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Goals

introduce clock signal.

define edge-triggered flip-flops.

discuss parameters of flip-flops: setup time, hold time,
contamination delay, propagation delay.

explain importance of critical segment.

understand timing of a flip-flop.

other memory devices.
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The Clock

logical level

0

1
pulse width

time

clock fall clock rise
clock period

digital signal with periodic oscillations between 0 and 1.

oscillations are instantaneous.

each clock period starts with a 0 → 1 transition.

1 → 0 transition in the interior of the clock period.

we denote the clock signal by CLK.
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Clock terminology

logical level

0

1

time

(A)

(B)

(C)

logical level

0

1

time

logical level

0

1

time

clock period - denoted by
ϕ(CLK).

clock pulse - interval
during which CLK(t) = 1.

CLKpw - duration of clock
pulse.

symmetric clock - if
CLKpw = ϕ(CLK)/2.

narrow pulses - if
CLKpw < ϕ(CLK)/2.

wide pulses - if
CLKpw > ϕ(CLK)/2.
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Clock cycles

A clock partitions time into discrete intervals as follows:

Let ti denote the starting time of the ith clock period.

We refer to the half-closed interval [ti, ti+1) as clock
cycle i.
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Parameters of an Edge-triggered Flip-Flop
Setup-time denoted by tsu,

Hold-time denoted by thold,

Contamination-delay denoted by tcont,

Propagation-delay denoted by tpd.

These parameters satisfy −tsu < thold < tcont < tpd.
Notation:

critical segment: Ci = [ti − tsu, ti + thold].

instability segment: Ai = [ti + tcont, ti + tpd].

Ci

clk

Ai
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Definition: Edge-triggered Flip-Flop

Inputs: A digital signal D(t) and a clock CLK.

Output: A digital signal Q(t).

Functionality: If D(t) is stable during the critical segment Ci,
then Q(t) = D(ti) during the interval
(ti + tpd, ti+1 + tcont).

Ci Ai Ci+1 Ai+1

clk

D(t)
tsu

thold

tpd

tcont

Q(t)
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Remarks on definition of flip-flop
Ci Ai Ci+1 Ai+1

clk

D(t)
tsu

thold

tpd

tcont

Q(t)

−tsu < thold < tcont < tpd =⇒ Ci ∩ Ai = ∅.

Stability of D(t) during Ci ⇒ digital value of D(t) during
the critical segment Ci is logical and equals D(ti).

Flip-flop samples D(t) during Ci. The sampled value
D(ti) is output during the interval [ti + tpd, ti+1 + tcont].

Sampling is successful only if D(t) is stable while it is
sampled. This is why we refer to Ci as a critical
segment.

– p.9
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Remarks on definition of flip-flop - cont.
Ci Ai Ci+1 Ai+1

clk

D(t)
tsu

thold

tpd

tcont

Q(t)

If the input D(t) is stable during the critical segments
{Ci}i, then the output Q(t) is stable in between the
instability segments {Ai}i.

The stability of the input D(t) during the critical
segments depends on the clock period. We will later
see that slowing down the clock (i.e. increasing the
clock period) helps in achieving a stable D(t) during the
critical segments.
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schematic of an edge triggered flip-flop

Q

clk ff

D

clock port is marked by an “arrow”.

we abbreviate and refer to an edge-triggered flip-flop
simply as a flip-flop.

Question: Prove that an edge-triggered flip-flop is not a

combinational circuit.
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Arbitration
Arbitration is the problem of deciding which event occurs
first.

Focus on the task of determining which of two signals
reaches 1 first.

A0(t)

A1(t)

A0(t)

A1(t)

A0(t) reaches 1 first A1(t) reaches 1 first
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Definition: arbiter

Inputs: Non-decreasing analog signals A0(t), A1(t) defined
for every t ≥ 0.

Output: An analog signal Z(t).

Functionality: Assume that A0(0) = A1(0) = 0. Define Ti, for
i = 0, 1, as follows:

Ti
4

= inf{t | dig(Ai(t)) = 1}.

Let t′
4

= 10 + max{T0, T1}. The output Z(t) must satisfy,
for every t ≥ t′,

dig(Z(t)) =











0 if T0 < T1 − 1

1 if T1 < T0 − 1

0 or 1 otherwise.
– p.13



Arbiter - remarks

Ti
4

= inf{t | dig(Ai(t)) = 1}.

If T0 or T1 equals infinity, then t′ = ∞, and there is no
requirement on the output Z(t).

Arbiter circuit is given 10 time units starting from
max{T0, T1} to determine if T0 < T1 or T1 < T0.

tie: the case that |T0 − T1| ≤ 1.

In the case of a tie, the arbiter is free to decide, but
must decide. Z(t) is stable in the interval [t,∞).

– p.14
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Arbiters - an impossibility result

Claim: There does not exist a circuit C that implements an
arbiter.

Inherent limitation - not just a weakness of the digital
abstraction.

Use the claim to show that flip-flops must have critical
segments.

– p.15
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Proof: every circuit C is not an arbiter

Define A0(t) so that T0 = 100 as follows:

A0(t)
4

=

{

t
100

· Vhigh,in if t ∈ [0, 100]

Vhigh,in if t > 100.

Fix a parameter x ∈ [−2, 2] and define A1(t) so that
T1 = 100 + x as follows:

A1(t)
4

=

{

t
100+x

· Vhigh,in if t ∈ [0, 100 + x]

Vhigh,in if t > 100 + x.

Define the function f(x) by f(x)
4

= Z(200).

We study the function f(x) in the interval x ∈ [−2, 2].

– p.16
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T1 = 100 + x as follows:
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4
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Proof: every circuit C is not an arbiter - cont.

x = −2⇒T1 = 100 + x = 98. It follows that A1(t) “wins”,
and dig(Z(200)) = 1. Hence f(−2) ≥ Vhigh,out.

x = 2⇒T1 = 100 + x = 102. It follows that A0(t) “wins”,
and dig(Z(200)) = 0. Hence f(2) ≤ Vlow,out.

claim: f(x) is continuous (will prove this later).

Mean Value theorem ⇒

∀y ∈ [Vlow,out, Vhigh,out] ∃x ∈ [−2, 2] : f(x) = y.

Pick y such that dig(y) = non-logical.

⇒ There exist valid inputs A0(t), A1(t) with t′ ≤ 112,
such that dig(Z(200)) =non-logical.

⇒ C is not an arbiter. QED.
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Proof: f (x) is continuous

Rely on the assumption that an infinitesimal change in the
energy of input signals causes an infinitesimal change in
the energy of the output. Otherwise, noise would cause
uncontrollable changes in Z(t) and the circuit C would not
be useful anyhow.

The output Z(200) depends on the following:

1. The initial state of the device C at time t = 0. We
assume that the device C is in a stable state and that
the charge is known everywhere.

2. The signal Ai(t) in the interval [0, 200], for i = 0, 1.

– p.18
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Proof: f (x) is continuous - cont.

Consider an infinitesimal change in x. This change
affects A1(t) but does not affect A0(t) and the initial
state.

infinitesimal change of x ⇒ infinitesimal difference in
energy of A1(t).

infinitesimal difference in energy of A1(t) ⇒ infinitesimal
difference in Z(200).

⇒ f(x) is continuous.

– p.19
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Discussion: Arbiters - an impossibility result

Claim is counter-intuitive.

For every judge in a 100-meter dash, there exist two
runners whose running times are such that the judge
still hangs after an hour.

Implies that there does not exist a perfect judge who
can determine the winner in a 100-meters dash even if:
1. high speed cameras located at the finish line and

runners run very slowly.
2. we allow the judge several hours to decide.
3. we allow the judge to decide arbitrarily if the running

times of the winner and runner-up are within a
second.

– p.20
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player

ball

obstacle

P

Player - rolls a ball. Judge - announces decision if ball
passes point P one day after.

If speed of ball is above v′, then ball passes the
obstacle and then rolls past point P .

If speed of ball is below v′, then ball does not pass the
obstacle.

Judge is in trouble:

If speed= v′, then the ball reaches the tip of the
obstacle and may remain there indefinitely long!

If the ball remains on the obstacle’s tip 24 hours past the
throw, then the judge cannot announce her decision.

– p.21
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Meta-stability

Meta-stability - a state of equilibrium (i.e. zero force)
which is not a local minimum of energy (i.e. a slight
force causes a movement away from the state).

Inclined to say that the “probability of meta-stability
occurring is very small”. This requires a probability
distribution over the rolling speed v where

lim
ε→0

Pr(|v − v′| < ε) = 0.

– p.22
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Lessons learned

Certain tasks are not achievable with probability 1.

coin toss might end up with the coin standing on its
perimeter.
noise could be big enough to cause the digital value
of a signal to flip from zero to one. (increase noise
margin to reduce the probability of such an event.)
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Reducing the probability of meta-stability

Increase length of segment of instability.
Increasing the delay of the arbiter (significantly)
decreases the chances of meta-stability. E.g., ball
resting on the tip of the obstacle is likely to fall to one of
the sides.

Increase the slope of the transfer function in the range
of non-logical values. Similar to sharpening the tip of
the obstacle.

However, increasing the clock rate means that
“decisions” must be made faster (i.e. within a clock
period) and the chance of meta-stability increases.

– p.24
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Question

Does the proof of the Claim hold only if the signals Ai(t)
rise gradually?

Question: Prove the claim with respect to “fast” non-

decreasing signals Ai(t). Namely, the length of the interval

during which dig(Ai(t)) is non-logical equals ε.

– p.25



Flip-flops: necessity of critical segments

DEF: A flip-flop without a critical segment is a flip-flop in
which the setup-time and hold-time satisfy tsu = thold = 0.
The functionality is defined as follows:

For every i, Q(t) is logical (either zero or one) during the
interval t ∈ (ti + tpd, ti+1 + tcont) regardless of whether
D(ti) is logical.

If D(ti) is logical, then Q(t) = D(ti) during the interval
t ∈ (ti + tpd, ti+1 + tcont).

Just as the arbiter’s decision is free if a tie occurs, the flip-flop

is allowed to output either zero or one if D(ti) is not logical.

However, the output of the flip-flip must be logical once the

instability segment ends.

– p.26
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An arbiter based on a flip-flop without a critical segment

Z(t)

A0(t) ff

A1(t)

Assumptions:

flip-flop is without a critical segment.

tcont, tpd ≈ 10−9 time unit.

intervals during which the inputs A0(t) and A1(t) are
non-logical are also very short (e.g. 10−9 time unit).

Claim: The circuit above is an arbiter.

CORO: There does not exist a flip-flop without a critical sec-

tion.

– p.27
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non-logical are also very short (e.g. 10−9 time unit).

Claim: The circuit above is an arbiter.

CORO: There does not exist a flip-flop without a critical sec-
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Remarks

Z(t)

A0(t) ff

A1(t)

the signal A0(t) is input as a clock to the flip-flop, but
A0(t) is not a clock.

requirements from A0(t) are weaker than the
requirements from a clock. Instead of periodic
instantaneous transitions from zero to one and back,
A0(t) is non-decreasing.

the claim assumes only one “tick of the clock”, so we
may regard A0(t) as a clock with a very long period.

proof of claim does not rely on A0(t) rising slowly; the
claim holds regardless of the rate of change of A0(t).

– p.28
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Proof that circuit is an arbiter

We consider three cases:

|T1 − T0| ≤ 1: flip-flop’s output Z(t) is always logical at
time T0 + tpd, so circuit functions properly.

T1 < T0 − 1: if T1 < T0 − 1, then dig(A1(T0)) = 1. Hence
sampled value equals 1, and hence, dig(Z(t)) = 1, for
every t ≥ T0 + tpd.

T0 < T1 − 1: we claim that dig(A1(T0)) = 0, and hence,
dig(Z(t)) = 0, for every t ≥ T0 + tpd.

– p.29
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Proof that circuit is an arbiter - cont.

We need to show that T0 < T1 − 1⇒dig(A1(T0)) = 0.

T0 < T1⇒dig(A1(T0)) ∈ {0, non-logical}.

assumption on the fast transition of dig(A1(t)) implies:

dig(A1(T0)) = non-logical ⇒ dig(A1(T0 + 10−9)) = 1.

Hence, T1 ≤ T0 + 10−9 contradicting T1 > T0 + 1.

It follows that if T0 < T1 − 1, then dig(A1(T0)) = 0. QED

– p.30
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Corollary: conclusion

Critical segment is required to avoid meta-stability of the
flip-flop.

Without critical segment, flip-flop’s output can be non-logical

even after ti + tpd.

– p.31



An example: timing
clk

ff

clk

ff

combinational
circuit

C

D0(t) Q1(t)
D1(t)Q0(t)

d(C)

Ci Ai Ci+1 Ai+1

clk

D0(t)
tsu

thold

D1(t)

tpd

tcont

tpd

tcont

Q0(t)

Q1(t)
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An example: functionality
clk

ff

clk

ff

combinational
circuit

C

D0(t) Q1(t)
D1(t)Q0(t)

f(X)

X

X

f(X)

clk

D0(t)

D1(t)

Q0(t)

Q1(t)
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Non-disjoint segments: Ai ∩ Ci 6= ∅
clk

ff

clk

ff

combinational
circuit

C

D0(t) Q1(t)
D1(t)Q0(t)

d(C)

Ci Ci+1

Ci+1

clk

D0(t)
tsu

thold

D1(t)

Q0(t)

Q1(t)

Ai
Ai+1

tcont

tpd

tcont
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D1(t)Q0(t)
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What if Ai ∩ Ci 6= ∅?

Stability interval of D1(t) is:

[ti + tpd + d(C), ti+1 + tcont].

If tcont < thold, then D1(t) is not stable during

Ci+1 = [ti+1 − tsu, ti+1 + thold].

In this case, we need to rely on the contamination delay
cont(C) of the combinational circuit C.

Now D1(t) is stable during the interval

[ti + tpd + d(C), ti+1 + tcont + cont(C)].

If tcont + cont(C) > thold, then the signal D1(t) is stable

during the critical segment Ci+1, and correct functionality is

obtained.

– p.35
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Contamination delay of combinational circuits

Can help in obtaining stability during the critical
segment.

Many combinational gates have a positive
contamination delay. But some don’t.

Relying on the contamination delay of combinational
circuits complicates timing analysis.

We use a strict assumption that cont(C) = 0, for every
combinational circuit C. This does not cause incorrect
circuits even if cont(C) > 0.

– p.36
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Fixing Ai ∩ Ci 6= ∅

Question: Assume that we have an edge-triggered flip-flop
FF in which thold > tcont. Suppose that we have an inverter
with a contamination delay cont(INV) > 0.

Suggest how to design an edge-triggered flip-flop FF′

that satisfies thold(FF′) < tcont(FF′).

What are the parameters of FF′?

– p.37



D-Latch: parameters

characterized by two parameters tsu, thold

the critical segment is defined with respect to the falling
edge of the clock.

t′i - time of the falling edge of the clock during the ith
clock cycle.

critical segment of a D-latch is

[t′i − tsu, t
′

i + thold].

d - combinational delay of the D-latch.

– p.38
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D-Latch: definition

During the interval [ti + d, t′i), the output Q(t) satisfies:
Q(t) = D(t), provided that D(t) is stable during the
interval [t − d, t]. We say that the D-latch is transparent
during the interval [ti + d, t′i).

During the interval (t′i + thold, ti+1), if D(t) is stable
during the critical segment [t′i − tsu, t

′

i + thold], then
Q(t) = D(t′i). We say that the D-latch is opaque during
the interval (t′i + thold, ti+1).

– p.39
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D-Latch : story

D-latches are very important devices.

D-latches are cheaper than flip-flops, and in fact,
D-latches are the building blocks of flip-flops (e.g.
master/slave designs).

using D-latches wisely leads to faster designs.

designs based on D-latches require multiple clock
phases (or at least a clock CLK and its negation CLK).

Although timing with multiple clock phases is an
important and interesting topic, we do not deal with it in
this course.

– p.40
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Definition : clock enabled flip-flips

Inputs: Digital signals D(t), CE(t) and a clock CLK.

Output: A digital signal Q(t).

Functionality: If D(t) and CE(t) are stable during the critical
segment Ci, then for every t ∈ (ti + tpd, ti+1 + tcont)

Q(t) =

{

D(ti) if CE(ti) = 1

Q(ti) if CE(ti) = 0.

CE(t) - clock-enable signal.

CE(t) indicates whether the flip-flop samples the input
D(t) or maintains its previous value.

– p.41
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Clock enabled flip-flips : implementation

clk ff

mux

01

Q(t)

D(t)

ce(t)

(A)

ff

Q(t)

(B)

D(t)

clk

ce(t)
and

Question: Which design is correct?
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Clock enabled flip-flips : implementation - cont

clk ff

mux

01

Q(t)

D(t)

ce(t)

(A)

ff

Q(t)

(B)

D(t)

clk

ce(t)
and

Design (B) is wrong because:

output of the AND-gate is not a clock signal (glitches).

slow transitions of the output of the AND-gate (increase
hold time)

in some technologies, the flip-flop does not retain the
stored bit forever. ⇒ if CE(t) = 0 for a long period, then
the flip-flop’s output may become non-logical.
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Clock enabled flip-flips : implementation - cont

clk ff

mux

01

Q(t)

D(t)

ce(t)

(A)

ff

Q(t)

(B)

D(t)

clk

ce(t)
and

Question: Compute the parameters of the clock-enabled

flip-flop depicted in part (A) in terms of the parameters of the

edge-triggered flip-flop and the MUX.
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Summary

clock signal - definition, terminology

define edge-triggered flip-flops
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