]. The goal
of Alice and Bob is to jointly compute the sum (A[n —1:0]) + (B[n —1:0]) + C[0]. They
don’t care who holds the sum bits and C[n], as long as one of them does. Now, sending
information from Alice to Bob is costly. The first question we pose is: how many bits must
Alice send to Bob? After a short thought, Alice figures out that it suffices to send C|[k]
to Bob. Alice is happy since she only needs to pay for sending a single bit (which is a big
savings compared to sending her 2k + 1 bits!).

Unfortunately, sending information from Alice to Bob takes time. Even at the speed of
light, it takes a second, which is a lot compared to the time it takes to compute the sum.
Suppose Bob wants to finish his task as soon as possible after receiving C[k] from Alice. The
second question we pose is: what should Bob do during the second it takes C[k] to reach
him? Since the message has only two possible values (one or zero), an industrious Bob will
compute two sums; one under the assumption that C[k] = 0, and one under the assumption
that C[k] = 1. Finally, when C[k] arrives, Bob only needs to select between the two sums
he has pre-computed.

8.4.2 Implementation

A Conditional Sum Adder is designed recursively using divide-and-conquer. A cSA(1) is
simply a Full-Adder. A csA(n), for n > 1 is depicted in Figure[8.3. The input is partitioned
into a lower part consisting of the bits in positions [k — 1 : 0] and an upper part consisting
of the bits in positions [n — 1 : k]. The lower part (handled by Alice in our short tale) is
fed to a csA(k) to produce the sum bits S[k — 1 : 0] and the carry bit C[k]. The upper part
(handled by Bob) is fed to two CSA(n — k) circuits. The first one is given a carry-in of 0 and
the second is given a carry-in of 1. These two CSA(n — k) circuits output n — k + 1 bits each.
A multiplexer selects one of these outputs according to the value of C[k] which arrives from
the lower part.

Question 8.5 Prove the correctness of the CSA(n) design.

8.4.3 Delay and cost analysis

To simplify the analysis we assume that n = 2°. To optimize the cost and delay, we use
k=n/2.

Let d(FA) denote the delay of a Full-Adder. The delay of a CcSA(n) satisfies the following
recurrence:

B d(FA) ifn=1
d(csa(n)) = {d(cSA(n/Q)) + d(MUX) otherwise.
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Bn—1:k] An-—1:k] Bln—1:k] An-—1:k] Blk—1:01 Alk—1:0]
/‘/n—k /‘/n—k /‘/n—k /‘/n—k /‘/k /‘/k Clo]
1 0
csA(n — k) csA(n — k) csa(k)
C1[n}~51[n—1:k] Co[n]-So[n—l:k‘]
n—k+1 n—k+1 k
| | Clk]
1 0
MUX(n —k+1)
/\/n—k-l-l
Slk—1:0]

Cln] - S[n—1:k]

Figure 8.3: A Conditional Sum Adder cSA(n).

It follows that the delay of a CsA(n) is

d(csa(n)) = £ - d(MUX) + d(FA)
= O(logn).

Let ¢(FA) denote the cost of a Full-Adder. The cost of a CSA(n) satisfies the following
recurrence:

c(FA) ifn=1
3-c(csa(n/2)) + (n/2+41) - ¢(MUX) otherwise.

c(CsA(n)) = {

Those of you familiar with the master theorem for recurrences can use it to solve this
recurrence. We solve this recurrence from scratch.
To simplify notation, we ignore constant and solve the recurrence

B 3-c(g)+n ifn>1
(n) = {1 ifn=1. (89)

We open two steps of the recurrence to get a feeling of how the different terms grow.
c(n) :3-c<g) +n
n n
S (e(3) )
c 1 + 5 +n
n 3
—=32. <_) B
c 1 +n ( + 2)

We now have a good guess (which can be proved by induction) that

c(n):3f~c(%)+n. (1+§+~-~+(§)H>.
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The recursion ends when ¢ = log, n. It follows that

c(n) = 3los2n 4y .

— @(nlog2 3)'

Since log, 3 ~ 1.58, we conclude that a CSA(n) is rather costly - although, for the time
being, this is the only adder we know whose delay is logarithmic. We do point out that the
CsA(n) design does allow us to use three half-size adders (i.e., adders with input length n/2)
to implement a full-size adder (i.e., input length n).

Question 8.6 (effect of fanout on csa(n)) The fanout of the carry-bit C[k] isn/2+1 if
k = n/2. Suppose that we associate a delay of logy(f) with a fanout f. How would taking
the fanout into account change the delay analysis of a CSA(n)?

Suppose that we associate a cost O(f) with a fanout f. How would taking the fanout into
account change the cost analysis of a CSA(n)?

8.5 Compound Adder

The Conditional Sum Adder is a divide-and-conquer design that uses two adders in the upper
part, one with a zero carry-in and one with a one carry-in. This motivates the definition of an
adder that computes both the sum and the incremented sum. Surprisingly, this augmented
specification leads to an asymptotically cheaper design. We refer to such an adder as a

Compound Adder.

Definition 8.4 A Compound Adder with input length n is a combinational circuit specified
as follows.

Input: An—1:0],Bn—1:0] € {0,1}".
Output: S[n:0],T[n:0] € {0,1}"+.

Functionality:

-,

A) +
A +

{
(

)
)

{
{

{
{

)

)+ 1.

o G

N Uy

Note that a Compound Adder does not have carry-in input. To simplify notation, the
carry-out bits are denoted by S[n] for the sum and by T'[n] for the incremented sum.
We denote a compound adder with input length n by COMP-ADDER(n).
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Bn—1:k] An-—1:k Blk—1:0] Alk—1:0]
/‘/n—k /‘/n—k /‘/kj /‘/k
COMP-ADDER(n — k) COMP-ADDER(k)
n—k+1 n—k+1 k+1 kE+1
T7[n : k] S”[n : K] T'[k : 0] S'[k - 0]
. T'[k] S'[k]
| | k k
1 0 1 0
MUX(n —k+1)— Tk |MUx(n—k+ 1) 5K
Tk—1:0 Sk-1:0]
/\/n—k—i-l %n—k—i—l
Tn : k] S[n : k]

Figure 8.4: A Compound Adder COMP-ADDER(n).

8.5.1 Implementation

We apply divide-and-conquer to design a COMP-ADDER(n). For n = 1, we simply use a
Full-Adder and a Half-Adder (one could optimize this a bit and combined the Half-Adder

and the Full-Adder to reduce the constants). The design for n > 1 is depicted in Figure 8.4!

Example 8.1 Consider a COMP-ADDER(4) with input A[3 : 0] = 0110 and B[3 : 0] = 1001.
The lower part computes S'[2 : 0] = 011 and T'[2 : 0] = 100. The two lower bits of the
outputs are simply S[1 : 0] = S’[1 : 0] = 11 and T[1 : 0] = T'[1 : 0] = 00. The upper
part computes S”[4 : 2] = 011 and T"[4 : 2] = 100. The output S[4 : 2] is selected to be
S"[4 : 2] since S'[2] = 0. The output T[4 : 2] is selected to be T"[4 : 2] since T'[2] = 1. Hence
S[4: 0] = 01111 and T[4 : 0] = 10000.

Question 8.7 Present an example for COMP-ADDER(4) in which T[4 : 2] is selected to be
S"[4 2 2]. Is it possible that S'[k] =1 and T'[k] = 02 Which combinations of S'[k] and T'[k]
are possible?

8.5.2 Correctness

We prove the correctness of COMP-ADDER(n).

Claim 8.2 The COMP-ADDER(n) design depicted in Figure[8.4 is a correct adder.

Proof: The proof is by induction on n. The case of n = 1 follows from the correctness of

a Full-Adder and a Half-Adder. We prove the induction step for the output S[n : 0]; the
correctness of T'[n : 0] can be proved in a similar fashion and is left as an exercise.
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The induction hypothesis implies that
(S'[k:0]) = (A[k —1:0]) + (B[k — 1:0]). (8.10)
Note that (i) the output S[k — 1 : 0] equals S’[k — 1 : 0], and (ii) S’[k] equals the carry bit
C'[k] corresponding to the addition (A[k —1:0]) + (B[k —1:0]).
The induction hypothesis implies that
(S"[n: k) =(Aln—1:Kk]) +(Bn—1:k])
(T"[n: k]) = (A[n — 1 : k]) + (B[n — 1 : k]) + 2~.
It follows from Equations [8.10 and that
(S"[n: k) + (S'[k:0]) =(Aln—1:0]) + (Bn—1:0]) (8.12)
We consider two cases of the carry bit C[k]: C[k] =0 and C[k] = 1.
1. If C[k] =0, then S’[k] = 0. Equation then reduces to
(Aln —1:0]) +(Bn—1:0]) = (S"[n: k]) + (S'[k —1:0])
= (S[n: k]) + (S[k —1:0]) = (S[n: 0]).

(8.11)

2. If C[k] = 1, then S'[k] = 1. Equation then reduces to
(Aln —1:0]) +(Bln—1:0]) = (S"[n: k]) + 2" + (S'[k — 1:0])
= (T"[n: k]) + (S[k —1:0]) = (S[n: 0]).

In both cases, the output S[n : 0] is as required, and the claim follows. a

8.5.3 Delay and cost analysis

To simplify the analysis we assume that n = 2°. To optimize the cost and delay, we use
k=n/2.
The delay of a COMP-ADDER(n) satisfies the following recurrence:

d(FA if n=1

d(COMP-ADDER(n)) = (74) nn ‘

d(COMP-ADDER(n/2)) + d(MUX) otherwise.

It follows that the delay of a COMP-ADDER(n) is
d(COMP-ADDER(n)) = £ - d(MUX) + d(FA)
= O(logn).

Note that the fanout of S’[k] and T"[k] is n/2+ 1. If the effect of fanout on delay is taken
into account, then, as in the case of CSA(n), the delay is actually ©(log®n).

The cost of a COMP-ADDER(n) satisfies the following recurrence:

c(FA) + c(HA) ifn=1

¢(COMP-ADDER(n)) = {2 - ¢(cOMP-ADDER(n/2)) + (n/2 + 1) - ¢(MUX) otherwise.

We are already familiar with such a recurrence and conclude that ¢(COMP-ADDER) =
O(nlogn).
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8.6 Summary

We started by defining binary addition. We reviewed the Ripple Carry Adder. We proved
its correctness rigorously and used it to define the carry bits associated with addition.

We showed that the problems of computing the sum bits and the carry bits are equivalent
modulo a constant-time linear-cost reduction. Since the cost of every adder is €(n) and the
delay is Q(logn), we regard the problems of computing the sum bits and the carry bits as
equivalently hard.

We presented an adder design called Conditional Sum Adder (csa(n)). The csA(n)
design is based on divide-and-conquer. Its delay is asymptotically optimal (if fanout is not
taken into account). However, its cost is rather large, approximately © (n'°®).

We then considered the problem of simultaneously computing the sum and incremented
sum of two binary numbers. We presented a design called Compound Adder (COMP-ADDER(n)).
This design is also based on divide-and-conquer. The asymptotic delay is also logarithmic,
however, the cost is ©(n - logn).

This result is rather surprising: a COMP-ADDER(n) is much cheaper asymptotically than
a CSA(n)! You should make sure that you understand the rational behind this magic. More-
over, by adding a line of multiplexers controlled by the carry-in bit C[0], one can obtain an
ADDER(n) from a COMP-ADDER(n). So the design of a COMP-ADDER(n) is a real improve-
ment over the CSA(n).

In the next chapter we present an adder design that is asymptotically optimal both with
respect to delay and with respect to cost. Moreover, the asymptotic delay and cost of this
asymptotically optimal design is not affected by considering fanout.
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Chapter 9

Fast Addition

In this chapter we present an asymptotically optimal adder design. The method we use is
called parallel prefix computation. This is a quite general method and has many applications
besides fast addition.

9.1 Reduction: sum-bits —— carry-bits

In this section we review the reduction (presented in Section [8.3.3) of the task of computing
the sum-bits to the task of computing the carry-bits.

The correctness of RCA(n) implies that, for every 0 <i <n —1,
S[i| = xors(Ali], B[i], Cli)).

This implies a constant-time linear-cost reduction of the task of computing S[n — 1 : 0] to
the task of computing C[n — 1 : 0]. Given C[n — 1 : 0] we simply apply a bit-wise XOR of
C'[i] with xOR(A[i], B[i]). The cost of this reduction is 2n times the cost of a XOR-gate and
the delay is 2 - d(XOR).

We conclude that if we know how to compute C[n — 1 : 0] with O(n) cost and O(logn)
delay, then we also know how to add with O(n) cost and O(logn) delay.

9.2 Computing the carry-bits

In this section we present a reduction of the problem of computing the carry-bits to a prefix

computation problem (we define what a prefix computation problem is in the next section).
Consider the Full-Adder FA; in an RCA(n). The functionality of a Full-Adder implies that

C[i + 1] satisfies:

0 if Afi| + Bli] + C]i]

1 if Ali] + B[i] + C]i]

IV IA

Cli+1) = { ; (9.1)

The following claim follows directly from Equation (9.1.

91
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Claim 9.1 For every 0 <i<mn—1,

Ali]+ Bli] =0 = C[i+1]=0
Ali]+Bli]=2 = C[i+1]=1
Ali]+ Bli|=1 = C[i+1] =C[i.

Claim 9.1 implies that it is easy to compute C[i + 1] if A[i] + B[i] # 1. It is the case
Ali] + B[i] = 1 that creates the effect of a carry rippling across many bit positions.

The following definition is similar to the “kill, propagate, generate” signals that are often
described in literature.

Definition 9.1 The string o[n —1: —1] € {0,1,2}""! is defined as follows:

[.]A 2. C[0] ifi=—1
oli| =

Ali]+ B[i] ifie€[0,n—1].
Note that o[i] = 0 corresponds to the case that the carry is “killed”; o[i] = 1 corresponds to
the case that the carry is “propagated”; and oli] = 2 corresponds to the case that the carry
is “generated”. Instead of using the letters k, p, g we use the letters 0,1,2. (One advantage
of our notation is that this spares the need to define addition over the set {k,p, g}.)

9.2.1 Carry-Lookahead Adders

Carry-Lookahead adders are hierarchical designs in which addends are partitioned into
blocks. Loosely speaking, for each block there is a separate carry-lookahead generator that
is input the corresponding block of ¢ and a carry-in bit. This generator computes the carry
bits corresponding to the block as well as a “combined” o of this block (a (G, P) pair for
the block).

Carry-lookahead Adders are constructed in a “tree-like” manner by building a hierarchy
of such carry-lookahead generators. Most texts describe only two levels of such a hierarchy
although it is possible to build O(logn) levels (to obtain a linear-cost logarithmic-delay
adder). Since information flows both from the leaves to the root and from the root to
the leaves, block diagrams of Carry-lookahead Adders contain directed cycles. Only a more
detailed look at the dependencies between inputs and outputs in each block shows that these
cycles do not translate to cycles in realizations of Carry-lookahead Adders. (Hence these are
combinational circuits after all.)

To avoid this complication, we do not discuss here how the carry-lookahead generators
are organized in a Carry-Lookahead Adders. Instead, we focus on the computation in single
carry-lookahead generator. We prove that (i) the delay is logarithmic in the block size (if
fanout is not considered), and (ii) the cost grows cubically as a function of the block size.
This is why the block size in Carry-Lookahead Adders is limited to a small constant (i.e., 4
bits).

Before we specify carry-lookahead generators, we state the following claim that charac-
terizes when the carry bit C[i + 1] equals 1.
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Claim 9.2 For every —1 <1< n —1,
Cli+1]=1 = 35 <i :oofi:j]=1"7.2

Example 9.1 Consider the addition with inputs A[3 : 0] = 0101, B[3 : 0] = 0110, and
C[0] = 1. The vector o[3 : —1] that corresponds to these inputs is o[3 : —1] = 02112. The
vector of carry bits that corresponds to this addition is C[3 : 0] = 1111. Consider the bit
C12]. According to Claim 9.2 C[2] = 1 simply because o[l : —1] = 112 (here i = 1 and
j = —1). Now consider the bit C[3]. According to the claim C[3] = 1 simply because o[2] = 2
(here i =j =2).

Proof: We first prove that o[i : j] = 17 -2 = CJi + 1] = 1. The proof is by induction
on ¢ — j. In induction basis, for i — j = 0 is proved as follows. Since i = 7, it follows that
oli] = 2. We consider two cases:

e If i = —1, then, by the definition of o[—1], it follows that C[0] = 1.
e If i > 0, then A[i] + BJ[i] = 2. Hence, by Claim (9.1 C[i + 1] = 1.

The induction step is proved as follows. Note that ofi : j] = 1°77 . 2 implies that
oli —1:j] =17771.2. We apply the induction hypothesis to o[i — 1 : j] and conclude that
Cli] = 1. Since o[i] = 1, by Claim Cli + 1] = C]i], and hence, C[i + 1] = 1, as required.

We now prove that C[i +1] =1 = 3j <i:0li:j] =17 -2, The proof is by induction
on i. The induction basis, for i = —1, is proved as follows. If C[0] = 1, then o[—2] = 2. We
set 7 =4, and satisfy the requirement.

The induction step is proved as follows. Assume C[i + 1] = 1. Hence,

Ali] + B[i] +C[i] > 2.
———

oi]
We consider three cases:
e If o[i] = 0, then we obtain a contradiction (since C[i] is not greater than 1).
o If o[i] = 2, then we set j = i.
e If o[i] = 1, then C[i] must equal 1.

We conclude that

Cli] =1 tod Lyp Y <i:ofi-1:4]=1""1.2
! Jj<i:oli:j]=1"7-2
This completes the proof of the claim. O

We are now ready to specify carry-lookahead generators.

Definition 9.2 A carry-lookahead generator with block length n is a combinational circuit
specified as follows.
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Input: oln —1:—1] € {0,1,2}""!,

Output: C[n: 1] € {0,1}".

Functionality:

Cli+1] =1 = 3j<i:ooli:jl=177.2 (9.2)

At this point, many readers might be anxious to see a concrete definition of how oli] €
{0,1,2} is represented. There are, of course, many ways to represent elements in {0, 1,2}
using bits; all such reasonable methods use 2 — 3 bits and incur constant cost and delay. We
describe a few options for representing {0, 1,2}.

1. One could, of course, represent o[i] by the pair (A[é], B[i]), in which case the incurred
cost and delay are zero.

2. Binary representation could be used. In this case o[i] is represented by a pair x[1 : 0].
Since the value 3 is not allowed, we conclude that z[0] signifies whether o[i] = 1.
Similarly, z[1] signifies whether o[i] = 2. The cost and delay in computing the binary
representation of o[i] from A[i] and Bi] is the cost and delay of a Half-Adder.

3. l-out-of-3 representation could be used. This requires a NOR-gate, a XOR-gate, and an
AND-gate.

Regardless of the representation that one may choose to represent o[i], note that one can
compare o[i| with 1 or 2 with constant delay and cost. In fact, in binary representation and
1-out-of-3 representation, such a comparison incurs zero cost and delay.

Implementation. Figure depicts how the carry-bit C[i 4+ 1] is computed in a carry-
lookahead generator. For every —1 < j < 7, one compares the block o[i : j] with 177 - 2.
This comparison is depicted in the left hand side of Fig.[9.1. Each symbol oli], ..., o) + 1]
is compared with 1 and the symbol o[j] is compared with 2. The results of these i — j + 1
comparisons are fed to an AND-tree. The output is denoted by oli : j] )

The outcomes of the i + 2 comparisons of blocks o[i : j] with 1" -2 (for j = —1,...,4)
are fed to an OR-tree. The OR-tree outputs the carry-bit C[i + 1].

Cost and delay analysis. The delay associated with computing C[i 4+ 1] in this fashion
is clearly logarithmic. Assume that the comparisons are for free. It follows that the cost of
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oli] olj +1] alj] oli]

’ OR-tree(i + 2)

Cli+1]

AND-tree(i — j + 1)

olitj] =177 .2

Figure 9.1: Computing the carry-bit C[i 4+ 1] in a carry-lookahead generator.

computing the carry bits C'[n : 1] in the fashion depicted in Fig 9.1 is

i c(lookahead C[i 4 1]) = i (i c(AND-tree(i — j + 1)) + c(OR-tree(i + 2)))

5 (z o —]>)
:Z@(ﬁ)
—0(n*)

We conclude that the cost per block is cubic in the length of the block.

9.2.2 Reduction to prefix computation

The main disadvantage of the carry-lookahead generator implementation depicted in Fig. 9.1
is that disjoint circuits are used for computing each carry bit. For example, if o[15 : 2] =
13 .2, then we can immediately conclude that ofi : 2] = 172 - 2, for every 2 < i < 15.
Nevertheless, in a carry-lookahead generator, separate circuits “repeat” this computation.
Our goal is therefore to reduce cost by sharing. For this purpose we start by presenting a
simplified form of the problem of computing the carry bits.

Definition 9.3 The dyadic operator % : {0,1,2} x {0,1,2} — {0,1,2} is defined by the
following table.
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* 1012
010(0]0
110]1]2
201222

We use the notation a x b to denote the result of applying the function * to a and b.

Claim 9.3 For every a € {0,1,2}:

Oxa=20
lxa=a
2%a = 2.

Claim 9.4 The function * is associative. Namely,
Va,b,c € {0,1,2} : (axb)xc=ax* (bxc).
Question 9.1 (i) Prove claim[9.4. (ii) Is the function * commutative?

We refer to the outcome of applying the * function by the x-product. We also use the
notation

wli 2§ = oli] % - - % o[j].

Note that if i = j then n[i : j] = o[i]. Also if i < j, then 7[i : j] = 1.
Associativity of * implies that for every i > j > k:

wli k| =mxli:j+ 1] =x[j: k]

The reduction of the computation of the carry-bits to a prefix computation is based on the
following claim.

Claim 9.5 For every —1 <1 <n—1,

Cli+1=1 = wli s —1] = 2.

Proof: From Claim 9.2} it suffices to prove that
3j<i:ofi:j]=177-2 = mli:—1] = 2.
(=) Assume that o[i : j] = 1°77 - 2. It follows that
wi: j] = 2.
If j = —1 we are done. Otherwise, by associativity and by Claim [9.3|it follows that

wli: =1 =nli:j]*nw[j —1:—1]
=

= 2.
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(<) Assume that 7[i : —1] = 2. If, for every ¢ < i, o[f] # 2, then «[i : —1] # 2, a
contradiction. Hence
{¢ : olfj]=2and —1<0<3i} # 0.
Let
¢* = max {l € [-1,i] : o[f] =2}.

If ¢* = i, then o[i] = 2 and we are done. So we assume that that ¢* < i. We claim that
olj] = 1, for every ¢* < j <.

By the definition of ¢*, o[j] # 2, for every ¢* < j <. If o[j] = 0, for £* < j < i, then
w[i: j] =0, and then 7[i : —1] = 7[i : j]*7w[j — 1 : —1] = 0, a contradiction.

Since oli : ¢* + 1] = 1" we conclude that o[i : j] = 177 - 2, and the claim follows. O
A prefix computation problem is defined as follows.

Definition 9.4 Let ¥ denote a finite alphabet. Let opP : ¥? — ¥ denote an associative
function. A prefix computation over ¥ with respect to OP is defined as follows.

Input z[n —1:0] € X"
Output: y[n —1:0] € X" defined recursively as follows:

— z[0]
yli + 1] = op(z[i + 1], y[7]).

Note that y[i] can be also expressed simply by

y; = OP; 1 (zli], x[i — 1], ..., 2[0]).

Claim 9.5 implies a reduction of the problem of computing the carry-bits C[n : 1] to the
prefix computation problem over {0, 1,2} with respect to the associative operator .

9.3 Parallel prefix computation

In this section we present a general asymptotically optimal circuit for the prefix computation
problem.

As in the previous section, let oP : ¥? — X denote an associative function. We do
not address the issue of how values in X are represented by binary strings. We do assume
that some fixed representation is used. Moreover, we assume the existence of a OP-gate that
given representations of a,b € ¥ outputs a representation of Op(a, b).

Definition 9.5 A Parallel Prefix Circuit, PPC-0P(n), is a combinational circuit that com-
putes a prefix computation. Namely, given input x[n—1: 0] € X", it outputs yln—1: 0] € X",
where

y; = OP; 1 (x[t], i — 1],. .., x[0]).

Example 9.2 A Parallel Prefiz Circuit with (i) the alphabet ¥ = {0, 1} and (i1) the function
OP = OR 1is ezactly the PPC-OR(n) circuit from Definition 0.3,
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Example 9.3 Consider ¥ = {0, 1,2} and op = x. The Parallel Prefiz Circuit with (i) the
alphabet ¥ = {0, 1,2} and (ii) the function OP = % can be used (according to Claim 9.5) to
compute the carry-bits.

Our goal is to design a PPC-OP(n) using only Op-gates. The cost of the design is the
number of OP-gates used. The delay is the maximum number of OP-gates along a directed
path from an input to an output.

Question 9.2 Design a PPC-OP(n) circuit with linear delay and cost.
Question 9.3 Design a PPC-OP(n) circuit with logarithmic delay and quadratic cost.

Question 9.4 Assume that a design C(n) is a PPC-OP(n). This means that it is comprised
only of OP-gates and works correctly for every alphabet ¥ and associative function OP : X% —
3. Can you prove a lower bound on its cost and delay?

9.3.1 Implementation

In this section we present a linear-cost logarithmic-delay ppc—OpP(n) design. The design
is recursive and uses a technique that we name “odd-even” since even indexed inputs and
outputs are handled differently than odd indexed inputs and outputs.

The design we present is a recursive design. For simplicity, we assume that n is a power of
2. The design for n = 2 simply outputs y[0] < z[0] and y[1] « opP(z[0], z[1]). The recursion
step is depicted in Figure [9.2. Adjacent inputs are paired and fed to an op-gate. The n/2
outputs of the op-gates are fed to a PPC-0P(n/2). The outputs of the PPC-0OP(n/2) circuit
are directly connected to the odd indexed outputs, namely, y[2i + 1] < 3'[i]. Observe that
wires carrying the inputs with even indexes are drawn (or routed) over the PPC-OP(n/2)
box; these “even indexed” wires are not part of the PPC-0OP(n/2) design. The even indexed
outputs (for ¢ > 0) are obtained as follows: y[2i] < opr(z[2i],y'[i — 1]).

9.3.2 Correctness

Claim 9.6 The design depicted in Fig.|9.2 is correct.

Proof: The proof of the claim is by induction. The induction basis holds trivially for
n = 2. We now prove the induction step. Consider the PPC-0OP(n/2) used in a PPC-OP(n).
Let 2'[n/2 — 1 : 0] and 3'[n/2 — 1 : 0] denote the inputs and outputs of the PPC-OP(n/2),
respectively. The ith input 2'[i] equals oP(z[2i+1], 2[2i]). By associativity and the induction
hypothesis, the ith output y[i] satisfies:

y'li] = oPia(2'[d], ..., 2'(0])
— op; 1 (0P (a[2i + 1],2[21]) .., o (a[1], 2[0])
= OP2i+2($[2i + 1]7 tet ,ZL’[OD
Since y[2i + 1] equals /[i], it follows that the odd indexed outputs y[1],y[3],...,y[n — 1] are

correct. Finally, y[2i] equals op(z[2i],y'[i — 1]), and hence y[2i] = op(z[2i],y[2i — 1]). Tt
follows that the even indexed outputs are also correct, and the claim follows. O
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z[n —1] z[n — 2] z[n — 3] z[n — 4] z[3] z[2] z[1] z[0]
OP-gate OP-gate OP-gate OP-gate
' [n/2 — 1] z'[n/2 — 2] z'[1] z'[0]
Vin/2 1] yinja-2 _[PPOOP(/2) )y v [0
OP-gate OP-gate OP-gate
y[n — 1] yln — 2] yln — 3] yln — 4] y[3] y[2] y(1] y[0]

Figure 9.2: A recursive design of PPC-0P(n). (The even indexed wires x[0],x[2],...are pass
above the PPC-0OP(n/2) box only to simplify the drawing. These wires are not inputs/outputs
of the PPC-0OP(n/2) sub-circuit.)
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9.3.3 Delay and cost analysis

The delay of the PPC-OP(n) circuit satisfies the following recurrence:

d(opr-gate) ifn=2
d(ppc-0P(n/2)) + 2 - d(OP-gate) otherwise.

d(pPC-OP(n)) = {
If follows that
d(ppc-0P(n)) = (2logn — 1) - d(OP-gate).

The cost of the PPC—-OP(n) circuit satisfies the following recurrence:

c(op-gate) ifn=2
c(ppc-0P(n/2)) + (n — 1) - c(OP-gate) otherwise.

c(ppCc-0OP(n)) = {

Let n = 2%, it follows that

Z(Qi — 1) - ¢(op-gate) + c(op-gate)
Z_Qn —1—-(142))—(k—1)+1) - c(or-gate)
= (2n —logn — 2) - c(OP-gate).

c¢(PPC-OP(n))

Corollary 9.7 If the delay and cost of an OP-gate is constant, then

d(ppc-opr(n)) = O(logn)
c(pPc-0P(n)) = O(n).

Corollary [9.7/implies that PPC-0OP(n) with ¥ = {0, 1} and OP = OR is an asymptotically

optimal PPC-OR(n). It also implies that we can compute the carry-bit corresponding to an
addition in linear cost and logarithmic delay.

Question 9.5 In this question we consider fanout in the PPC-OP(n) design and suggest a
way to reduce the fanout so that it is at most two.

e What is the mazimum fanout in the PPC-OP(n) design?

e Show that if a buffer is inserted in every branching point of the PPC-OP(n) design
(such branching points are depicted by filled circles), then the fanout is constant. (A
buffer is a combinational circuit that implements the identity function. A buffer is
often implemented by cascading two inverters.)

e By how much does the insertion of buffers increase the cost and delay?
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9.4 Putting it all together

In this section we assemble an asymptotically optimal adder. The stages of the construction
are as follows.

Compute o[n —1: —1]: In this step the symbols o[i] € {0,1,2} are computed. This step
can be regarded as an encoding step; the sum A[i] + B[i] is encoded to represent
the corresponding value in {0,1,2}. The cost and delay of this step depend on the
representation used to represent values in {0, 1,2}. In any case, the cost and delay is
constant per o[i], hence, the total cost is O(n) and the total delay is O(1).

PPC— * (n): In this step the products 7[i : —1] are computed from ofi : —1], for every
i € [n—1:0]. The cost and delay of this step are O(n) and O(logn), respectively.

Extraction of C[n : 1]: By Claim (9.5, it follows that C[i+ 1] = 1 iff 7[¢ : —1] = 2. In this
stage we compare each product 7[i : —1] with 2. The result of this comparison equals
Cli + 1]. The cost and delay of this step is constant per carry-bit C[i + 1]. It follows
that the cost of this step is O(n) and the delay is O(1).

Computation of sum-bits: The sum bits are computed by applying
S[i] = xors(A[i], Bi], Cld]).

The cost and delay of this step is constant per sum-bit. It follows that the cost of this
step is O(n) and the delay is O(1).

By combining the cost and delay of each stage we obtain the following result.

Theorem 9.8 The adder based on parallel prefix computation is asymptotically optimal; its
cost 1s linear and its delay is logarithmic.

Remark 9.1 A careful reader may notice that cost can be reduced since it may not be needed
to compute XOR(A[i], B[i]) in the last stage. The reason is that in certain representations of
oli] (which?) this zor is is computed in the first stage.

9.5 Summary

In this chapter we presented an adder with asymptotically optimal cost and delay. The adder
is based on a reduction of the task of computing the sum-bits to the task of computing
the carry bits. We then reduce the task of computing the sum bits to a parallel prefix
computation problem.

A parallel prefix computation problem is the problem of computing op;(z[i — 1 : 0]), for
0 <14 < n—1, where OP is an associative operation. We present a linear cost logarithmic delay
circuit for the parallel prefix computation problem. We refer to this circuit as PPC—OP(n).
This design has two implications:
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e This design computes the product prefixes of the “carry generate-propagate-kill” sig-
nals corresponding to an addition. These product prefixes are translated to sum bits in
constant time and linear cost. Hence, an asymptotically optimal cost and delay adder
is obtained.

e This design is used to design an optimal cost and delay PPC—OR(n) circuit. This in
turn leads to optimal priority encoder designs (both unary and binary).

It is possible to design asymptotically optimal adders based on Carry-Lookahead Adders.
We chose not to describe it because the design is less systematic and is less general.



Chapter 10
Signed Addition

In this chapter we present circuits for adding and subtracting signed numbers that are
represented by two’s complement representation. Although the designs are obtained by very
minor changes of a binary adder designs, the theory behind these changes requires some
effort.

10.1 Representation of negative integers

We use binary representation to represent non-negative integers. We now address the issue
of representing positive and negative integers. Following programming languages, we refer to
non-negative integers as unsigned numbers and to negative and positive numbers as signed
numbers.

There are three common methods for representing signed numbers: sign-magnitude, one’s
complements, and two’s complement.

Definition 10.1 The number represented in sign-magnitude representation by A[n—1: 0] €
{0,1}" and S € {0,1} s
(=1) - (An —1:0)).

Definition 10.2 The number represented in one’s complement representation by A[n — 1 :
0] € {0,1}™ is
—(2"' = 1) Aln — 1] + (A[n — 2 : 0]).

Definition 10.3 The number represented in two’s complement representation by A[n — 1 :
0] € {0,1}" is
—2" 1 An — 1] + (A[n —2:0]).

We denote the number represented in two’s complement representation by A[n — 1 : 0] as
follows:

[Aln —1:0]] = =21 A[n — 1] + (A[n — 2: 0]).

2

We often use the term “a two’s complement number A[n — 1]” as an abbreviation of the
longer phrase “the number represented by A[n — 1 : 0] in two’s complement representation”.

103
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The most common method for representing signed numbers is two’s complement repre-
sentation. The main reason is that adding, subtracting, and multiplying signed numbers
represented in two’s complement representation is almost as easy as performing these com-
putations on unsigned (binary) numbers.

10.2 Negation in two’s complement representation

We denote the set of signed numbers that are representable in two’s complement represen-
tation using n-bit binary strings by T,,.

Claim 10.1
T, = {-2""Y -2t 41, 2m 1)

Question 10.1 Prove Claim![10.1

The following claim deals with negating a value represented in two’s complement represen-
tation.

Claim 10.2
—[A[n—1:0]] = INnv(A[n —1:0])] + 1.

Proof: Note that INV(A[i]) = 1 — Ai]. Hence,
[INV(A[n —1:0))] = =2"1 - iNv(A[n — 1)) + (INnv(A[n — 2 : 0]))

=2 (1 A= 1) + 31 - AL -2

n—2 n—2
= 2"y ot on T Al — 1] = > Afi])
. =0 =
1 :—[A‘[nr71:0]]
=—1—[An—-1:0]].

O
In Figure we depict a design for negating numbers based on Claim [10.2. The circuit

is input A and is supposed to compute the two’s complement representation of — [/_1] The

bits in the string A are first inverted to obtain A[n —1:0]. An increment circuit outputs
Cln] - Bln — 1 : 0] such that

(C[n]-Bn—1:0]) = (An—1:0]) + 1.
Such an increment circuit can be implemented simply by using a binary adder with one
addend string fixed to 0"~ ! - 1.
We would like to claim that the circuit depicted in Fig. [10.1 is correct. Unfortunately,

we do not have yet the tools to prove the correctness. Let us try and see the point in which
we run into trouble.
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Afn —1:0]
I
.
INC(n)
qum—im

Figure 10.1: A circuit for negating a value represented in two’s complement representation.

Claim [10.2/ implies that all we need to do to compute — [ff] is invert the bits of A and
increment. The problem is with the meaning of increment. The increment circuit computes:

(Aln—1:0]) + 1.
However, Claim [10.2 requires that we compute
[Aln—1:0]] +1.

Now, let C[n] - B[n — 1 : 0] denote the output of the incrementor. We know that

(C[n]-Bn—1:0]) =(An—1:0]) + 1.

One may suspect that if C'[n] = 1, then correctness might fail due to the “lost” carry-bit.
Assume we are “lucky” and C[n] = 0. In this case,

(Bjn—1:0)) =(An—1:0]) + 1.
Why should this imply that
[Bln—1:0]] = [A[n—1:0]] +1?

At this point we leave this issue unresolved. We prove a more general result in Theo-
rem [10.7. (Question 10.12 deals with the correctness of the circuit for negating two’s com-
plement numbers.) Note, however, that the circuit errs with the input Ajn—1:0] =1-0""1
The value represented by A equals —2"~. Inversion yields A[n —1: 0] = 0-1""2. Increment
vields C[n] =0 and Bln—1:0] =1-0""2 = A[n — 1:0]. This, of course, is not a counter-

example to Claim [10.2. It is an example in which an increment with respect to (A[n —1: 0])
is not an increment with respect to [A n—1: 0]] This is exactly the point which concerned
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us. A more careful look at this case shows that every circuit must err with such an input.
The reason is that — [A] ¢ T,. Hence, the negated value cannot be represented using an

n-bit string, and negation had to fail.
Interestingly, negation is easier with respect to the other two representations of signed
numbers.

Question 10.2 Propose circuits for negation with respect to other two representations of
signed numbers: sign-magnitude and one’s-complement.

10.3 Properties of two’s complement representation

Alternative definition of two’s complement representation. The following claim
follows immediately from the definition of two’s complement representation.

Claim 10.3 For every Ajn —1:0] € {0,1}"
mod({A), 2") = mod( [/q 2.

The importance of Claim [10.3 is that it provides an explanation for the definition of
two’s complement representation. In fact, one could define two’s complement representa-
tion based on the claim.Namely, represent z € [—2""! 2"~ — 1] by 2’ € [0,2" — 1], where
mod(zx,2") = mod(a’,2").

Question 10.3 Prove Claim|10.3.

Sign bit. The most significant bit A[n — 1] of a string A[n — 1 : 0] that represents a two’s
complement number is often called the sign-bit of A. The following claim justifies this term.

Claim 10.4
[An—1:0]]<0 <= An-1]=1

Question 10.4 Prove Claim |10.4.

Do not be misled by the term sign-bit. Two’s complement representation is not sign-
magnitude representation. In particular, the prefix A[n—2 : 0] is not a binary representation
of the magnitude of [A[n — 1 : 0]]. Computing the absolute value of a negative signed num-
ber represented in two’s complement representation involves inversion of the bits and an
increment (as suggested by Claim [10.2).

Sign extension. The following claim is often referred to as “sign-extension”. It basically
means that duplicating the most significant bit does not affect the value represented in
two’s complement representation. This is similar to padding zeros from the left in binary
representation.

Claim 10.5 If A[n] = A[n — 1], then
[Aln:0]] = [An—1:0]].
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Proof:

[A[n: 0]] = =2"- A[n] + (Aln—1:0])
= 2" A[n]+2"1 Aln — 1]+ (A[n —2:0])
=-2" An—1]+2"- Aln — 1]+ (A[n —2:0])
=-2""1 . Aln - 1]+ (A[n —2:0)])
=[An—1:0]].

O

We can now apply arbitrarily long sign-extension, as summarized in the following Corollary.

Corollary 10.6
[Aln —1]" - A[n —1:0]] = [A[n—1:0]].

Question 10.5 Prove Corollary!10.6.

10.4 Reduction: two’s complement addition to binary
addition

In Section 10.2 we tried to use a binary incrementor for incrementing a two’s complement
signed number. In this section we deal with a more general case, namely computing the
two’s complement representation of

[/T] + [E] + o).
The following theorem deals with the following setting. Let

An—1:0],Bn—1:0,Sn—-1:0]€{0,1}"
C[0],Cln] € {0,1}

satisfy
(Aln—=1:0]) + (B[n—1:0]) + C[0] = (C[n] - S[n — 1 : 0]). (10.1)

Namely, A, B, and C [0] are fed to a binary adder ADDER(n) and S and C [n] are output by
the adder. The theorem addresses the following questions:

e When does the output S[n — 1 : 0] satisfy:

[5] — [Aln —1:0]] + [Bln — 1: 0]] + C[0]? (10.2)

e How can we know that Equation[10.2 holds?
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Theorem 10.7 Let C[n — 1] denote the carry-bit in position [n — 1] associated with the
binary addition described in Equation 10.1 and let

2= [An—1:0]+[B[n—1:0]+CJ0).

Then,
Cln]-Cln—-1]=1 = z < -2t (10.3)
Cln—1]—-C[n] =1 = z>2m 1 (10.4)
zeT, = Cln] = C[n —1] (10.5)
zeT, — z=[Sn—1:0]. (10.6)

Proof: Recall that the definition of the functionality of FA,,_; in a Ripple-Carry Adder
RCA(n) implies that

Aln—1]+ Bn—1]+Cln—1] =2C[n] + S[n —1].

Hence
Aln— 1]+ Bln—1] =2C[n] — C[n — 1] + S[n — 1]. (10.7)

We now expand z as follows:

z=1[An—1:0]]+ [Bn—1:0]] + C|0]
=-2""1 . (Aln — 1]+ Bln — 1)) + (A[n — 2: 0]) + (B[n — 2 : 0]) + C[0]
-2 1. (2C[n] = Cln — 1]+ S[n — 1)) + (C[n — 1] - S[n — 2 : 0]),

where the last line is based on Equation and on
(Aln —2:0)) + (B[n—2:0]) + C[0] = (C[n — 1] - S[n —2: 0]).
Commuting S[n — 1] and C[n — 1] implies that

z=-2""1.(2Cn]-Cn—-1—-Cn—-1]))+[Sn—1]-S[n—2:0]
=-2"-(C[n] = C[n—1]) + [S[n—1:0]].

We distinguish between three cases:
1. If C[n] — C[n — 1] =1, then

z==2"4+[S[n—1:0]
< —onyontt 1 =_onl g

Hence Equation follows.
2. If C[n] — Cn — 1] = —1, then

z2=2"+[Sn—-1:0]
Z on _ 2n—1 — 2n—1.

Hence Equation follows.
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3. If C[n] = C[n — 1], then z = [S[n — 1 : 0]], and obviously z € T,,.

Equation [10.5 follows from the fact that if C[n] # Cln — 1], then either C[n] — C[n —1] =1
or C[n — 1] — C[n] = 1. In both these cases z ¢ T,,. Equation [10.6 follows from the third
case as well, and the theorem follows. O

10.4.1 Detecting overflow

Overflow occurs when the sum of signed numbers is not in 7;,. Using the notation of Theo-
rem [10.7, overflow is defined as follows.

Definition 10.4 Let z = [A[n — 1:0]] + [B[n — 1 : 0]] + C[0]. The signal OVF is defined as
follows:

OVF = ‘
0 otherwise.

N {1 if 22T,

Note that overflow means that the sum is either too large or too small. Perhaps the term
“out-of-range” is more appropriate than “overflow” (which suggests that the sum is too big).
We choose to favor tradition here and follow the common term overflow rather than introduce
a new term.

By Theorem 10.7} overflow occurs iff Cln — 1] # C[n]. Namely,

OVF = XOR(C[n — 1], C[n]).
Moreover, if overflow does not occur, then Equation [10.2/holds. Hence, we have a simple way
to answer both questions raised before the statement of Theorem [10.7. The signal C[n — 1]
may not be available if one uses a “black-box” binary-adder (e.g., a library component in

which C[n — 1] is an internal signal). In this case we detect overflow based on the following
claim.

Claim 10.8

XOR(C[n — 1],C[n]) = xOR4(A[n — 1], B[n — 1], S[n — 1], C[n]).

Proof: Recall that

Cln — 1] = x0R3(An — 1], Bn — 1], S[n — 1]).

Question 10.6 Prove that

OVF = OR(AND3(A[n—1], B[n—1],INV(S[n—1])), AND3(INV(A[n—1]), INV(B[n—1]), S[n—1])).
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10.4.2 Determining the sign of the sum

How do we determine the sign of the sum 27 Obviously, if z € T;,, then Claim implies
that S[n — 1] indicates whether z is negative. However, if overflow occurs, this is not true.

Question 10.7 Provide an example in which the sign of z is not signaled correctly by Sin —
1].

We would like to be able to know whether z is negative regardless of whether overflow
occurs. We define the NEG signal.

Definition 10.5 The signal NEG is defined as follows:

A{1 if 2 <0

NEG =
0 fz>0.
A brute force method based on Theorem for computing the NEG signal is as follows:

Sin —1] if no overflow
NEG = ¢ 1 if Cln] —Cln—1] =
0 if Cn — 1] — Cn|

1 (10.8)
1.

Although this computation obviously signals correctly whether the sum is negative, it re-
quires some further work if we wish to obtain a small circuit for computing NEG that is not
given C[n — 1] as input.

Instead pursuing this direction, we compute NEG using a more elegant method.
Claim 10.9
NEG = XOR3(A[n — 1], B[n — 1], C[n]).

Proof: The proof is based on playing the following “mental game”. We extend the com-
putation to n + 1 bits. We then show that overflow does not occur. This means that the
sum bit in position n indicates correctly the sign of the sum z. We then express this sum
bit using n-bit addition signals.

Let

(Cln+1]-Sn:0)) = (An:0]) + (B[n: 0]) + C[0].
Since sign-extension preserves value (see Claim [10.5), it follows that

2= Al 0] + Bl o] + o]
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We claim that z € T, 1. This follows from

z=1[An—1:0]]+ [B[n—1:0]]+ C[0]
<l —142mt o141
< 2" —1.

Similarly z > 27". Hence z € T},.1, and therefore, by Theorem [10.7

[S[n : o]] - [A[n : o]] + [é[n : o]} + o).

We conclude that z = [5 [n: O]] It follows that NEG = S[n]. However,

Sln| = XORg(A[TL], é[n], é[n])

= XOR3(A[n — 1], B[n — 1], C[n]),

and the claim follows. O

Question 10.8 Prove that NEG = XOR(OVF, S[n — 1]).

10.5 A two’s-complement adder

In this section we define and implement a two’s complement adder.

Definition 10.6 A two’s-complement adder with input length n is a combinational circuit
specified as follows.

Input: An—1:0],B[n—1:0] €{0,1}", and C[0] € {0,1}.
Output: S[n—1:0] € {0,1}" and NEG, OVF € {0, 1}.
Functionality: Define z as follows:
2= [Aln—1:0]+[B[n—1:0]+CJ0).
The functionality is defined as follows:

z€T, = [Sn—-1:0]]==
z€l, <= OvF=0
z<0 <= NEG=1.

Note that no carry-out C[n] is output. We denote a two’s-complement adder by S-ADDER(n).
The implementation of an S-ADDER(n) is depicted in Figure[10.2 and is as follows:

1. The outputs C[n] and S[n — 1 : 0] are computed by a binary adder ADDER(n) that is
fed by Ajn —1:0], Bl[n —1:0], and C[0].
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An—1] Bln—1] C[n] Cn—1] Cn] An—-1:0] Bn—1:0]

ADDER(n)

NEG OVF Cn] S[n—1:0]

— C[0]
XOR3 XOR

Figure 10.2: A two’s complement adder S-ADDER(n)
2. The output OVF is simply XOR(C[n — 1], C[n]) if C[n — 1] is available. Otherwise, we
apply Claim namely, OVF = XOR4(A[n — 1], B[n — 1], S[n — 1], C[n]).

3. The output NEG is compute according to Claim [10.9. Namely, NEG = XOR3(A[n —

Note that, except for the circuitry that computes the flags OVF and NEG, a two’s complement
adder is identical to a binary adder. Hence, in an arithmetic logic unit (ALU), one may use
the same circuit for signed addition and unsigned addition.

Question 10.9 Prove the correctness of the implementation of S-ADDER(n) depicted in Fig-
ure 10.2.

Question 10.10 [s the design depicted in Figure!10.3 a correct S-ADDER(2n)?

A2n—1:n] B[2n—1:n] Aln—1:0] Bln—1:0]

— c[0]
S-ADDER(n) ADDER(n)
=
Clnl
C[2n] S[2n —1:n] Sn—1:0]
OVF, NEG

Figure 10.3: Concatenating an S-ADDER(n) with an ADDER(n).

10.6 A two’s complement adder/subtracter

In this section we define and implement a two’s complement adder/subtracter. A two’s
complement adder/subtracter is used in ALUs to implement addition and subtraction of
signed numbers.

Definition 10.7 A two’s-complement adder/subtracter with input length n is a combina-
tional circuit specified as follows.
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Input: Aln—1:0],Bn—1:0] € {0,1}", and sub € {0,1}.
Output: S[n—1:0] € {0,1}" and NEG, OVF € {0,1}.
Functionality: Define z as follows:
22 (A —1:0]+ (D" (B —1: 0]
The functionality is defined as follows:

zeT, = [Sn—-1:0]=c=¢
z€l, <= oOvF=0
z<0 <= NEG=1.

We denote a two’s-complement adder/subtracter by ADD-SUB(n). Note that the input sub
indicates if the operation is addition or subtraction. Note also that no carry-in bit C[0] is
input and no carry-out C[n| is output.

An implementation of a two’s-complement adder/subtracter ADD-SUB(n) is depicted in
Figure [10.4. The implementation is based on a two’s complement adder S-ADDER(n) and
Claim [10.2

sub
An—1:0] Bln—1:0]

OVF, NEG
Sn—1:0]

Figure 10.4: A two’s-complement adder/subtracter ADD-SUB(n).

Claim 10.10 The implementation of ADD-SUB(n) depicted in Figure|10.4) is correct.
Question 10.11 Prove Claim[10.10.

Question 10.12 (back to the negation circuit) Consider the negation circuit depicted

in Figure10.1.

1. When 1s the circuit correct?
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2. Suppose we wish to add a signal that indicates whether the circuit satisfies [Bﬂ =

— [A] . How should we compute this signal?

Question 10.13 (wrong implementation of ADD-SUB(n)) Find a input for which the
circuit depicted in Figure 10.5 errs. Can you list all the inputs for which this circuit outputs
a wrong output?

Bln—1:0]

Jj

INV(n)

INC(n)

An—1:0] ’_]

0 1
MUX(n)

sub

OVF, NEG
Sn—1:0]

Figure 10.5: A wrong implementation of ADD-SUB(n).

10.7 Additional questions

Question 10.14 (ovF and NEG flags in high level programming) High level program-
ming languages such as C and Java do not enable one to see the value of the OVF and NEG
signals (although these signals are computed by adders in all microprocessors).

1. Write a short program that deduces the values of these flags. Count how many instruc-
tions are needed to recover these lost flags.

2. Short segments in a low level language (Assembly) can be integrated in C programs. Do
you know how to see the values of the OVF and NEG flags using a low level language?

Question 10.15 (bi-directional cyclic shifting) The goal in this question is to design a
bi-directional barrel-shifter.
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Definition 10.8 A bi-directional barrel-shifter BI-BARREL-SHIFTER(n) is a combinational
circuit defined as follows:

Input: z[n —1:0], dir € {0,1}, and sa[k — 1 : 0] where k = [logyn|.
Output: y[n —1:0].
Functionality: If dir =0 then ¢ is a cyclic left shift of ¥ by (sa) positions. Formally,
Vj€n—1:0]: ylj] = xmod(j+ (sa),n)].
If dir =1 then ¥ is a cyclic right shift of ¥ by (sa) positions. Formally,

Viemn—1:0: y[j] ==x[mod(j — (sa),n)].

1. Suggest a reduction of right cyclic shifting to left cyclic shifting for n = 2%, (Hint: shift
by x to the right is equivalent to shift by 28 — x to the left.)

2. If your reduction includes an increment, suggest a method that avoids the logarithmic
delay associated with incrementing.

Question 10.16 (Comparison) Design a combinational circuit COMPARE(n) defined as
follows.

Inputs: Ajn—1:0,Bn—1:0] € {0,1}".

Output: LT, FEQ,GT € {0,1}.

Functionality:
Al > [B] = GT =1
A =[5 — BQ =1
A| < _é_ = LT =1.

1. Design a comparator based on a two’s complement subtracter and a zero-tester.

2. Design a comparator from scratch based on a PPC-OP(n) circuit.

Question 10.17 (one’s complement adder/subtracter) Design an adder/subtracter with
respect to one’s complement representation.

Question 10.18 (sign-magnitude adder/subtracter) Design an adder/subtracter with
respect to sign-magnitude representation.
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10.8 Summary

In this chapter we presented circuits for adding and subtracting two’s complement signed
numbers. We started by describing three ways for representing negative integers: sign-
magnitude, one’s-complement, and two’s complement. We then focused on two’s complement
representation.

The first task we consider is negating. We proved that negating in two’s complement rep-
resentation requires inverting the bits and incrementing. The claim that describes negation
was insufficient to argue about the correctness of a circuit for negating a two’s comple-
ment signed number. We also noticed that negating the represented value is harder in two’s
complement representation than in the other two representations.

In Section [10.3]we discussed a few properties of two’s complement representation: (i) We
showed that the values represented by the same n-bit string in binary representation and in
two’s complement representation are congruent module 2". (ii) We showed that the most-
significant bit indicates whether the represented value is negative. (iii) Finally, we discussed
sign-extension. Sign-extension enables us to increase the number of bits used to represent a
two’s complement number while preserving the represented value.

The main result of this chapter is presented in Section We reduce the task of two’s
complement addition to binary addition. Theorem [10.7 also provides a rule that enables us
to tell when this reduction fails. The rest of this section deals with: (i) the detection of
overflow - this is the case that the sum is out of range; and (ii) determining the sign of the
sum even if an overflow occurs.

In Section [10.5 we present an implementation of a circuit that adds two’s complement
numbers. Finally, in Section [10.6/ we present an implementation of a circuit that can add
and subtract two’s complement numbers. Such a circuit is used in arithmetic logic units
(ALUs) to implement signed addition and subtraction.
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