Chapter 5: Selectors and Shifters
Computer Structure - Spring 2004

Tel-Aviv Univ.

Goals

m Selectors:
review definition of multiplexer.
build (n : 1)-multiplexers.

m Shifters:
Cyclic shifter (Barrel shifter)
Logical Shifter
Arithmetic Shifter

Multiplexer

DEF: A mux-gate (also known as a (2 : 1)-multiplexer) is a
combinational gate that has three inputs D[0], D[1], S and
one output Y. The functionality is defined by

_[plo] its=o0
Y_{D[l] if S =1.

Do) D[

Equivalently: Y = DI[S] s

Selectors

DEF: An (n:1)-mux is a combinational circuit defined as
follows:

Input: D[n —1:0] and S[k — 1 : 0] where k = [log, n].
Output: Y € {0,1}.
Functionality:
Y = D[(S)].

Example: Let n =4, D[3: 0] = 0101, and S[1: 0] = 11. The
output Y should be 1.

m D - data input

m S - select input

m simplify: assume that n is a power of 2, namely, n = 2.

Implementation of (n:1)-mux

We will present two implementations:
m g decoder based implementation
m 3 tree-like implementation

(n:1)-mux : a decoder based implementation

Dln—1:0] Sk—1:0]
%
pecopEeR(k)
Question: 2" o
m correctness
m cost AND(2")
m delay o

m asymptotic optimality

oR-tree(2F)

http://www.eng.tau.ac.il/~guy/

(n:1)-mux : a tree-like implementation

Din—1:1%] D[—1:0]
/~/T1/2 /~/T1/2
Slk—2:00— (% :1)-mux Slk—2:00— (5 :1)-mux
1 YL Yr 1
Sk — 1] ! 0
Question: Mox
m correctness ’\’1
= cost Y
m delay

m asymptotic optimality

Which design is better?

m both designs are asymptotically optimal.

m based on the tables of Miiller & Paul, the tree-like
design is better.

m decision is based on specific gate costs in the
technology one uses.

m fast mux-gates in CMOS (transmission gates) do not
restore the signals well.
= long paths consisting only of mux-gates are not
allowed.

Cyclic shift - example

\ 7
N -
rotate clockwise
by 3 positions o, "
® %
< S
9
"clock"reads: "clock"reads:
5,3,1,11,...,8,10,12 8,10,12,...,2,4,6

Cyclic shift - definition

The string b[n — 1 : 0] is a cyclic left shift by i positions of the
string ajn — 1 : 0] if

Vi bj] = a[mod(j — i,n)].

Example: Let a[3 : 0] = 0010. A cyclic left shift by one position
of @ is the string 0100. A cyclic left shift by 3 positions of a is
the string 0001.

Barrel Shifter

DEF: A BarrEL-sHIFTER(n) iS @ combinational circuit defined
as follows:

Input: z[n — 1:0] and sa[k — 1 : 0] where k = [log, n].
Output: y[n —1:0].
Functionality: ¢ is a cyclic left shift of # by (sa) positions.
Formally,
Vi€n—1:0: y[j] ==z[mod(j — (sa),n)].
m 7 - data input
m 53 - shift amount input

m simplify - assume that » is a power of 2, namely, n = 2%.

cts(n, i) - Cyclic Left Shift by 2° positions

DEF: A cLs(n,i) is a combinational circuit defined as
follows:

Input: z[n —1:0]and s € {0, 1}.
Output: y[n —1:0].

Functionality:
Vien—1:00: ylj] =zmod(j —s-2°,n)].

Equivalently,

o] = {x[ﬂ ifs=0

x[mod(j — 2,n)] ifs=1.

= can implement cLs(n,) with a row of n mux-gates.

1 0 1 0
s MUX S MUX
/N/ 1 1

y[3] y[2] y[1] ylo]

Evident that a cLs(n,:) requires a lot of area for the wires.
Our model does not capture routing cost.

BARREL-SHIFTER(n) - a chain of cLs(n, 1)

z[n—1:0]

salk — 1] cLs(n, k —1)

yln—1:0]

BARREL-SHIFTER(7) - correctness

Define the strings y;[n — 1 : 0], for 0 < i < k — 1, recursively
as follows:

yo[n —1: 0] « cLs, o(z[n — 1,0], sa[0])
Yir1[n —1: 0] < cLSyiq1(vi[n — 1,0], sali + 1])

Claim: yx_1[n — 1: 0] is a cyclic left shift of z[n — 1 : 0] by
(salk —1: 0]) positions.

Proof: Induction. & = 0 - trivial because cLs(n,0) shifts by
zero/one position.

induction step

yilj] = cLsni(yi—1[n — 1,0], sa])[j] (by definition of y;)
= y;_1[mod(j — 2! - sali], n)] (by definition of cLs,, ;).
mLet / = mod(j — 2' - safi], n).
m Ind. Hyp. = y;—1[¢] = x[mod(¢ — (sa[i — 1: 0]), n).
= Note that
mod(¢ — (sa[i — 1 : 0]),n) = mod(j — 2° - sa[i] — (sali — 1: 0]),n)
=mod(j — (sali : 0]),n).

m Therefore y;[j] = z[mod(j — (sali : 0]),n)], and the claim
follows.

Logical Shifting - motivation

m Used for shifting binary strings that represent unsigned
integers in binary representation.

m Shifting to the left by s positions corresponds to
() — mod(() - 2°,2").

m Shifting to the right by s positions corresponds to

Bi-Directional Logical Shifter - definition

A LoG-sHIFT(n) is @ combinational circuit defined as follows:
Input:
mzn—1:0]€{0,1}",
msafk —1:0] € {0,1}%, where k = [log, n], and
m /e {0,1}.
Output: y[n —1:0] € {0,1}".
Functionality: If ¢ = 1, then logical left shift as follows:

yln—1:0] = z[n—1— (s4) : 0] 06
If ¢ =0, then logical right shift as follows:

yln—1:0] 2 06% . z[n —1: (sa)).

Bi-Directional Logical Shifter - example

Example: Let z[3: 0] = 0010. If sa[l : 0] = 10 and ¢ = 1, then
LOG-SHIFT(4) outputs y[3 : 0] = 1000. If £ = 0, then the output
equals y[3 : 0] = 0000.

Bi-Directional Logical Shifter - implementation

m As in the case of cyclic shifters, we break the task of
designing a logical shifter into sub-tasks of logical shifts
by powers of two.
m Loosely speaking, an LBs(n, i) is a logical bi-directional
shifter that outputs one of three possible strings:
the input shifted to the left by 2¢ positions,
the input shifted to the right by 2! positions, or
the input without shifting.

We now formally define this circuit....

LBs(n,) - definition

DEF: An ss(n,i) is a combinational circuit defined as
follows:

Input: z[n —1:0]and s, ¢ € {0,1}.
Output: y[n —1:0].
Functionality: Define 2'[n — 1 + 27 : —27] € {0,1}"*??" as
follows:
e zlj] fn<j<o0
’ 0 otherwise.

The value of the output y[n — 1 : 0] is specified by

Vien—1:00: y[jl=2j+ (-1 -2

il = @l + (1) 521

mo'n—1+2:-2]=0% z[n—-1:0]0%.

m (- determines if the shift is a left shift or a right shift. If
¢ =1then (-1)! = —1, and the shift is a left shift (since
increasing indexes from j — 27 to j has the effect of a left
shift).

m s - determines if a shift (in either direction) takes place
at all. If s =0, then y[j] = z[j], and no shift takes place.

A bit-slice of an implementation of L8s(n, ¢)

il @li+2] @li-2)

]
2 2 [Tz J (‘1
a,zﬁ% decoding H (3:1)-MUx

1. (3:1)-mux. Implemented either by a “pruned” tree-like
construction or we can simply consider a (3 : 1)-mux as
a basic gate. Simple circuit = best option can be easily
determined based on the technology at hand.

2. decoding circuit - not a decoder! Decoding of s and ¢

causes the (3 : 1)-mux to select the correct input.

A bit-slice of an implementation of L8s(n,)

1] 2[j+2] a2

2 i 2 2 1 0
5,0 decoding (3:1)-muUx
L

yli)

Question: This question deals with various aspects and
details concerning the design of a logical shifter.

1. Design a “pruned” tree-like (3 : 1)-mux.
2. Design the decoding box.

3. Show how LBs(n,) circuits can be cascaded to obtain a
LOG-SHIFT(n).
Hint: follow the design of a BARREL-SHIFTER(n).

Arithmetic Shifters - motivation

m Used for shifting binary strings that represent signed
integers in two’s complement representation.

m |ogical left shifting = arithmetic left shifting.

m Arithmetic right shifting corresponds to dividing by a
power of 2 (with sign extension).

Arithmetic right shifter - definition

DEF: An AriTH-sHIFT(n) is a combinational circuit defined as
follows:

Input: [n —1:0] € {0,1}" and sa[k — 1: 0] € {0,1}*, where
k= [loggn].

Output: y[n —1:0] € {0,1}".

Functionality: The output ¢/ is a (sign-extended) arithmetic
right shift of # by (sa) positions. Formally,

yln —1:0] 2 z[n — 1]<57l> cz[n—1: (sa))].

Example: Let x[3: 0] = 1001. If sa[l : 0] = 10, then
ARITH-SHIFT(4) outputs y[3 : 0] = 1110.

Arithmetic right shifter - implementation

Question: Consider the definitions of cLs(n,) and LBs(n, i).
Suggest an analogous definition ars(n,) for arithmetic right
shift (i.e., modify the definition of &’ and use (2 : 1)-muxs).
Suggest an implementation of an arithmetic right shifter
based on cascading Ars(n.i) circuits.

Further questions

Question: Design a bi-directional cyclic shifter. Such a
shifter is like a cyclic left shifter but has an additional input
¢ € {0, 1} that indicates the direction of the required shift.
Hint: Consider reducing a cyclic right shift to a cyclic left
shifter. To simplify the reduction you may assume that

n =28 — 1 (hint: use one’s complement negation). Suggest
a simple reduction in case n = 2* (hint: avoid explicit
subtraction!).

Further questions - cont.

Question: CPUs often support all three types of shifting:
cyclic, logical, and arithmetic shifting.

1. Write a complete specification of a shifter that can
perform all three types of shifts.

2. Propose an implementation of such a shifter.

Summary

® (n : 1)-multiplexers:
definition.
two implementations: decoder based & tree-like.
both designs are optimal.
m three types of shifts: cyclic, logical, and arithmetic shifts.
m Design method: cascade a logarithmic number of
shifters (with parameter) that either perform a shift by
2! positions or no shift at all.

	Goals
	Multiplexer
	Selectors
	Implementation of $muxno $
	
ormalsize $muxno $: a decoder based implementation
	
ormalsize $muxno $: a tree-like implementation
	Which design is better?
	Cyclic shift - example
	Cyclic shift - definition
	Barrel Shifter
	
ormalsize $cls (n,i)$
- {
ed C}yclic {
ed L}eft {
ed S}hift by 2^i positions
	$cls (4,1)$
	$�arrel (n)$
- a chain of $cls (n,i)$
	$�arrel (n)$
- correctness
	induction step
	Logical Shifting - motivation
	
ormalsize Bi-Directional Logical Shifter - definition
	
ormalsize Bi-Directional Logical Shifter - example
	
ormalsize Bi-Directional Logical Shifter - implementation
	
ormalsize $lbs (n,i)$
- definition
	
ormalsize $y[j]=x'[j+(-1)^{ell
}cdot s cdot 2^i]$
	
ormalsize A bit-slice of an implementation of $lbs (n,i)$
	
ormalsize A bit-slice of an implementation of $lbs (n,i)$
	Arithmetic Shifters - motivation
	
ormalsize Arithmetic right shifter - definition
	
ormalsize Arithmetic right shifter - implementation
	
ormalsize Further questions
	
ormalsize Further questions - cont.
	Summary

