Chapter 3: Trees Computer Structure - Spring 2004• define associative Boolean functions (and classify them).• Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ is associative if $f(\sigma_1, \sigma_2, \sigma_3) = f(\sigma_1, f(\sigma_2, \sigma_3)),$ for every $\sigma_1, \sigma_2, \sigma_3 \in \{0,1\}.$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ is associative if $f(\sigma_1, \sigma_2, \sigma_3) = f(\sigma_1, f(\sigma_2, \sigma_3)),$ for every $\sigma_1, \sigma_2, \sigma_3 \in \{0,1\}.$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ is associative if $f(\sigma_1, \sigma_2, \sigma_3) = f(\sigma_1, f(\sigma_2, \sigma_3)),$ for every $\sigma_1, \sigma_2, \sigma_3 \in \{0,1\}.$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ is associative if $f(\sigma_1, \sigma_2, \sigma_3) = f(\sigma_1, f(\sigma_2, \sigma_3)),$ for every $\sigma_1, \sigma_2, \sigma_3 \in \{0,1\}.$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Boolean function $f: \{0,1\}^2 \rightarrow \{0,1\}$ • Def: A Bo		Goals	Associative dyadic boolean functions
	Chapter 3: Trees <i>Computer Structure - Spring 2004</i> ©Dr. Guy Even Tel-Aviv Univ.	 define associative Boolean functions (and classify them). trees - combinational circuits that implement associative Boolean funcs. analyze delay & cost of trees. prove optimality. 	Def: A Boolean function $f : \{0,1\}^2 \rightarrow \{0,1\}$ is associative if $f(f(\sigma_1, \sigma_2), \sigma_3) = f(\sigma_1, f(\sigma_2, \sigma_3)),$ for every $\sigma_1, \sigma_2, \sigma_3 \in \{0,1\}.$ Q: List all the associative Boolean functions $f : \{0,1\}^2 \rightarrow \{0,1\}.$ "A": There are 16 dyadic Boolean functions, only need to list them and check

 f_n : repeating $f : \{0, 1\}^2 \to \{0, 1\}$

Def: Let $f: \{0,1\}^2 \to \{0,1\}$ denote a Boolean function. The function $f_n: \{0,1\}^n \to \{0,1\}$, for $n \ge 2$ is defined by induction as follows.

1. If n = 2 then $f_2 \equiv f$.

2. If n > 2, then f_n is defined based on f_{n-1} as follows:

 $f_n(x_1, x_2, \dots, x_n) \stackrel{\scriptscriptstyle \triangle}{=} f(f_{n-1}(x_1, \dots, x_{n-1}), x_n).$

Example:

 $\mathrm{NOR}_4(x_1, x_2, x_3, x_4) = \mathrm{NOR}(\mathrm{NOR}(\mathrm{NOR}(x_1, x_2), x_3), x_4).$

Note that NOR is not associative!

f_n : the associative case

If $f(x_1, x_2)$ is associative, then parenthesis are not important.

Claim: If $f: \{0,1\}^2 \rightarrow \{0,1\}$ is an associative Boolean function, then

 $f_n(x_1, x_2, \dots, x_n) = f(f_k(x_1, \dots, x_k), f_{n-k}(x_{k+1}, \dots, x_n)),$

for every $k \in [2, n-2]$.

- p.4

Q: Show that the set of functions $f_n(x_1, \ldots, x_n)$ that are induced by associative dyadic Boolean functions is

{constant 0, constant $1, x_1, x_n, \text{AND}, \text{OR}, \text{XOR}, \text{NXOR}$ }.

note: only last 4 functions are "interesting". We focus on OR.

Definition of OR-trees

Def: A combinational circuit $C = \langle \mathcal{G}, \mathcal{N} \rangle$ that satisfies the following conditions is called an **OR-tree**(*n*).

- 1. Input: x[n-1:0].
- **2.** Output: $y \in \{0, 1\}$
- 3. Functionality: $y = OR(x[0], x[1], \dots, x[n-1])$.
- 4. Gates: All the gates in \mathcal{G} are or-gates.
- 5. **Topology:** The underlying graph of DG(C) (i.e. undirected graph obtained by ignoring edge directions) is a tree.

Note that in the tree:

- p.5

- leaves correspond to the inputs x[n-1:0] and the output y.
- interior nodes oR-gates.
- Could root the tree, and then the root is the output.

COSC OF CICCS Induction Step

- **let** C denote an or-tree(n).
- **\blacksquare** let *g* denote the OR-gate that outputs the output of *C*.
- \blacksquare *g* is fed by two wires e_1 and e_2 .
- e_1 is the output of C_1 an $or-tree(n_1)$
- \blacksquare e_2 is the output of C_2 an or-tree (n_2)
- $\blacksquare n_1 + n_2 = n$
- Ind. Hyp. $\Rightarrow c(C_1) = (n_1 1) \cdot c(\text{OR}) \& c(C_2) = (n_2 1) \cdot c(\text{OR}).$
- $$\begin{split} c(C) &= c(g) + c(C_1) + c(C_2) \\ &= (1+n_1-1+n_2-1) \cdot c(\mathrm{OR}) \\ &= (n-1) \cdot c(\mathrm{OR}). \end{split}$$

QED

- p.10

Delay of OR-trees

Claim: The delay of a balanced OR-tree(n) is

 $\lceil \log_2 n \rceil \cdot t_{pd}(\mathsf{OR}).$

Proof: homework. Note that the term "balanced tree" can be interpreted in more than one way especially if n is not a power of 2...

- p.11

Are balanced OR-trees optimal?

- What is the best (min. cost & delay) choice of a topology for a combinational circuit that implements the Boolean function OR_n? Is a tree indeed the best topology?
- Could one do better if another implementation is used?

- p.12

Cone of a Boolean function

A boolean function $f : \{0,1\}^n \to \{0,1\}$ depends on its *i*th input if

 $f_{\uparrow x_i=0} \not\equiv f_{\uparrow x_i=1}.$

Def: The cone of a Boolean function *f* is defined by

 $cone(f) \stackrel{\triangle}{=} \{i : f \text{ depends on its } i \text{th input}\}.$

Claim: The Boolean function OR_n depends on all its inputs, namely

 $|\operatorname{cone}(\operatorname{or}_n)| = n.$

Input-Output reachability

Claim: If a combinational circuit C implements a Boolean function f, then there must be a path in DG(C) from every input in *cone*(f) to the output of f.

Proof: by contradiction,

– p.16

assume $i \in cone(f)$.

- **•** let $g_i \in \mathcal{G}$ denote the input gate that feeds the *i*th input.
- assume that in DG(C) there is no path from g_i to the output y.
- show that C does not implement f.

Input-Output reachability - cont.

Find vectors $w', w'' \in \{0, 1\}^n$ such that

 $f(w') \neq f(w'')$ $w'[i] \neq w''[i].$

Proof of Simulation Theorem $\Rightarrow C$ outputs the same value in *y* when input *w'* and *w''*.

 $\Rightarrow C$ errs either with w' or with w''. QED

Linear Cost Lower Bound Theorem

assumptions:

- fan-in of every gate at most 2.
- cost of trivial gates (i.e. input/output gates) is zero.
- cost of non-trivial gate is at least 1.

Theorem: If C is a combinational circuit that implements a Boolean function f, then

 $c(C) \ge |cone(f)| - 1.$

Corollary: If C_n is a combinational circuit that implements OR_n , then $c(C_n) \ge n - 1$.

Easy to prove theorem for trees, but what about arbitrary DAGs?

DAG terminology

Consider the directed acyclic graph (DAG) DG(C).

- deg_{in}(v): in-degree of a vertex v is the number of edges that enter the vertex v.
- deg_{out}(v): out-degree of a vertex v: is the number of edges that emanate from the vertex v.
- source a vertex with in-degree zero.
- sink a vertex with out-degree zero.
- interior vertex a vertex that is neither a source or a sink.

Leaves and interior vertices in trees

- Let T = (V, E) denote a tree with at least two vertices.
- A leaf is a vertex of degree 1.
- An interior vertex is a vertex that is not a leaf.
- **\blacksquare** leaves(V) set of leaves in V.
- interior(V) set of interior vertices in V.
- Claim:

- n 20

– p.23

If the degree of every vertex in \boldsymbol{T} is at most three, then

Underlying graph of DG(C)

- C a combinational circuit & DG(C) = (V, A) a DAG
- underlying graph of DG(C) undirected graph G = (V, E), where $(u, v) \in E \Leftrightarrow (u \to v) \in A$.
- If fan-in of every gate in C is at most 2, then degree of every vertex in G is at most 3.
- Leaves in G correspond to input and output gates in C.
- Interior vertices in *G* correspond to non-trivial gates in *C*.
- Case of a tree:

Claim: Assume C has n inputs and a single output. Assume fan-in of all gates is at most 2. If G is a tree, then

 $c(C) \ge n - 1.$

– p.22

Proof of linear cost lower bound theorem

- If underlying graph of *DG*(*C*) is a tree, then previous claim proves the theorem.
- If DG(C) = (V, E) is not a tree, then construct a directed "binary tree" T = (V', E') such that
 - $V' \subseteq V \& E' \subseteq E$
 - sources(T') = cone(f)
 - output gate $\in V'$.
- in T' we have $|interior nodes| \ge |sources| 1$.
- But interior nodes of T are also interior in DG(C), and number of sources in T equals |cone(f)|. QED.

Left to show how T is constructed...

Cont. proof: $d(v) \ge \log_c cone(v) $ Let v' denote a predecessor of v that satisfies	Cont. proof: $d(v) \ge \log_c cone(v) $	Summary
$\begin{aligned} \textit{cone}(v') &= \max\{ \textit{cone}(v_i) \}_{i=1}^{c'} \geq \textit{cone}(v) /c'. \end{aligned}$ The induction hypothesis implies that $d(v') \geq \log_c \textit{cone}(v') . \end{aligned}$ But, $\begin{aligned} d(v) \geq 1 + d(v') \\ &\geq 1 + \log_c \textit{cone}(v') \\ &\geq \log_c c + \log_c \textit{cone}(v) /c' \\ &\geq \log_c \textit{cone}(v) . \end{aligned}$	 Finally, we deal with the case that v is a sink. v has a unique predecessor v'. we have d(v) = d(v') and cone(v) = cone(v'). induction step applies to v', and hence we have d(v) ≥ log_c cone(v) , as required. 	 associative Boolean functions. extend dyadic functions to functions with <i>n</i> arguments. only four non-trivial associative Boolean functions. oR-tree(<i>n</i>) - combinational circuits that implement oR_n using a topology of a tree. cost(oR-tree) = <i>n</i> − 1. t_{pd}(balanced oR-tree) = log₂ <i>n</i>. Balanced oR-trees optimal cost & delay. two lower bounds: cost ≥ cone(f) − 1. t_{pd} ≥ log_c cone(f) .
- p29	- p.30	-p31