Chapter 10: Signed Addition
Computer Structure - Spring 2004

©

Tel-Aviv Univ.

Goals

m represent negative numbers

m two’s complement representation

m add & subtract two’s complement numbers
m identify overflow and negative result

Signed numbers
m unsigned numbers - non-negative integers
m signed numbers - positive/negative numbers
m Many ways to represent signed numbers

Representation of signed numbers
m The number represented in sign-magnitude
representation by Aln —1:0] € {0,1}" and S € {0,1} is
(=1)% - ({A[n —1:0]).

m The number represented in one’s complement
representation by Ajn —1:0] € {0,1}" is

—2" 1= 1) Aln— 1]+ (A[n —2: 0]).

m The number represented in two’s complement
representation by Ajn —1:0] € {0,1}" is

—2" L Al — 1] + (A[n —2: 0)).

Two’s complement - examples

m We denote the number represented in two’s
complement representation by A[n — 1 : 0] as follows:
[An—1:0]= =21 Ajn — 1] + (A[n — 2 : 0]).
m Examples:
[0"] = 0.
[0-z[n—2:0]] = (z[n—2:0]).

[1-2[n—2:0]]=—-2""1 4+ (z[n—2:0]) < 0.
= MSB indicates the sign.
(1" = —1.

[1-0m71] = —2n—L,

Two’s complement - story

m The most common method for representing signed
numbers is two’s complement.

m Why? adding, subtracting, and multiplying signed
numbers represented in two’s complement
representation is almost as easy as performing these
computations on unsigned (binary) numbers.

m We will discuss addition & subtraction.

DEF: Suppose that the string A represents the value .
Negation means computing the string B that represents —z.
Question: Suggest circuit for negation with respect to sign-
magnitude representation and one’s complement represen-

tation.

http://www.eng.tau.ac.il/~guy/

Two’s complement - notation
T,, - the set of signed numbers that are representable in
two’s complement representation using n-bit binary strings.
Claim:
T, = {-2"71 -2l vt 1)

Question: Prove the claim.
Remark: T;, is not closed under negation: —2"~1 ¢ T, but
2n71 ¢ Tn-

Two’s complement - negation
Claim:
—[Aln—1:0]] = [INnv(A[n —1:0])] + 1.
Proof: Note that inv(A[:]) = 1 — A[4]. Hence,

[v(Af — 15 0])] = —2° L v(Afn — 1]) + (v(Afn — 2 5 0])
n—2
— (1= Al — 1)) + S (1 — Afi]) -2
=0
n—2 n—2

=2y ool A — 1] =) Afi] -2
=0 =0

=1 =—[A[n—1:0]]
=-1—[A[n—-1:0]].

QED.

A circuit for negating a two’s complement number
Claim:
—[Aln—1:0]] =[INnv(A[n—1:0])] + 1.

Ajn—1:0)
1Nv(:)
An—1:0)
INC(n)
ol gy 1": 0

Question: [Bln —1:0]] = — [A[n — 1 : 0]]

A circuit for negating a two’s complement number - cont.
The increment circuit computes:

(Aln—1:0]) +1.

A 1:0) However, we should compute
() [Aln—1:0]] +1.
" We know that
An—-1:0] _
(Cln]-Bln—1:0]) = (Aln—1:0]) + 1.
Ne(n) Suppose we are “lucky” and C[n] = 0.
Cln) ! (Bn—1:0])=(An—1:0]) +1.
Bln—1:0]

Why should this imply that

[Bln—1:0]] = [An—1:0]] +1?

p10

A circuit for negating a two’s complement number - cont.
Counter example:

An—1:0=1-0"""%

An-1:0=0-1""4
Increment yields C[n] = 0 and

An=1:00 Bn—1:0=1-0""1=An—-1:0].

INC(n) . =
= [B] £ - [A} .
Bln—1:0] Reason? binary increment is not a two’s
complement increment.
Had to err: — [/Y] & T,.

Cln]

A circuit for negating a two’s complement number - cont.
Aln—1:0]
INV(n)

n

An—-1:0]

INC(n)
cr Bln—1:0]

We will prove a theorem that will help us formulate and prove
the correctness of the negation circuit.

Two’s complement - mod 2" property
Claim: For every A[n—1:0] € {0,1}"

mod((A), 2") = mod([/q ,2m).

Note that
(A) e [0,2" —1]
[/T] c [72n71727zfl _ 1].
Remark: Alternative definition of two’s comple-

ment representation based on Claim. Namely, rep-
resent ¢ [-2""1 2"l 1] bya’ €[0,2" — 1], where

mod(z, 2") = mod(z/, 2").

—

Claim: mod({A), 2") = mod([Z] ,27)

Proof:

-

mod((A),2")

mod(2" 1 - A[n — 1] + (A[n — 2: 0]),2")
mod((2"1—2") - A[n — 1] + (A[n — 2: 0]),2")
mod(—2""1 - Afn — 1] + (A[n — 2: 0]),2")
mod([ﬁ] ,2M).

Two’s complement - sign extension

Claim: If A[n] = A[n — 1], then
[An:0)] =[A[n—1:0].
Proof:
[Aln: 0] = —=2" - A[n] + (A[n —1:0])

= 2" Alp]+ 2" An — 1]+ (Aln —2:0])
= 2" Aln—1]4+2""1 Aln— 1]+ (An —2:0))
=21 Aln— 1]+ (A[n—2:0])

[Aln—1:0]].

QED

Two’s complement - sign extension

Claim: If A[n] = A[n — 1], then
[Aln: 0]] = [A[n —1:0]].
Corollary:
[Afn — 1" - Aln—1:0]] = [Ajn — 1: 0]] .
sign-extension - duplicating the most significant bit does not
affect the value represented in two’s complement represen-

tation. This is similar to padding zeros from the left in binary

representation.

Theorem: signed addition — binary addition
m Binary addition: assume that

(Cn]-Sin—1:0]) = (A[n—1:0]) + (B[n—1:0]) + C[0].

m C'[n — 1] - carry-bit in position [n — 1] associated with this
binary addition.

|
2= [An—1:0]] 4 [B[n—1:0]] + C[0].
EEN
Cin—1]-Cn] =1 = z>2ml 1
Cn]-Cn—1]=1 = z< =2t
zeTl, <<= Chl=Ch-1]
z€Ty = z=1[Sn—1:0].

Theorem - proof
functionality of Fa,,_1 in rRcA(n) =
Aln — 1]+ Bln — 1] + C[n — 1] = 2C[n| + S[n — 1]
= An— 1]+ B[n—1] =2C[n] — C[n— 1] + S[n — 1].
We now expand z as follows:
z=[Aln—1:0]]+[Bln—1:0]+C[0]
=-2""1. (An -1+ Bn—-1])
+ (Aln—2:0]) + (B[n—2:0]) + C[0]
=-2""1.2C] - Cln—1]+ Sn—1)) + (C[n —1] - S[n —2: 0])
=-2""1.(2Cn] - Cln—1] = Cn—1)) +[S[n — 1] - S[n — 2: 0]]
=-2"-(Cln|—=Cn—1]) +[S[n—1:0]].

Theorem - proof - cont
z=-=2"-(Cln]—=Cln—1])+[S[n—1:0]].
We distinguish between three cases:
1. If Cln] — Cn—1] =1, then

z=-=2"+[S[n—1:0]
L .
2. IfCn] — Cn—1] = —1, then
z2=2"4+[Sn—1:0]
> 2n72n71 :2n71'

3. If C[n] = C[n — 1], then z = [S[n — 1 : 0]], and obviously
z € T,.

QED

Overflow

DEF: Letz = [A[n —1:0]] + [B[n — 1: 0] + C[0]. The signal
ovF is defined as follows:

ove & 1 ifz¢g Tfl
0 otherwise.

m overflow - sum is either too large or too small.
m better term - out-of-range - not the common term.
m By Theorem

ovF = xor(C[n — 1], C[n]).

Detecting Overflow

m The signal C[n — 1] may not be available if one uses a
“black-box” binary-adder (e.g., a library component in
which C[n — 1] is an internal signal).

m In this case we detect overflow based on the following
claim.

Claim:

xoR(C[n — 1], C[n]) = xor4(A[n — 1], B[n — 1], S[n — 1], C[n]).

Proof: Recall that
Cln — 1] = xor3(A[n — 1], B[n — 1], S[n — 1]).

Determining the sign of the sum

m How do we determine the sign of the sum z?

m Obviously, if z € T;,, then the sign-bit S[n — 1] indicates
whether z is negative.

m What happens if overflow occurs?

Question: Provide an example in which the sign of z is not
signaled correctly by Sin — 1].

We would like to be able to know whether > is negative re-
gardless of whether overflow occurs.

Determining the sign of the sum - cont.

DEF: The signal nec is defined as follows:

A1 ifz<O
NEG = .
0 ifz>0.

Theorem implies that:

S[n —1] if no overflow
NEG = ¢ 1 if Cln] —Cln—1]=1
0 if Cln—1] - Cln]=1.

An even simpler method...

Claim: NeG = x0OR3(A[n — 1], B[n — 1], C[n]).

Proof:
The proof is based on playing the following “mental game”:

m “extend” the computation to n + 1 bits.
m — overflow does not occur in extended precision.

m — the sum bit in position n indicates correctly the sign
of the sum =.

m express this sum bit using n-bit addition signals.

Proof: NEG = xOR3(A[n — 1], B[n — 1], C[n]) - cont.
Sign extension to n + 1 bits:

Aln: 0= Aln—1]-Aln—1:0]

Bln:0] = Bn—1]-Bln—1:0]

(Cln+1]-S[n:0)) = (A[n: 0])) + (B[n : 0]) + C[0].

1>

Since sign-extension preserves value, it follows that

2= [A[n : o]} + [B[n : o]] el

Proof: NEG = x0R3(A[n — 1], B[n — 1], C[n]) - cont.

We claim that z € T},.1. This follows from
z2=[An—1:0]]+ [Bln—1:0]] + C[0]
<onl_qpqonl_ 141
<" —1.

Similarly z > 27",
Since sign-extension preserves value and z € T;,41:

, Sign-ext [[l[n : 0]] I [B[n . 0}] + o] no OVF {S‘[n : 0}] .

— NeG = S[n).

Proof: NEG = xOR3(A[n — 1], B[n — 1], C[n]) - cont.

NEG = S[n]
= xor3(A[n], Bn], C[n])
= xoRr3(A[n — 1], B[n — 1], C[n]).

QED

More on NEG

Question: Prove that Nea = xor(ovF, S[n — 1]).

A two’s-complement adder - s-ADDER(n)

DEF:
Input: Ajn—1:0],B[n—1:0] € {0,1}", and C[0] € {0, 1}.
Output: S[n —1:0] € {0,1}" and NG, ovF € {0, 1}.
Functionality: Define 2 as follows:
22 [Aln—1:0)] + [Bln—1: 0]+ C[0].
The functionality is defined as follows:
zeT, = [Sn—1:0]]==2
z2€T, <= ov=0
2<0 <= Necg=1.

m Note that no carry-out C[n] is output.

S-ADDER(n) - implementation

Aln—1] B[n—1] Cln] Cn—1] Cln] An—1:0] Bn—1:0]

XOR3 XOR

clol

ADDER(n)

Cln] S[n—1:0]

NEG OVF

m a two’s complement adder is identical to a binary adder
except for the circuitry that computes the flags ovr and
NEG.

m in an arithmetic logic unit (ALU), the same circuit is
used for signed addition and unsigned addition.

S-ADDER(n) - correctness

A[n‘f 1] B[n‘f 1] C%n] C['n,‘f 1] C[‘n] A[nf‘ 1:0] B[nf‘ 1:0]

XOR3 XOR

Z— clo]

ADDER(n)

Cln] S[n—1:0]

NEG OVF

Question: Prove that this design is correct.

Concatenating adders

A2n—1:n] B2n—1:n] An—1:0] Bln—1:0]

— ¢[0]
S-ADDER(n) ADDER(n)
I
Clnl
C[2n] S2n—1:n] Sn—1:0]
OVF, NEG

Question: Is this a correct s-AbDER(2n)?

Question: How about a partition & and 2n — k?

two’s-complement adder/subtracter - Abp-suB(n)
DEF:
Input: Ajn—1:0],B[n—1:0] € {0,1}", and sub € {0,1}.
Output: S[n —1:0] € {0,1}" and Neg, ovF € {0,1}.
Functionality: Define 2 as follows:

S A (A —1:0] + (~1)SYP . [Bln—1:0]).
The functionality is defined as follows:

z€Tl, = [Sn—1:0]==
zeT, <= ovw=0
z2<0 <= NeG=1.

m sub - indicates if the operation is addition or subtraction.
m no carry-in bit C[0] is input & no carry-out C|n] is output.

-p33

ADD-sUB(n) - implementation

An—1:0]

S-ADDER(n)

OVF, NEG
Sn—1:0]

Question: Is this implementation correct?

back to the negation circuit

A =1:00 Question:
1. When is the circuit correct?
INV(n) 2. Suppose we wish to add a signal that
. indicates whether the circuit satisfies
An—1:0] {B] = — {A] How should we com-
pute this signal?

INC(n)

3. Does C|n] indicate whether [E} #

cr Bln — lnz 0] B [A‘} ?

wrong implementation of Abb-sus(n)

Bln—1:0]

Question: Why is this

sub design wrong?

ovF and NeG flags in high level programming

Question: High level programming languages such as C
and Java do not enable one to see the value of the ovr and
NEG signals (although these signals are computed by
adders in all microprocessors).

1. Write a short program that deduces the values of these
flags. Count how many instructiond are needed to
recover these lost flags.

2. Short segements in a low level language (Assembly)
can be integrated in C programs. Do you know how to
see the values of the ovr and nec flags using a low level
language?

Summary

m representation of signed numbers: sign-magnitude,
one’s complement, two’s complement.

m negation of two’s complement numbers.

m reduction: two’s complement addition — binary
addition.

m Computation of ovr and nea flags.
m two’s complement adder and adder/subtracter.

m all these issues are important in: designing an ALU,
DSP programming, and even regular programming
(signed vs. unsigned int).

	Goals
	Signed numbers
	Representation of signed numbers
	Two's complement - examples
	Two's complement - story
	Two's complement - notation
	Two's complement - negation
	
ormalsize A circuit for negating a two's complement number
	
ormalsize A circuit for negating a two's complement number - cont.
	
ormalsize A circuit for negating a two's complement number - cont.
	
ormalsize A circuit for negating a two's complement number - cont.
	Two's complement - $mod ~2^n$ property
	Claim: $mod (�in {vec {A}}, 2^n)=
mod (wo {vec {A}}, 2^n)$
	Two's complement - sign extension
	Two's complement - sign extension
	
ormalsize Theorem: signed addition $longmapsto $ binary addition
	Theorem - proof
	Theorem - proof - cont
	Overflow
	Detecting Overflow
	Determining the sign of the sum
	
ormalsize Determining the sign of the sum - cont.
	
ormalsize Claim: $
egg = xor _3(A[n-1],B[n-1],C[n])$.
	
ormalsize Proof: $
egg = xor _3(A[n-1],B[n-1],C[n])$
- cont.
	
ormalsize Proof: $
egg = xor _3(A[n-1],B[n-1],C[n])$
- cont.
	
ormalsize Proof: $
egg = xor _3(A[n-1],B[n-1],C[n])$
- cont.
	More on $
egg $
	A two's-complement adder - $sadder (n)$
	$sadder (n)$
- implementation
	$sadder (n)$
- correctness
	Concatenating adders
	
ormalsize two's-complement adder/subtracter - $addsub (n)$
	$addsub (n)$
- implementation
	back to the negation circuit
	wrong implementation of $addsub (n)$
	
ormalsize $ovf $ and $
egg $ flags in high level programming
	Summary

