- 1. Consider a combinational circuit $Partial_Sums(n, m)$ defined as follows:
 - Inputs: $a_1[n-1:0], ..., a_m[n-1:0] \in \{0,1\}^n$.
 - Outputs: $s_1[n-1:0], ..., s_m[n-1:0] \in \{0,1\}^n$.
 - Functionality: For every $i \in \{1, ..., m\}$:

$$\langle s_i[n-1:0]\rangle = \sum_{j=1}^i \langle a_j[n-1:0]\rangle \pmod{2^n}.$$

- (a) Consider the task of computing $s_m[n-1:0]$. Design a cheap and fast combinational circuit that computes $s_m[n-1:0]$. Prove the correctness of your design. (To get full credit the delay of your design should be $O(\log(Nam))$, and the cost should be O(nm)).
- (b) Consider the task of computing all the m partial sums $s_i[n-1:0]$, for $i \in \{1, \ldots, m\}$. Design a cheap and fast implementation of $Partial_Sums(n, m)$. Prove the correctness of your design. (To get full credit the delay of your design should be $O(\log(nm))$, and the cost should be O(nm)).
- (c) Prove a lower bound on the delay and cost of an implementation of $Partial_Sums(n, m)$. You may assume that the fan-in and fan-out of every gate is bounded by a constant.
- 2. Let Y_1 and Y_2 denote two synchronous circuits. Let $IN_i[a_i-1:0]$ and $OUT_i[b_i-1:0]$ denote the input and output, respectively, of Y_i . Assume that $a_0=b_1$ and $a_1=b_0$.

Let Y denote the circuit obtained by connecting the output of Y_1 to the input of Y_0 , and connecting the output of Y_0 to the input of Y_1 . The following figure depicts Y.

Figure 1: The circuit Y obtained from Y_1 and Y_2

- (a) Prove or disprove the statement: Y is a synchronous circuit.
- (b) Assume that Y is synchronous. Prove or disprove: There exists a real function f (independent of Y_0 and Y_1) such that for every Y_0 and Y_1

$$\Phi^*(Y) < f(\Phi^*(Y_0), \Phi^*(Y_1)).$$