
Chapter 2: Foundations of
combinational structures
Computer Structure - Spring 2004

c©Dr. Guy Even

Tel-Aviv Univ.

– p.1

Goals

define combinational circuits.

prove that every Boolean function can be implemented
by a combinational circuit.

prove that every combinational circuit implements a
Boolean function.

present an algorithm for simulating a combinational
circuit.

present an algorithm for analyzing the delay of a
combinational circuit.

– p.2

http://www.eng.tau.ac.il/~guy/

Boolean functions

{0, 1}n - the set of n-bit strings.

A Boolean function - a function f : {0, 1}n → {0, 1}k.

n: input length

k: output length

– p.3

Gates & static transfer functions

DEF: A gate is a device whose functionality is specified by
a static transfer function.

∃∆ > 0

∀x0

∀t ∈ [t1, t2] : x(t) = x0 ⇒ ∀t ∈ [t1 + ∆, t2] : y(t) = f(x0).

This means that output = func (input) if the input did not
change for a while.

This does not mean that the output is logical (even if the

input is stable).

– p.4

Extension of dig(x) to vectors

Suppose ~y ∈ �

n, where ~y = (y1, y2, · · · , yn).

The function dign : �

n → {0, 1, non-logical}n is defined
by

dign(y1, y2, · · · , yn)
4

= (dig(y1), dig(y2), · · · , dig((yn))).

To simplify notation, we denote dign simply by dig when
the length n of the vector is clear.

– p.5

Def: combinational gate

DEF: Consider a gate G with n inputs and k outputs. Let
f : �

n → �

k denote the static transfer function of the gate
G. The gate G is a combinational gate if its static transfer
function satisfies the following condition:

dig(~x) ∈ {0, 1}n ⇒ dig(f(~x)) ∈ {0, 1}k.

Remark: Stable input⇒ logical output.

– p.6

Boolean functionality of a combinational gate

Suppose f : �

n → �

k is a static transfer function of a
combinational gate G.
Define a Boolean function Bf : {0, 1}n → {0, 1}k as follows.
Given a Boolean vector (b1, · · · , bn) ∈ {0, 1}n,

xi
4

=

{

Vlow − ε if bi = 0

Vhigh + ε if bi = 1.

The Boolean function Bf is defined by

Bf (~b)
4

= dig(f(~x)).

G combinational circuit ⇒ dig(f(~x)) is logical ⇒ Bf is a

Boolean function.
– p.7

Boolean functionality of a combinational gate - cont.

Since

Bf (~b)
4

= dig(f(~x)).

we can rephrase

dig(~x) ∈ {0, 1}n ⇒ dig(f(~x)) ∈ {0, 1}k.

by

dig(~x) ∈ {0, 1}n ⇒ dig(f(~x)) = Bf (dig(~x)).

⇒ Claim: In a combinational gate, the relation between the

logical values of the outputs and the logical values of the

inputs is specified by a Boolean function.
– p.8

A consistent combinational gate

propagation delay - upper bound on the amount of time that
elapses from the moment that the inputs (nearly) stop
changing till the moment that the output (nearly) equals the
value of the static transfer function.

DEF: A combinational gate G with inputs ~x(t) and outputs
~y(t) is consistent at time t if dig(~x(t)) ∈ {0, 1}n and
~y(t) = Bf (dig(~x(t))).

propagation delay - upper bound on time that elapses from

stable inputs till gate is consistent.

– p.9

brief roundup

static transfer func⇒ gate⇒ comb. gate where

gate: outputs = func(inputs)

combinational gate: stable inputs⇒ logical outputs

consistency : when dig(~y) = Bf (dig(~x)).

propagation delay: upper bound on time needed to
reach consistency.

Very helpful if you need to deal with the following question:
Is a device G a good candidate for an AND-gate?

Not helpful if you are given a library of gates to work with. In
this case one prefers not to deal with analog signals...

– p.10

Back to the digital world

digital signals - refer to input and output signals as
digital signals.

goals for combinational gates:
specification - specify functionality using a Boolean
function.
consistency - define when a gate satisfies the
specification.
performance - quantify how fast it takes a gate to
satisfy the specification.

propagation delay - loosen definition (allow analog
inputs to change as long as they are logically stable)

– p.11

Specification & Consistency

Consider a combinational gate G with 2 inputs, denoted
by x1, x2, and a single output, denoted by y.

x1(t), x2(t) - the digital signals corresponding to inputs.

y(t) - the digital signal corresponding to the output.

B : {0, 1}2 → {0, 1} - a binary function (specification)

DEF: G is consistent with the Boolean function B at time t

if the input values are digital at time t and

y(t) = B(x1(t), x2(t)).

– p.12

Propagation delay

DEF: A combinational gate G implements a Boolean
function B : {0, 1}2 → {0, 1} with propagation delay tpd if the
following holds.
For every σ1, σ2 ∈ {0, 1}, if xi(t) = σi, for i = 1, 2, during the
interval [t1, t2], then

∀t ∈ [t1 + tpd, t2] : y(t) = B(σ1, σ2).

Equivalently,

x1, x2 stable in [t1, t2]

⇒

G is consistent with B in the interval [t1 + tpd, t2].

– p.13

Propagation delay - remarks

If t2 < t1 + tpd, then the statement in the above definition
is empty.

Propagation delay is an upper bound. The actual
amount of time that passes till a combinational gate is
consistent is very hard to compute. We may always be
overly pessimistic (i.e., using a propagation delay that is
larger than the actual delay will not introduce errors).

– p.14

Contamination delay

Contamination delay - a lower bound on the amount of time
that the output of a consistent gate remains stable after its
inputs stop being stable.

Contamination delay tells us how fast an output can “react”
to a change in the input

We we will assume that the contamination delay is zero.

– p.15

Example

inputs

tpd

outputs
tcont

– p.16

Combinational circuits - building blocks

Combinational circuits are built of combinational gates and
wires & nets.

– p.17

Combinational gates

Implement a Boolean function.

Since we consider only combinational gates, we refer to
a combinational gate, in short, as a gate.

Typical gates: inverter (NOT-gate), OR-gate, NOR-gate,
AND-gate, NAND-gate, XOR-gate, NXOR-gate,
multiplexer (MUX).

fan-in : number of input terminals (typically, at most 3).

Input ports denoted by the set {in(G)i}
n
i=1

, where n denotes
the fan-in of G.

Output ports denoted by the set {out(G)i}
k
i=1

, where k de-

notes the number of output ports of G.

– p.18

Wires & Nets

Wires connect points to each other. Very often we need to
connect several terminals (i.e. inputs and outputs of gates)
together.

Ignore how connections are actually made.

Net - subset of terminals that are connected by wires. In the
digital abstraction we assume that the signals all over a net
are identical (why?).

fan-out of a net N - the number of input terminals that are

connected by N .

– p.19

Drawing nets

Three different drawings of the same net (of fan-out 4). We
may draw a net in any way that we find convenient or
aesthetic. The interpretation of the drawing is that terminals
that are connected by lines or curves constitute a net.

– p.20

Digital signals for nets

We would like to define the digital signal N(t) for a whole
net N .
Noise creates different analog signals along the net.
Define N(t) to logical only if there is a consensus among all
the digital interpretations of analog signals at different
terminals of the net.
In other words:

N(t) is zero if the digital values of all the analog signals
along the net are zero.

N(t) is one if the digital values of all the analog signals
along the net are one.

If there is no consensus, then N(t) is non-logical.

– p.21

Directions in nets

A net N feeds an input terminal t if the input terminal t in N .
A net N is fed by an output terminal t if t is in N .

G

a net fed by G
a net that feeds G

Information is “supplied” by output terminals and is
“consumed” by input terminals.

In “pure” CMOS gates, output terminals are connected via
resistors either to the ground (low voltage) or to the power
(high voltage). Input terminals are connected only to
capacitors.

– p.22

Simple nets

Def: A net N is simple if:

1. N is fed by exactly one output terminal, and

2. N feeds at least one input terminal.

Consider a simple net N = {tout, t1, t2, . . . , tk}, where tout

is an output terminal, and {ti}ki=1
are input terminals.

N can be modeled by a “star” of wires {wi}i∈I . Each
wire wi connects tout and ti. We may regard each wire
wi as a directed edge tout → ti.

– p.23

Directed graph corresponding to simple nets

If every every net N in a circuit C is simple, then we can
model C by a directed graph.

DG(C) - a directed graph.

Nodes - gates of C.

Directed edges - directed edge u→ v if there is a net N

such that: (i) an output terminal of gate u feeds N , and
(ii) an input terminal of v is fed by N .

– p.24

Example of a circuit C and a directed graph DG(C)

– p.25

Are these circuits combinational circuits?

– p.26

Input gates & output gates

Input and output gates model communication with the
“external world”. Solve the problem of “hanging” wires.

Output GateInput Gate

input gate - a gate with zero inputs and a single input.

output gate - a gate with one input and zero outputs.

– p.27

Syntactic definition of combinational circuits

Def: A combinational circuit is a pair C = 〈G,N〉 that
satisfies the following conditions:

1. G is a set of gates.

2. N is a set of nets over terminals of gates in G.

3. Every terminal t of a gate G ∈ G belongs to exactly one
net N ∈ N .

4. Every net N ∈ N is simple.

5. The directed graph DG(C) is acyclic.

– p.28

Syntactic definition - remarks

Definition of combinational circuits is independent of the
gate types (e.g. inverter, NAND-gate, etc.). The question of
whether a circuit is combinational is a purely topological
question (i.e. are the interconnections between gates
legal?).

syntax - “grammar” rules for forming compound circuits from

simple circuits.

– p.29

Back to “bad” examples...

Which conditions in the syntactic definition of combinational
circuits are violated by the “bad” circuits?

Question: Design an efficient algorithm to check if a given

circuit is combinational.

– p.30

Combinational circuits: Syntax⇒ Semantics

Completeness: for every Boolean function B, there
exists a combinational circuit that implements B

(exercise).

Soundness: every combinational circuit implements a
Boolean function. (NP-Complete to decide if a given
combinational circuit ever outputs a 1.)

Simulation: given the digital values of the inputs of a
combinational circuit, one can simulate the circuit in
linear time.

Delay analysis: given the propagation delays of all the
gates in a combinational circuit, one can compute in
linear time the propagation delay of the circuit (upper
bound).

– p.31

Simulation theorem of combinational circuits

C = 〈G,N〉 - a combinational circuit with k input gates.

{xi}
k
i=1

- digital input signals

[t1, t2] - a sufficiently long interval of time.

Theorem: If the digital signals {xi(t)}
k
i=1

are stable during
the interval [t1, t2], then, for every net N ∈ N there exist:

1. a Boolean function BN : {0, 1}k → {0, 1}, and

2. a propagation delay tpd(N)

such that

N(t) = BN (x1(t), x2(t), . . . , xk(t)),

for every t ∈ [t1 + tpd(N), t2].
– p.32

Example - simulation of combinational circuit

XOR

ANDOR

xyzw

AND(x,y)
t_pd(AND)t_pd(OR)

XOR(AND(x,y) , OR(y,z))

t_pd(XOR) + MAX { t_pd(AND) , t_pd(OR) }

OR(z,w)

process nets according to topological order (i.e. u

before v if there is an edge u→ v in DG(C)).

assign Boolean function to each net.

assign tpd to each net.

– p.33

Proof of Simulation Theorem

Notation:

~x(t) - the vector x1(t), . . . , xk(t).

v1, v2, . . . , vn - topological order of vertices (gates) in
DG(C).

WLOG: v1, . . . , vk are the input gates.

xi(t) is the digital signal output by vi (for 1 ≤ i ≤ k).

Ni - subset of nets in N that are fed by gate vi.

e1, e2, . . . , em - ordering of the nets in N such that nets in
Ni precede nets in Ni+1.

Note that e1 is fed by v1, . . . , ek is fed by vk.

– p.34

Proof - Induction hypothesis

For every i ≤ m′ there exist:

1. a Boolean function Bei
: {0, 1}k → {0, 1}, and

2. a propagation delay tpd(ei)

such that the network ei implements the Boolean function

Bei
: {0, 1}k → {0, 1}

with propagation delay tpd(ei).

– p.35

Proof - Induction basis

Instead of proving for m′ = 1, we prove for m′ = k.

Consider an i ≤ k. The net ei is fed by vi, and the digital
signal corresponding to ei is xi(t).

=⇒ define

Bei
(σ1, . . . , σk) = σi.

tpd(ei) = 0.

now to induction step...

– p.36

Proof - Induction step
Ind. Hyp.(m′) =⇒ Ind. Hyp.(m′ + 1).

Focus on em′+1:

Let vi denote the gate that feeds em′+1.

For simplicity: assume that vi has 2 inputs fed by the
nets ej & ek, respectively. Also, assume that vi has a
single output.

Topological ordering⇒ j, k ≤ m′.

Ind. Hyp. ⇒:
ej implements a Boolean function Bej

with tpd(ej).
ek implements a Boolean function Bek

with tpd(ek).

⇒ both inputs to gate vi are stable during the interval

[t1 + max{tpd(ej), tpd(ek)}, t2].

– p.37

Proof - Ind. step - cont.

Gate vi implements a Boolean function Bvi
with

propagation delay tpd(vi).

⇒ the output of gate vi equals

Bvi
(Bej

(~x(t)), Bek
(~x(t)))

during the interval

[t1 + max{tpd(ej), tpd(ek)}+ tpd(vi), t2].

Define

Bem′+1
(~σ) = Bvi

(Bej
(~σ), Bek

(~σ)).

tpd(em′+1) = max{tpd(ej), tpd(ek)}+ tpd(vi).

QED
– p.38

Simulation theorem - Corollaries

simulation algorithm

timing analysis algorithm

may regard a combinational circuit as a “macro-gate”.
All instances of the same combinational circuit
implement the same Boolean function and have the
same propagation delay.

very simple algorithms...

– p.39

Simulation and timing-analysis algorithm

construct the directed graph DG(C).

sort gates in topological order .

order the nets e1, e2, . . . , em.

For i = 1 to m do:
Let vj denote the gate that feeds ei.

val(ei)← Bvj

(

{val(ek)}ek feeds vj

)

tpd(ei)← tpd(vj) + max{tpd(ek)}ek feeds vj
.

Complexity: linear if each gate has a single output terminal

and computing Bvj
requires constant time. (why?)

– p.40

Quality measures of combinational gates

Suppose C1 and C2 are combinational circuits that
compute the same Boolean function. How do we decide
which one is better? We use two criteria:

Cost

Propagation delay

– p.41

Cost

We associate a cost with every gate. We denote the cost of
a gate G by c(G).

Def: The cost of a combinational circuit C = 〈G,N〉 is
defined by

c(C)
4

=
∑

G∈G

c(G).

– p.42

Propagation delay

We associate a propagation delay with every gate. We
denote the propagation delay of a gate G by tpd(G).

Def: The propagation delay of a combinational circuit
C = 〈G,N〉 is defined by

tpd(C)
4

= max
N∈N

tpd(N).

We often refer to the propagation delay of a combinational

circuit as its depth or simply its delay.

– p.43

Delays of paths

path - a sequence p = {v0, v1, . . . , vk} of gates that form
a path in the directed graph DG(C).

delay of a path p -

tpd(p) =
∑

v∈p

tpd(v).

Claim:
tpd(C) = max{tpd(p) : paths p}.

critical path - a path p that satisfies tpd(p) = tpd(C).

Q: Number of paths can be exponential. How were we able

to compute max{tpd(p) : paths p}?

– p.44

Example: gate costs and delays

Müller and Paul compiled the following costs and delays of
gates. These figures were obtained by considering ASIC
libraries of two technologies and normalizing them with
respect to the cost and delay of an inverter.

Gate Motorola Venus
cost delay cost delay

INV 1 1 1 1
AND,OR 2 2 2 1
NAND, NOR 2 1 2 1
XOR, NXOR 4 2 6 2
MUX 3 2 3 2

– p.45

Syntax & Semantics
semantics - function that a circuit implements. Also
called functionality or even the behavior of the circuit.

In general, formal description that relates

input values 7−→ output values.

In non-combinational circuits, the output depends not
only on the current inputs, so semantics cannot be
described simply by a Boolean function.

syntax - a formal set of rules that govern how
“grammatically correct” circuits are constructed from
smaller circuits (just as sentences are built of words).

syntax 6=⇒ useful circuit (e.g. adder).
syntax =⇒ well defined functionality, simple
simulation, & simple timing analysis.

– p.46

Summary

gates - implement simple Boolean functions

nets & wires - used to connect terminals of gates

formal (syntactic) definition of combinational gates

combinational gates are easy to:
recognize
simulate
analyze (propagation delay)

quality criteria: cost & delay

– p.47

	Goals
	Boolean functions
	Gates & static transfer functions
	Extension of $dig (x)$
to vectors
	Def: combinational gate
	
ormalsize Boolean functionality of a combinational gate
	
ormalsize Boolean functionality of a combinational gate - cont.
	A consistent combinational gate
	brief roundup
	Back to the digital world
	Specification & Consistency
	Propagation delay
	Propagation delay - remarks
	Contamination delay
	Example
	Combinational circuits - building blocks
	Combinational gates
	 Wires & Nets
	Drawing nets
	Digital signals for nets
	 Directions in nets
	Simple nets
	
ormalsize Directed graph corresponding to simple nets
	
ormalsize Example of a circuit C and a directed graph $DG(C)$
	
ormalsize Are these circuits combinational circuits?
	Input gates & output gates
	
ormalsize Syntactic definition of combinational circuits
	Syntactic definition - remarks
	Back to ``bad'' examples...
	
ormalsize Combinational circuits: Syntax $Rightarrow $ Semantics
	
ormalsize Simulation theorem of combinational circuits
	
ormalsize Example - simulation of combinational circuit
	Proof of Simulation Theorem
	Proof - Induction hypothesis
	Proof - Induction basis
	Proof - Induction step
	Proof - Ind. step - cont.
	Simulation theorem - Corollaries
	
ormalsize Simulation and timing-analysis algorithm
	
ormalsize Quality measures of combinational gates
	Cost
	Propagation delay
	
ormalsize Delays of paths
	Example: gate costs and delays
	Syntax & Semantics
	Summary

