Chapter 3: Trees
Computer Structure - Spring 2004

©

Tel-Aviv Univ.

Goals

m define associative Boolean functions (and classify
them).

m trees - combinational circuits that implement associative
Boolean funcs.

m analyze delay & cost of trees.
m prove optimality.

Associative dyadic boolean functions

Def: A Boolean function £ : {0,1}% — {0, 1} is associative if
f(f(o1,02),03) = f(o1, (o2, 03)),

for every o1, 09,03 € {0,1}.

Q: List all the associative Boolean functions

f:{0,1}% = {0,1}.

“A”: There are 16 dyadic Boolean functions, only need to list
them and check...

fn ¢ repeating f : {0,1}> — {0,1}

Def: Let f: {0,1}2 — {0, 1} denote a Boolean function. The
function f,, : {0,1}" — {0,1}, for n > 2 is defined by
induction as follows.

1. lIf n=2then fo = f.
2. If n > 2, then f, is defined based on f,,_; as follows:

f71,(1?1-,-’172-, S «7571,> 2 f(fn—l(l’la S 71771—1>717n)-

Example:

NOR4 (1, T2, T3, T4) = NOR(NOR(NOR(Z1,22), Z3), T4).

Note that nor is not associative!

fn ¢ the associative case

If f(z1,22) is associative, then parenthesis are not
important.

Claim: If f: {0,1}?> — {0,1} is an associative Boolean
function, then

fn(@, w2, an) = f(fe(@1, o 2n), ok (Trgts - -5 @),

forevery k € [2,n — 2].

Q: Show that the set of functions f,(x1,...,z,) that are
induced by associative dyadic Boolean functions is

{constant 0, constant 1, x;, ,,, AND, OR, XOR, NXOR} .

note: only last 4 functions are “interesting”. We focus on or.

Definition of or-trees
Def: A combinational circuit C' = (G, N) that satisfies the
following conditions is called an or-tree(n).

1. Input: z[n —1:0].

. Output: y € {0,1}

. Functionality: y = or(z[0], z[1],--- ,z[n — 1]).
. Gates: All the gates in G are or-gates.

. Topology: The underlying graph of DG(C) (i.e.
undirected graph obtained by ignoring edge directions)
is a tree.

g A~ W DN

Note that in the tree:
m leaves correspond to the inputs z[n — 1 : 0] and the
output y.
m interior nodes - or-gates.
m Could root the tree, and then the root is the output.

http://www.eng.tau.ac.il/~guy/

Recursive definition of or-trees

Def: an or-tree(n) is defined recursively as follows:

basis: a single or-gate is an
oRr-tree(2).
step: an or(n)-tree is a circuit l l l l
in which OR-tree(n;) OR-tree(ny)
1. the output is computed by
an or-gate.

2. the inputs of this or-
gate are the outputs of
or-tree(n;) & or-tree(ns),
where n = nq + no.

Example: oRr-tree(4)

Cost - both trees have 3 gates.
Delay - 2 gates vs. 3.

Cost of or-trees

Claim: The cost of every or-tree(n) is (n — 1) - ¢(oR).
Proof: By induction on n.

Induction basis: n = 2. In this case, or-tree(2) contains a
single or-gate.

Cost of or-trees - Induction step
m let C denote an or-tree(n).
m let g denote the or-gate that outputs the output of C.
m g is fed by two wires e; and es.
m ¢; is the output of C} - an or-tree(n;)
m ¢, is the output of C - an or-tree(ny)
Hn+no=mn

mInd. Hyp. = ¢(C1) = (n1 — 1) - ¢(or) &
¢(Cq) = (ng — 1) - c(oR).

(€)= c(g) +c(Cr) + e(Co)
(14n1 —14ng—1)-c(or)
(

n—1)-c(or). QED

Delay of or-trees

Claim: The delay of a balanced or-tree(n) is

[logyn] - tpa(OR).

Proof: homework. Note that the term “balanced tree” can
be interpreted in more than one way especially if n is not a
power of 2...

Are balanced or-trees optimal?

m What is the best (min. cost & delay) choice of a
topology for a combinational circuit that implements the
Boolean function or,,? Is a tree indeed the best
topology?

m Could one do better if another implementation is used?

Optimality of balanced oRr-trees

Would like to prove that every combinational circuit C' that
implements or,, satisfies:

cC)y>n—-1
tpd(c) > 10g2 n.

We need to be more accurate about the model:

Q: what is the cost/delay of an n-input or-gate?

assumption 1: the fan-in of every gate < 2, so we have to
build big gates from basic gates.

assumption 2: the cost of every basic gate is > 1.
(input/output gates are free)

Optimality of balanced or-trees

Would like to prove that every combinational circuit C that
implements or,, satisfies:

c(C)y>n—-1
tpa(C) > logy n.

Looking for proof also for the case that DG(C) is not a tree!

Restriction of a Boolean function

Def: Let f: {0,1}" — {0,1} denote a Boolean function. Let
o € {0,1}. The Boolean function g : {0,1}"~! — {0,1}
defined by

g, .. waz) 2 F(wo, .. Wi, 0,05, W2)

is called the restriction of f with x; = 0. We denote it by
f[:l;,:a-

Examples:
amples XOR|z,=1(21) = X0OR(z1,1)
A1 i 1>)2
MAJORITY |, =1(Z1, ..., Tn—1) = =
=1 (71 n-1) {0 otherwise.

Cone of a Boolean function

A boolean function f: {0,1}" — {0, 1} depends on its ith
input if
f[.'m:O ;’é f[:l;1:1~

Def: The cone of a Boolean function f is defined by
cone(f) = {i : f depends on its ith input}.
Claim: The Boolean function or,, depends on all its inputs,

namely
|cone(ory,)| = n.

Input-Output reachability

Claim: If a combinational circuit C' implements a Boolean
function f, then there must be a path in DG(C') from every
input in cone(f) to the output of f.
Proof: by contradiction,

m assume i € cone(f).

m let g; € G denote the input gate that feeds the ith input.

m assume that in DG(C') there is no path from g; to the
output y.

m show that C' does not implement f.

Input-Output reachability - cont.

Find vectors w', w” € {0,1}" such that
f') # fw")
w'[i] # w"[i].

Proof of Simulation Theorem
= C outputs the same value in y when input w’" and w”.

= (C errs either with w’ or with w”. QED

Linear Cost Lower Bound Theorem

assumptions:
m fan-in of every gate at most 2.
m cost of trivial gates (i.e. input/output gates) is zero.
m cost of non-trivial gate is at least 1.

Theorem: If C'is a combinational circuit that implements a
Boolean function f, then

¢(C) > |cone(f)| — 1.
Corollary: If C,, is a combinational circuit that implements
ORp, then ¢(Cy,) > n — 1.
Easy to prove theorem for trees, but what about arbitrary
DAGs?

DAG terminology
Consider the directed acyclic graph (DAG) DG(C).

m deg;, (v): in-degree of a vertex v is the number of edges
that enter the vertex v.

m deg,,;(v): out-degree of a vertex v : is the number of
edges that emanate from the vertex v.

m source - a vertex with in-degree zero.
m sink - a vertex with out-degree zero.

m interior vertex - a vertex that is neither a source or a
sink.
o—0

v
/
sources v
N

>
L . sinks
interior vertices
. ’
~“o—>0 -p20

Leaves and interior vertices in trees

mLet T = (V, E) denote a tree with at least two vertices.
m A leaf is a vertex of degree 1.
® An interior vertex is a vertex that is not a leaf.
m [eaves(V) - set of leaves in V.
m interior(V) - set of interior vertices in V.
m Claim:

If the degree of every vertex in T' is at most three, then

|interior(V)| > |leaves(V)| — 2.

A A

Underlying graph of DG(C)
m C - a combinational circuit & DG(C) = (V, A) - a DAG
m underlying graph of DG(C) - undirected graph
G=(V,E),where (u,v) e E & (u—v)€A
m [f fan-in of every gate in C' is at most 2, then degree of
every vertex in G is at most 3.
m Leaves in G correspond to input and output gates in C.
m Interior vertices in G correspond to non-trivial gates in
C.

m Case of a tree:
Claim: Assume C has n inputs and a single output.
Assume fan-in of all gates is at most 2. If G is a tree,
then
cC)>n—1.

Proof of linear cost lower bound theorem

m [f underlying graph of DG(C) is a tree, then previous
claim proves the theorem.

m If DG(C) = (V, E) is not a tree, then construct a directed
“binary tree” T = (V', E’) such that
VCV&E CE
sources(T") = cone(f)
output gate € V'.
min 7" we have |interior nodes| > |sources| — 1.

m But interior nodes of T are also interior in DG(C), and
number of sources in T' equals |cone(f)|. QED.

Left to show how 7' is constructed...

Construction of T’

Logarithmic Delay Lower Bound Theorem

Theorem: Let C' = (G, N) denote a combinational circuit
that implements a non-constant Boolean function

f:{0,1}™ — {0, 1}. If the fan-in of every gate in G is at most
¢, then the delay of C' is at least log, |cone(f)|.

Corollary: Let C,, denote a combinational circuit that
implements or,,. Let ¢ denote the maximum fan-in of a gate
in C,,. Then

tpd(cn) > UOgc ﬂ-‘ .

Proof of logarithmic lower bound
m deal only with the graph DG(C).

m show that exists a path with at least log,. [cone(f)]
interior vertices in DG(C).

m why interior?

m input/output gates and constants have zero delay =
should not be counted.

m only sources & sinks have zero delay = count interior
vertices.

m cone(v) - set of sources from which v is reachable. Note
that |cone(output)| = |cone(f)|.

m d(v) - max number of interior vertices along a path from
a source in cone(v) to v (including v).

m suffice to prove that d(v) > log, |cone(v)|.

Proof: d(v) > log, |cone(v)|

m Proof by induction on d(v).
m Basis: d(v) = 0. In this case v is
a source, |cone(v)| = 1.

m Step: d(v) =i+ 1. Edges
entering v are
vy —,...,0s — 0, ford <e.

m by def: d(v) = max{d(v))}¢_, + 1. ?

m cone(v) = Uf/zl cone(v;).

c
cone(v)| <) |cone(v;)|
=1

< ¢ - max{|cone(v;)|}5_, }.

Cont. proof: d(v) > log, [cone(v)|

Let +' denote a predecessor of v that satisfies
|cone(v')| = max{|cone(v;)|}i_, > |cone(v)|/c .
The induction hypothesis implies that
d(v') > log, |cone(v")|.
But,
d(v) > 1+d(v')
> 1+ log, |cone(v')|

> log, ¢ + log, |cone(v)|/d
> log, |cone(v)|.

Cont. proof: d(v) > log, |cone(v)|

m Finally, we deal with the case that v is a sink.

m v has a unique predecessor v'.

m we have d(v) = d(v') and cone(v) = cone(v').

m induction step applies to +/, and hence we have
d(v) = log. |cone(v)|,

as required.

Summary

m associative Boolean functions.
m extend dyadic functions to functions with n arguments.
m only four non-trivial associative Boolean functions.

m or-tree(n) - combinational circuits that implement or,,
using a topology of a tree.

m cost(or-tree) = n — 1.
m t,4(balanced or-tree) = log, n.
m Balanced or-trees optimal cost & delay.

m two lower bounds:
cost > |cone(f)| — 1.
tpa > log, |cone(f)].

	Goals
	Associative dyadic boolean functions
	f_n : repeating $f:zo ^2
ightarrow zo $
	f_n : the associative case
	Definition of $orr $-trees
	Recursive definition of $orr $-trees
	Example: $orr $-tree$(4)$
	Cost of $orr $-trees
	Cost of $orr $-trees - Induction step
	Delay of $orr $-trees
	Are balanced $orr $-trees optimal?
	Optimality of balanced $orr $-trees
	Optimality of balanced $orr $-trees
	Restriction of a Boolean function
	Cone of a Boolean function
	Input-Output reachability
	Input-Output reachability - cont.
	Linear Cost Lower Bound Theorem
	DAG terminology
	
ormalsize Leaves and interior vertices in trees
	
ormalsize Underlying graph of $DG(C)$
	
ormalsize Proof of linear cost lower bound theorem
	Construction of T
	
ormalsize Logarithmic Delay Lower Bound Theorem
	Proof of logarithmic lower bound
	Proof: $d(v)
geq log _c |cone (v)|$
	Cont. proof: $d(v)
geq log _c |cone (v)|$
	Cont. proof: $d(v)
geq log _c |cone (v)|$
	Summary

