Chapter 5: Selectors and Shifters

Computer Structure - Spring 2004

Dr. Guy Even

Tel-Aviv Univ

Goals

- Selectors:
 - review definition of multiplexer.
 - build (n:1)-multiplexers.
- Shifters:
 - Cyclic shifter (Barrel shifter)
 - Logical Shifter
 - Arithmetic Shifter

Multiplexer

DEF: A Mux-gate (also known as a (2:1)-multiplexer) is a combinational gate that has three inputs D[0], D[1], S and one output Y. The functionality is defined by

$$Y = \begin{cases} D[0] & \text{if } S = 0 \\ D[1] & \text{if } S = 1. \end{cases}$$

Equivalently: Y = D[S]

Selectors

DEF: An (n:1)-Mux is a combinational circuit defined as follows:

Input: D[n-1:0] and S[k-1:0] where $k = \lceil \log_2 n \rceil$.

Output: $Y \in \{0, 1\}$.

Functionality:

$$Y = D[\langle \vec{S} \rangle].$$

Example: Let n = 4, D[3:0] = 0101, and S[1:0] = 11. The output Y should be 1.

- $\blacksquare \vec{D}$ data input
- $\blacksquare \vec{S}$ select input
- \blacksquare simplify: assume that n is a power of 2, namely, $n=2^k$.

Implementation of (n:1)-MUX

We will present two implementations:

- a decoder based implementation
- a tree-like implementation

(n:1)-MUX: a decoder based implementation

Question:

- correctness
- cost
- delay
- asymptotic optimality

(n:1)-MUX: a tree-like implementation

Which design is better?

- both designs are asymptotically optimal.
- based on the tables of Müller & Paul, the tree-like design is better.
- decision is based on specific gate costs in the technology one uses.
- fast Mux-gates in CMOS (transmission gates) do not restore the signals well.
- ⇒ long paths consisting only of Mux-gates are not allowed.

Cyclic shift - example

5,3,1,11,...,8,10,12

8,10,12,...,2,4,6

Cyclic shift - definition

The string b[n-1:0] is a cyclic left shift by i positions of the string a[n-1:0] if

$$\forall j: \quad b[j] = a[\mathsf{mod}(j-i,n)].$$

Example: Let a[3:0] = 0010. A cyclic left shift by one position of \vec{a} is the string 0100. A cyclic left shift by 3 positions of \vec{a} is the string 0001.

Barrel Shifter

DEF: A BARREL-SHIFTER (n) is a combinational circuit defined as follows:

Input: x[n-1:0] and sa[k-1:0] where $k = \lceil \log_2 n \rceil$.

Output: y[n-1:0].

Functionality: \vec{y} is a cyclic left shift of \vec{x} by $\langle \vec{sa} \rangle$ positions.

Formally.

$$\forall j \in [n-1:0]: \ y[j] = x[\mathsf{mod}(j - \langle \vec{sa} \rangle, n)].$$

- $\blacksquare \vec{x}$ data input
- $\blacksquare \vec{sa}$ shift amount input
- \blacksquare simplify assume that n is a power of 2, namely, $n=2^k$.

CLS(n, i) - Cyclic Left Shift by 2^i positions

DEF: A CLS(n, i) is a combinational circuit defined as follows:

Input: x[n-1:0] and $s \in \{0,1\}$.

Output: y[n-1:0].

Functionality:

 $\forall j \in [n-1:0]: y[j] = x[\mathsf{mod}(j-s \cdot 2^i, n)].$

Equivalently,

$$y[j] = \begin{cases} x[j] & \text{if } s = 0 \\ x[\text{mod}(j - 2^i, n)] & \text{if } s = 1. \end{cases}$$

 \Rightarrow can implement cls(n, i) with a row of n mux-gates.

cls(4, 1)

Evident that a ${\it cls}(n,i)$ requires a lot of area for the wires. Our model does not capture routing cost.

BARREL-SHIFTER(n) - a chain of $\mathrm{CLS}(n,i)$

BARREL-SHIFTER(n) - correctness

Define the strings $y_i[n-1:0]$, for $0 \le i \le k-1$, recursively as follows:

$$\begin{split} y_0[n-1:0] &\leftarrow \mathtt{CLS}_{n,0}(x[n-1,0],sa[0]) \\ y_{i+1}[n-1:0] &\leftarrow \mathtt{CLS}_{n,i+1}(y_i[n-1,0],sa[i+1]) \end{split}$$

Claim: $y_{k-1}[n-1:0]$ is a cyclic left shift of x[n-1:0] by $\langle sa|k-1:0| \rangle$ positions.

Proof: Induction. k=0 - trivial because ${\rm cLs}(n,0)$ shifts by zero/one position.

..

induction step

$$y_i[j] = \operatorname{cls}_{n,i}(y_{i-1}[n-1,0],sa[i])[j]$$
 (by definition of y_i)
= $y_{i-1}[\operatorname{mod}(j-2^i\cdot sa[i],n)]$ (by definition of $\operatorname{cls}_{n,i}$).

- Let $\ell = \text{mod}(j 2^i \cdot sa[i], n)$.
- Ind. Hyp. $\Rightarrow y_{i-1}[\ell] = x[\text{mod}(\ell \langle sa[i-1:0] \rangle, n)$.
- Note that

$$\begin{aligned} \operatorname{mod}(\ell - \langle sa[i-1:0] \rangle, n) &= \operatorname{mod}(j-2^i \cdot sa[i] - \langle sa[i-1:0] \rangle, n) \\ &= \operatorname{mod}(j - \langle sa[i:0] \rangle, n). \end{aligned}$$

■ Therefore $y_i[j] = x[\text{mod}(j - \langle sa[i:0] \rangle, n)]$, and the claim follows.

Logical Shifting - motivation

- Used for shifting binary strings that represent unsigned integers in binary representation.
- Shifting to the left by s positions corresponds to

$$\langle \vec{y} \rangle \leftarrow \operatorname{mod}(\langle \vec{x} \rangle \cdot 2^s, 2^n).$$

lacktriangle Shifting to the right by s positions corresponds to

$$\langle \vec{y} \rangle \leftarrow \left| \frac{\langle \vec{x} \rangle}{2^s} \right|.$$

Bi-Directional Logical Shifter - definition

A $\operatorname{LOG-SHIFT}(n)$ is a combinational circuit defined as follows:

Input:

- $x[n-1:0] \in \{0,1\}^n$
- $\blacksquare sa[k-1:0] \in \{0,1\}^k$, where $k = \lceil \log_2 n \rceil$, and
- $\ell \in \{0, 1\}.$

Output: $y[n-1:0] \in \{0,1\}^n$.

Functionality: If $\ell=1$, then logical left shift as follows:

$$y[n-1:0] \triangleq x[n-1-\langle \vec{sa}\rangle:0] \cdot 0^{\langle \vec{sa}\rangle}.$$

If $\ell = 0$, then logical right shift as follows:

$$y[n-1:0] \stackrel{\triangle}{=} 0^{\langle \vec{sa} \rangle} \cdot x[n-1:\langle \vec{sa} \rangle].$$

- n 19

Bi-Directional Logical Shifter - example

Example: Let x[3:0] = 0010. If sa[1:0] = 10 and $\ell = 1$, then Log-shift (4) outputs y[3:0] = 1000. If $\ell = 0$, then the output equals y[3:0] = 0000.

Bi-Directional Logical Shifter - implementation

- As in the case of cyclic shifters, we break the task of designing a logical shifter into sub-tasks of logical shifts by powers of two.
- Loosely speaking, an LBS(n, i) is a logical bi-directional shifter that outputs one of three possible strings:
 - \blacksquare the input shifted to the left by 2^i positions,
 - lacktriangle the input shifted to the right by 2^i positions, or
 - the input without shifting.

We now formally define this circuit....

LBS(n,i) - **definition**

DEF: An LBS(n, i) is a combinational circuit defined as follows:

Input: x[n-1:0] and $s, \ell \in \{0,1\}$.

Output: y[n-1:0].

Functionality: Define $x'[n-1+2^i:-2^i]\in\{0,1\}^{n+2\cdot 2^i}$ as

follows:

$$x'[j] \stackrel{\triangle}{=} egin{cases} x[j] & \text{if } n < j \leq 0 \\ 0 & \text{otherwise.} \end{cases}$$

The value of the output y[n-1:0] is specified by

$$\forall j \in [n-1:0]: \ y[j] = x'[j+(-1)^{\ell} \cdot s \cdot 2^{i}].$$

$y[j] = x'[j + (-1)^{\ell} \cdot s \cdot 2^{i}]$

- $x'[n-1+2^i:-2^i] = 0^{2^i} \cdot x[n-1:0] \cdot 0^{2^i}.$
- ℓ determines if the shift is a left shift or a right shift. If $\ell=1$ then $(-1)^\ell=-1$, and the shift is a left shift (since increasing indexes from $j-2^i$ to j has the effect of a left shift).
- lacksquare s determines if a shift (in either direction) takes place at all. If s=0, then y[j]=x[j], and no shift takes place.

A bit-slice of an implementation of LBS(n, i)

- (3:1)-Mux. Implemented either by a "pruned" tree-like construction or we can simply consider a (3:1)-Mux as a basic gate. Simple circuit

 best option can be easily determined based on the technology at hand.
- 2. decoding circuit not a decoder! Decoding of s and ℓ causes the (3:1)-mux to select the correct input.

A bit-slice of an implementation of $\mbox{LBS}(n,i)$

Question: This question deals with various aspects and details concerning the design of a logical shifter.

- 1. Design a "pruned" tree-like (3:1)-MUX.
- 2. Design the decoding box.
- 3. Show how $\mbox{\tiny LBS}(n,i)$ circuits can be cascaded to obtain a $\mbox{\tiny LOG-SHIFT}(n).$

Hint: follow the design of a BARREL-SHIFTER(n).

- p.23

- n 24

Arithmetic Shifters - motivation

- Used for shifting binary strings that represent signed integers in two's complement representation.
- logical left shifting = arithmetic left shifting.
- Arithmetic right shifting corresponds to dividing by a power of 2 (with sign extension).

Arithmetic right shifter - definition

DEF: An $\operatorname{Arith-shift}(n)$ is a combinational circuit defined as follows:

Input: $x[n-1:0] \in \{0,1\}^n$ and $sa[k-1:0] \in \{0,1\}^k$, where $k = \lceil \log_2 n \rceil$.

Output: $y[n-1:0] \in \{0,1\}^n$.

Functionality: The output \vec{y} is a (sign-extended) arithmetic right shift of \vec{x} by $\langle \vec{sa} \rangle$ positions. Formally,

$$y[n-1:0] \stackrel{\triangle}{=} x[n-1]^{\langle \vec{sa} \rangle} \cdot x[n-1:\langle \vec{sa} \rangle].$$

Example: Let x[3:0]=1001. If sa[1:0]=10, then ARITH-SHIFT(4) outputs y[3:0]=1110.

Arithmetic right shifter - implementation

Question: Consider the definitions of $\operatorname{cLS}(n,i)$ and $\operatorname{LBS}(n,i)$. Suggest an analogous definition $\operatorname{ARS}(n,i)$ for arithmetic right shift (i.e., modify the definition of \vec{x}' and $\operatorname{use}\ (2:1)$ -Muxs). Suggest an implementation of an arithmetic right shifter based on cascading $\operatorname{ARS}(n,i)$ circuits.

- p.26

Further questions

Question: Design a bi-directional cyclic shifter. Such a shifter is like a cyclic left shifter but has an additional input $\ell \in \{0,1\}$ that indicates the direction of the required shift. Hint: Consider reducing a cyclic right shift to a cyclic left shifter. To simplify the reduction you may assume that $n=2^k-1$ (hint: use one's complement negation). Suggest a simple reduction in case $n=2^k$ (hint: avoid explicit subtraction!).

Further questions - cont.

Question: CPUs often support all three types of shifting: cyclic, logical, and arithmetic shifting.

- 1. Write a complete specification of a shifter that can perform all three types of shifts.
- 2. Propose an implementation of such a shifter.

Summary

- (n : 1)-multiplexers:
 - definition.
 - two implementations: decoder based & tree-like.
 - both designs are optimal.
- three types of shifts: cyclic, logical, and arithmetic shifts.
- Design method: cascade a logarithmic number of shifters (with parameter i) that either perform a shift by 2i positions or no shift at all.

-p29