
Chapter 3: Trees
Computer Structure - Spring 2004

c©Dr. Guy Even

Tel-Aviv Univ.

– p.1

Goals

define associative Boolean functions (and classify
them).

trees - combinational circuits that implement associative
Boolean funcs.

analyze delay & cost of trees.

prove optimality.

– p.2

Associative dyadic boolean functions

Def: A Boolean function f : {0, 1}2 → {0, 1} is associative if

f(f(σ1, σ2), σ3) = f(σ1, f(σ2, σ3)),

for every σ1, σ2, σ3 ∈ {0, 1}.

Q: List all the associative Boolean functions

f : {0, 1}2 → {0, 1}.

“A”: There are 16 dyadic Boolean functions, only need to list
them and check...

– p.3

fn : repeating f : {0, 1}2 → {0, 1}

Def: Let f : {0, 1}2 → {0, 1} denote a Boolean function. The
function fn : {0, 1}n → {0, 1}, for n ≥ 2 is defined by
induction as follows.

1. If n = 2 then f2 ≡ f .

2. If n > 2, then fn is defined based on fn−1 as follows:

fn(x1, x2, . . . xn)
4

= f(fn−1(x1, . . . , xn−1), xn).

Example:

NOR4(x1, x2, x3, x4) = NOR(NOR(NOR(x1, x2), x3), x4).

Note that NOR is not associative!

– p.4

fn : the associative case

If f(x1, x2) is associative, then parenthesis are not
important.

Claim: If f : {0, 1}2 → {0, 1} is an associative Boolean
function, then

fn(x1, x2, . . . xn) = f(fk(x1, . . . , xk), fn−k(xk+1, . . . , xn)),

for every k ∈ [2, n − 2].

Q: Show that the set of functions fn(x1, . . . , xn) that are
induced by associative dyadic Boolean functions is

{constant 0, constant 1, x1, xn, AND, OR, XOR, NXOR} .

note: only last 4 functions are “interesting”. We focus on OR.
– p.5

Definition of OR-trees
Def: A combinational circuit C = 〈G,N〉 that satisfies the
following conditions is called an OR-tree(n).

1. Input: x[n − 1 : 0].

2. Output: y ∈ {0, 1}

3. Functionality: y = OR(x[0], x[1], · · · , x[n − 1]).

4. Gates: All the gates in G are OR-gates.

5. Topology: The underlying graph of DG(C) (i.e.
undirected graph obtained by ignoring edge directions)
is a tree.

Note that in the tree:
leaves correspond to the inputs x[n − 1 : 0] and the
output y.
interior nodes - OR-gates.
Could root the tree, and then the root is the output.

– p.6

http://www.eng.tau.ac.il/~guy/

Recursive definition of OR-trees

Def: an OR-tree(n) is defined recursively as follows:

basis: a single OR-gate is an
OR-tree(2).

or

step: an OR(n)-tree is a circuit
in which

1. the output is computed by
an OR-gate.

2. the inputs of this OR-
gate are the outputs of
OR-tree(n1) & OR-tree(n2),
where n = n1 + n2.

or

or-tree(n1) or-tree(n2)

– p.7

Example: OR-tree(4)

or

or

x[3]

y

x[2]

or

or

or

x[0] x[1] x[2] x[3]

or

x[0] x[1]

y

Cost - both trees have 3 gates.

Delay - 2 gates vs. 3.

– p.8

Cost of OR-trees

Claim: The cost of every OR-tree(n) is (n − 1) · c(OR).

Proof: By induction on n.

Induction basis: n = 2. In this case, OR-tree(2) contains a

single OR-gate.

– p.9

Cost of OR-trees - Induction step
let C denote an OR-tree(n).

let g denote the OR-gate that outputs the output of C.

g is fed by two wires e1 and e2.

e1 is the output of C1 - an OR-tree(n1)

e2 is the output of C2 - an OR-tree(n2)

n1 + n2 = n

Ind. Hyp. ⇒ c(C1) = (n1 − 1) · c(OR) &
c(C2) = (n2 − 1) · c(OR).

c(C) = c(g) + c(C1) + c(C2)

= (1 + n1 − 1 + n2 − 1) · c(OR)

= (n − 1) · c(OR). QED

– p.10

Delay of OR-trees

Claim: The delay of a balanced OR-tree(n) is

dlog2 ne · tpd(OR).

Proof: homework. Note that the term “balanced tree” can

be interpreted in more than one way especially if n is not a

power of 2...

– p.11

Are balanced OR-trees optimal?

What is the best (min. cost & delay) choice of a
topology for a combinational circuit that implements the
Boolean function ORn? Is a tree indeed the best
topology?

Could one do better if another implementation is used?

– p.12

Optimality of balanced OR-trees

Would like to prove that every combinational circuit C that
implements ORn satisfies:

c(C) ≥ n − 1

tpd(C) ≥ log2 n.

We need to be more accurate about the model:

Q: what is the cost/delay of an n-input OR-gate?

assumption 1: the fan-in of every gate ≤ 2, so we have to
build big gates from basic gates.

assumption 2: the cost of every basic gate is ≥ 1.
(input/output gates are free)

– p.13

Optimality of balanced OR-trees

Would like to prove that every combinational circuit C that
implements ORn satisfies:

c(C) ≥ n − 1

tpd(C) ≥ log2 n.

Looking for proof also for the case that DG(C) is not a tree!

– p.14

Restriction of a Boolean function

Def: Let f : {0, 1}n → {0, 1} denote a Boolean function. Let
σ ∈ {0, 1}. The Boolean function g : {0, 1}n−1 → {0, 1}
defined by

g(w0, . . . , wn−2)
4

= f(w0, . . . , wi−1, σ, wi, . . . , wn−2)

is called the restriction of f with xi = σ. We denote it by
f �

xi=σ.

Examples:
XOR �

x2=1(x1)
4

= XOR(x1, 1)

MAJORITY �

xn=1(x1, . . . , xn−1)
4

=

{

1 if
∑n−1

i=1
xi + 1 > n/2

0 otherwise.
– p.15

Cone of a Boolean function

A boolean function f : {0, 1}n → {0, 1} depends on its ith
input if

f �

xi=0 6≡ f �

xi=1.

Def: The cone of a Boolean function f is defined by

cone(f)
4

= {i : f depends on its ith input}.

Claim: The Boolean function ORn depends on all its inputs,
namely

|cone(ORn)| = n.

– p.16

Input-Output reachability

Claim: If a combinational circuit C implements a Boolean
function f , then there must be a path in DG(C) from every
input in cone(f) to the output of f .

Proof: by contradiction,

assume i ∈ cone(f).

let gi ∈ G denote the input gate that feeds the ith input.

assume that in DG(C) there is no path from gi to the
output y.

show that C does not implement f .

– p.17

Input-Output reachability - cont.

Find vectors w′, w′′ ∈ {0, 1}n such that

f(w′) 6= f(w′′)

w′[i] 6= w′′[i].

Proof of Simulation Theorem
⇒ C outputs the same value in y when input w′ and w′′.

⇒ C errs either with w′ or with w′′. QED

– p.18

Linear Cost Lower Bound Theorem

assumptions:

fan-in of every gate at most 2.

cost of trivial gates (i.e. input/output gates) is zero.

cost of non-trivial gate is at least 1.

Theorem: If C is a combinational circuit that implements a
Boolean function f , then

c(C) ≥ |cone(f)| − 1.

Corollary: If Cn is a combinational circuit that implements
ORn, then c(Cn) ≥ n − 1.

Easy to prove theorem for trees, but what about arbitrary

DAGs? – p.19

DAG terminology
Consider the directed acyclic graph (DAG) DG(C).

degin(v): in-degree of a vertex v is the number of edges
that enter the vertex v.

degout(v): out-degree of a vertex v : is the number of
edges that emanate from the vertex v.

source - a vertex with in-degree zero.

sink - a vertex with out-degree zero.

interior vertex - a vertex that is neither a source or a
sink.

sources

sinks
interior vertices

– p.20

Leaves and interior vertices in trees
Let T = (V,E) denote a tree with at least two vertices.

A leaf is a vertex of degree 1.

An interior vertex is a vertex that is not a leaf.

leaves(V) - set of leaves in V .

interior(V) - set of interior vertices in V .

Claim:
If the degree of every vertex in T is at most three, then

|interior(V)| ≥ |leaves(V)| − 2.

– p.21

Underlying graph of DG(C)

C - a combinational circuit & DG(C) = (V,A) - a DAG

underlying graph of DG(C) - undirected graph
G = (V,E), where (u, v) ∈ E ⇔ (u → v) ∈ A.

If fan-in of every gate in C is at most 2, then degree of
every vertex in G is at most 3.

Leaves in G correspond to input and output gates in C.

Interior vertices in G correspond to non-trivial gates in
C.

Case of a tree:
Claim: Assume C has n inputs and a single output.
Assume fan-in of all gates is at most 2. If G is a tree,
then

c(C) ≥ n − 1.

– p.22

Proof of linear cost lower bound theorem
If underlying graph of DG(C) is a tree, then previous
claim proves the theorem.

If DG(C) = (V,E) is not a tree, then construct a directed
“binary tree” T = (V ′, E′) such that

V ′ ⊆ V & E′ ⊆ E

sources(T ′) = cone(f)

output gate ∈ V ′.

in T ′ we have |interior nodes| ≥ |sources| − 1.

But interior nodes of T are also interior in DG(C), and
number of sources in T equals |cone(f)|. QED.

Left to show how T is constructed...

– p.23

Construction of T

v1 v2 v3 v4

y

– p.24

Logarithmic Delay Lower Bound Theorem

Theorem: Let C = 〈G,N〉 denote a combinational circuit
that implements a non-constant Boolean function
f : {0, 1}n → {0, 1}. If the fan-in of every gate in G is at most
c, then the delay of C is at least logc |cone(f)|.

Corollary: Let Cn denote a combinational circuit that
implements ORn. Let c denote the maximum fan-in of a gate
in Cn. Then

tpd(Cn) ≥ dlogc ne .

– p.26

Proof of logarithmic lower bound
deal only with the graph DG(C).

show that exists a path with at least logc |cone(f)|
interior vertices in DG(C).

why interior?

input/output gates and constants have zero delay ⇒
should not be counted.

only sources & sinks have zero delay ⇒ count interior
vertices.

cone(v) - set of sources from which v is reachable. Note
that |cone(output)| = |cone(f)|.

d(v) - max number of interior vertices along a path from
a source in cone(v) to v (including v).

suffice to prove that d(v) ≥ logc |cone(v)|.

– p.27

Proof: d(v) ≥ logc |cone(v)|

Proof by induction on d(v).

Basis: d(v) = 0. In this case v is
a source, |cone(v)| = 1.

Step: d(v) = i + 1. Edges
entering v are
v1 → v, . . . , vc′ → v, for c′ ≤ c.

by def: d(v) = max{d(vi)}
c′

i=1
+ 1.

cone(v) =
⋃c′

i=1
cone(vi).

cone(v)1
cone(v)2 cone(v)c’

v1 v2 vc’

v

|cone(v)| ≤
c′

∑

i=1

|cone(vi)|

≤ c′ · max{|cone(vi)|}
c′

i=1}.
– p.28

Cont. proof: d(v) ≥ logc |cone(v)|
Let v′ denote a predecessor of v that satisfies

|cone(v′)| = max{|cone(vi)|}
c′

i=1 ≥ |cone(v)|/c′.

The induction hypothesis implies that

d(v′) ≥ logc |cone(v′)|.

But,

d(v) ≥ 1 + d(v′)

≥ 1 + logc |cone(v′)|

≥ logc c + logc |cone(v)|/c′

≥ logc |cone(v)|.

– p.29

Cont. proof: d(v) ≥ logc |cone(v)|

Finally, we deal with the case that v is a sink.

v has a unique predecessor v′.

we have d(v) = d(v′) and cone(v) = cone(v′).

induction step applies to v′, and hence we have

d(v) ≥ logc |cone(v)|,

as required.

– p.30

Summary

associative Boolean functions.

extend dyadic functions to functions with n arguments.

only four non-trivial associative Boolean functions.

OR-tree(n) - combinational circuits that implement ORn

using a topology of a tree.

cost(OR-tree) = n − 1.

tpd(balanced OR-tree) = log2 n.

Balanced OR-trees optimal cost & delay.

two lower bounds:
cost ≥ |cone(f)| − 1.
tpd ≥ logc |cone(f)|.

– p.31

	Goals
	Associative dyadic boolean functions
	f_n : repeating $f:zo ^2
ightarrow zo $
	f_n : the associative case
	Definition of $orr $-trees
	Recursive definition of $orr $-trees
	Example: $orr $-tree$(4)$
	Cost of $orr $-trees
	Cost of $orr $-trees - Induction step
	Delay of $orr $-trees
	Are balanced $orr $-trees optimal?
	Optimality of balanced $orr $-trees
	Optimality of balanced $orr $-trees
	Restriction of a Boolean function
	Cone of a Boolean function
	Input-Output reachability
	Input-Output reachability - cont.
	Linear Cost Lower Bound Theorem
	DAG terminology
	
ormalsize Leaves and interior vertices in trees
	
ormalsize Underlying graph of $DG(C)$
	
ormalsize Proof of linear cost lower bound theorem
	Construction of T
	
ormalsize Logarithmic Delay Lower Bound Theorem
	Proof of logarithmic lower bound
	Proof: $d(v)
geq log _c |cone (v)|$
	Cont. proof: $d(v)
geq log _c |cone (v)|$
	Cont. proof: $d(v)
geq log _c |cone (v)|$
	Summary

