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Digital Circuits vs. Analog Devices

Property Digital Circuit Analog Device

values {0, 1} �

description simple (Boolean
function)

complicated (dif-
ferential eq.)

real? abstract model very real

Conclusion: much easier to use the digital abstraction
than the realistic, complete, complicated analog model.
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Preliminary questions

what is an analog device? (components, behavior)

in what way does a digital circuit model an analog
device?

can every analog device be modeled as a digital
circuit?
what type of digital circuits do we want?
why is one inverter better than another?

how can we tell if an analog device is a gate (say, an
inverter)?
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Transistors

Computers⇐ VLSI chips⇐ gates & flip-flops⇐ transistors
Transistors are the basic components.
Most common VLSI technology is called CMOS.
In CMOS: only two types of transistors:

N-transistor

P-transistor

in case you are curious:
VLSI = Very Large Scale Integration (which means “millions
of transistors placed on one small chip”)
CMOS = Complementary Metal Oxide Semiconductor
(which means that both NMOS and PMOS transistors are
used).
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N-transistor & P-transistor

gate gate

N−transistor

drain

drainsource

P−transistor

source

Inputs: gate & source
Output: drain

(not accurate! just for the sake of this discussion)
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N-transistor & P-transistor

gate gate

N−transistor

drain

drainsource

P−transistor

source

Functionality of N-transistor:

If v(gate) = high, then resistance(source, drain) = 0 (and
then v(drain)← v(source))

If v(gate) = low, then resistance(source, drain) =∞

Functionality of P-transistor:

If v(gate) = high, then resistance(source, drain) = ∞

If v(gate) = low, then resistance(source, drain) = 0

Story true if: v(s) = high in P & v(s) = low in N.
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Example: a CMOS inverter

OUTIN

0 volts

5 volts

N−transistor

P−transistor

IN = low:

P-transistor is conducting

N-transistor is not conducting

⇒ v(OUT ) = high

IN = high:

P-transistor is not conducting

N-transistor is conducting

⇒ v(OUT ) = low
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Qualitative Analysis vs. Quantitative Analysis

Qualitative analysis:

gives an idea about “how an inverter works”.

no idea about actual voltages of output as a function
input voltage.

no idea about how long it takes the output to stabilize.

Quantitative analysis:

based on precise modeling of transistor.

computes precise input-output relationship.

requires a lot of work (usually done with the aid of a
computer program called SPICE).
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Analog signals

An analog signal is a real function

f : � → �,

where f(t) = voltage as a function of the time.

Assumption: wires have zero resistance, zero capacity, and
signals propagate through wires without delay.
⇒ voltage along a wire is identical at all times.

Since a signal describes the voltage (i.e. derivative of
energy as a function of charge), we also assume that a
signal is a continuous function.
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Digital signals

A digital signal is a function

g : � → {0, 1, non-logical}.

The value of a digital signal describes the logical value
carried along a wire as a function of time.

zero & one : logical values.

non-logical: indicates that the signal is neither zero or
one.
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Interpreting analog signals as digital signals

Q: How does one interpret an analog signal as a digital
signal?

naive answer: define a threshold voltage V ′.
Consider an analog signal f(t).

The digital signal dig(f(t)) is defined as follows.

dig(f(t))
4

=

{

0 if f(t) < V ′

1 if f(t) > V ′

Q: is this a useful definition?
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problems with definition of dig(f (t))

All devices in a circuit must use exactly the same
threshold V ′. This is impossible due to manufacturing
tolerances.

Perturbations of f(t) around V ′ lead to unexpected
values of dig(f(t)).
Example: Measure weight w by measuring the length `

of a spring. Suppose we wish to know if w > w′. This
can be done by checking if ` > `′. However, spring
length oscillates around `. If ` ≈ `′, then comparison
requires a long time.

⇒ must use separate thresholds for 0 and for 1.
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Interpreting analog signals as digital signals

Q: How does one interpret an analog signal as a digital
signal?

A: Two voltage thresholds are defined: Vlow < Vhigh.
Consider an analog signal f(t).

The digital signal dig(f(t)) is defined as follows.

dig(f(t))
4

=











0 if f(t) < Vlow
1 if f(t) > Vhigh
non-logical otherwise.
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digital interpretation of an analog signal

Vhigh

logical zero

f(t)

Vlow

logical one

t
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did we solve the problems of a single threshold?
manufacturing requirements: a low output must be
≤ Vlow & a high output must be ≥ Vhigh.

fluctuations of f(t) around Vlow still cause fluctuations
of dig(f(t)).
However, these fluctuations are between 0 and
“non-logical” (not between 0 and 1). This is still a
problem, but not as bad...

Will noise cause a problem?

Noise = undesired changes to f(t). Back to the example of

a weight hanging from a spring: wind causes changes in the

spring length and disturbs measurement of spring length.
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An inverter

Q: define an inverter.

A:

dig(OUT (t))
4

=











0 if dig(IN(t)) = 1

1 if dig(IN(t)) = 0

arbitrary otherwise.

We will see shortly that: noise⇒ cannot use these
definitions to build correct circuits.

Before we can answer that we need to discuss transfer func-

tions...
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Transfer functions

DEF: transfer function - the relation between the voltage at
an output of a gate and the voltages of the inputs of the
gate.

Example: An inverter with an input x and an output y. The
value of the signal y(t′) at time t′ is a function of the signal
x(t) in the interval (−∞, t′].

Static transfer function: if the input x(t) is stable for a
sufficiently long period of time and equals x0, then the
output y(t) stabilizes on a value y0 that is a function of x0.

history vs. present: if a device does not have a static transfer

function, then the device is a memory device not a logical

gate.
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Static transfer function

Let G denote a gate with one input x and one output y.

DEF: A function f : � → � is a static transfer function of a
gate G if

∃∆ > 0 ∀x0 ∀t0 :

∀t ∈ [t0 −∆, t0] x(t) = x0 =⇒ y(t0) = f(x0).

∆ - propagation delay (time required for stable output)

x0 - stable input voltage

t0 - time in which y(t) is measured
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Static transfer function - remarks

(1) Since circuits operate over a bounded range of volt-

ages, static transfer functions are usually only defined over

bounded domains and ranges (say [0, 5] volts).
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Static transfer function - remarks
(2) Allow perturbations of x(t) and y(t).

∀ε ∃δ,∆ > 0 ∀x0, t1, t2 :

∀t ∈ [t1, t2] : |x(t)− x0| ≤ δ

=⇒

∀t ∈ [t1 + ∆, t2] : |y(t)− f(x0)| ≤ ε.

δ - measures stability of input x(t)

ε - measures stability of output y(t)

[t1, t2] - interval during which x(t) is δ-stable.

[t1 + ∆, t2] - interval during which y(t) is ε-stable.

Propagation delay ∆ depends only on ε (which is fixed and

the same for all voltages).
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back to the definition of an inverter

dig(OUT (t))
4

=











0 if dig(IN(t)) = 1

1 if dig(IN(t)) = 0

arbitrary otherwise.

or equivalently,

IN(t) < Vlow =⇒ OUT (t) > Vhigh
IN(t) > Vhigh =⇒ OUT (t) < Vlow

Q: Define a NAND-gate.
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Noise
wire

A(t) B(t)
Noise signal: the difference B(t)− A(t). (reference signal =
A(t)).
Q: what causes noise?

A: The main source of noise is heat. Heat causes ran-

dom movement of electrons. These random movements do

not cancel out perfectly, and random currents are created.

These random currents create perturbations in the voltage

of a wire.
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Bounded noise model

Bounded noise model - the noise signal along every
wire has a bounded absolute value.

Uniform bounded noise model:

∃ε > 0 such that : | noise | ≤ ε.

Justification - noise is a random variable whose
distribution has a rapidly diminishing tail. If the ε is
sufficiently large, then

Prob[|noise| > ε] ≈ 0.
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The digital abstraction in the presence of noise

z
y

x

Assume that:

x > Vhigh, so dig(x) = 1,

y = Vlow − ε′, for a very small ε′ > 0.

⇒ dig(z) = 1.

What if input to 2nd inverter equals y(t) + ny(t)?

If ny(t) > ε′, then dig(y) = non-logical, and can’t deduce that
dig(z) = 1.

⇒ must strengthen the digital abstraction!
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Redefining the digital interpretation of analog signals

Deal with noise: interpret input signals and output signals
differently.

Input Signal: a signal measured at an input of a gate.

Output Signal: a signal measured at an output of a gate.
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Redefining the digital interpretation (cont.)
Instead of two thresholds, Vlow and Vhigh, we define the
following four thresholds:

Vlow,in - an upper bound on a voltage of an input signal
interpreted as a logical zero.

Vlow,out - an upper bound on a voltage of an output
signal interpreted as a logical zero.

Vhigh,in - a lower bound on a voltage of an input signal
interpreted as a logical one.

Vhigh,out - a lower bound on a voltage of an output
signal interpreted as a logical one.

These four thresholds satisfy the following equation:

Vlow,out < Vlow,in < Vhigh,in < Vhigh,out.
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Redefining the digital interpretation (cont.)

Vhigh,out

Vlow,out

logical zero - output

Vhigh,in

Vlow,in

logical zero - input

logical one - output

logical one - input

t

f(t)

– p.27

Digital interpretation of input & output signals

Consider an input signal fin(t). The digital signal dig(fin(t))
is defined as follows.

dig(fin(t))
4

=











0 if fin(t) < Vlow,in
1 if fin(t) > Vhigh,in
non-logical otherwise.

Consider an output signal fout(t). The digital signal
dig(fout(t)) is defined analogously.

dig(fout(t))
4

=











0 if fout(t) < Vlow,out
1 if fout(t) > Vhigh,out
non-logical otherwise.
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Noise margins

The differences

Vlow,in − Vlow,out and Vhigh,out − Vhigh,in

are called noise margins.
Claim: If the absolute value of the noise is less than the
noise margin, then the logical value of an output signal is
unchanged.
Proof: If the absolute value of the noise n(t) is bounded by
the noise margins, then an output signal fout(t) < Vlow,out
will result with an input signal
fin(t) = fout(t) + n(t) < Vlow,in. 2
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Inverter - revisited

We are now ready to define an inverter.

Definition: Let G denote a device with one input x and
one output y. The device G is an inverter if its static transfer
function f(x) satisfies:

x(t) < Vlow,in =⇒ y(t) > Vhigh,out
x(t) > Vhigh,in =⇒ y(t) < Vlow,out.

Q: can you define a NAND-gate?
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Logical & stable analog signals

back to the zero-noise model (to simplify the discussion)...

logical signal: f(t) is logical at time t if dig(f(t)) ∈ {0, 1}.

stable signal: f(t) is stable during the interval [t1, t2] if f(t) is
logical for every t ∈ [t1, t2].

Claim: If an analog signal f(t) is stable during the interval
[t1, t2] then one of the following holds:

1. dig(f(t)) = 0, for every t ∈ [t1, t2], or

2. dig(f(t)) = 1, for every t ∈ [t1, t2].

Proof: Continuity of f(t) & Vlow < Vhigh. 2
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Logical & stable digital signals

Let x(t) denote a digital signal.

logical signal: x(t) is logical at time t if x(t) ∈ {0, 1}.

stable signal: x(t) is stable during the interval [t1, t2] if x(t) is
logical for every t ∈ [t1, t2].
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Summary

Signals - analog & digital

Noise - bounded noise model & zero noise model

Digital interpretation of analog signals

Transfer functions

Definition of gate (e.g. inverter) using transfer function

Stable & logical signals
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