Solution to exercise 1
1. (q3.2) This question was not a part of the home exercise.

 We prove that the following functions are associative:

a. fn(x1…xn) = a (a is a constant). Let k be an integer 1<k<n, than a ≡ fk(x1…xk) = fn-k(xk+1…xn) = constant. Similarly f(a,a) = a, which proves the claim.
b. fn(x1…xn) = x1 (x1 is the first variable). Let k be an integer 1<k<n, than x1 = fk(x1…xk), and xk+1 = fn-k(xk+1…xn). Similarly f(x1, xk+1) = x1 which proves the claim. The same hold for f = xn.

c. fn(x1…xn) = ORn (x1…xn). Let k be an integer 1<k<n, than denote y = ORk(x1…xk), and z = ORn-k(xk+1…xn). Assume x1 = x2 = … xn = 0, than y = z = 0. ( OR(y,z) = 0. Otherwise, let xt be the first input whose value equals 1, than if t < k we have y = 1,  whereas if t > k, we have z = 1. In both cases, OR(y,z) = 1 as required. The same proof works for ANDn.
d. fn(x1…xn) = XORn (x1…xn). We claim by induction on n that this function equals 1 if and only if the number of 1's is odd. For n=2 this is trivial, assume this is correct for all j<n, prove for n+1. Let x be a vector of length n+1, than it has odd number of ones if: 

i. xn+1 = 1 and x1…xn contains an even number of 1's.

ii. xn+1 = 0 and x1…xn contains an odd number of 1's.
In the first case, XOR(x1…xn) = 0, so XOR(XOR(x1…xn),xn+1) = 1.

In the second case XOR(x1…xn) = 1, so XOR(XOR(x1…xn),xn+1) = 1. Hence in both cases we have 1 if x1…xn+1 contains an odd number of 1's. A similar analysis for the even case yields the "only if" part of the claim. 

Now let k be an integer 1<k<n, than y = fk(x1…xk), and z = fn-k(xk+1…xn). If both y and z are even, or both y and z are odd, than the result is 0, and so is the number of 1's in x1…xn. If y=0 and z=1 or y=1 and z=0, than the result is 1, and so is the number of 1's in x1…xn. This proves the claim. The same proof holds for XNOR as well.

2. (q3.3a) A design based on OR-tree is simply connecting the inputs to an OR-tree, whose output is connected to a NOT gate. The function it implements is NOT(OR(x0…xn)) as required. The design has the following properties: 
c(n) = n, d(n) = log(n) + 1 (the log is rounded up).

(q3.3b) A design based on AND-tree is simply connecting each input to a NOT gate, and then connect all these "inverse-inputs" to an AND-tree. The design has the following properties: 

c(n) = n, d(n) = log(n) + 1 (the log is rounded up).

(q3.3c) A design based on tree of NOR-gates is not possible, since NOR is not an associative function. Hence changing the order of the bits in x may yield a change in the result, whereas in the required function this can not happen. 
It is also possible to analyze directly the result of NOR-tree of size 4 (for instance), and see that it equals to (x1+x2)(x3+x4) which is not the required function. 

3. (q3.4) Claim: If Tn is a rooted binary tree with n leaves then the depth of Tn is at lease ┌log2 n┐. 
The proof is by induction on n, the number of leaves. Note that the basis of induction contains an infinite number of trees. For example: the tree which contains a single node v; the tree that contains two nodes r(v; the tree that contains three nodes r(a(v, and so on.  

Assume the claim holds for any tree of up to n leaves, we prove it for an arbitrary tree with n+1 leaves. Let T be such a tree, and let r be its root. Than either r has one son or it has two sons. Assume r has one son a, than the tree rooted at a is a binary tree, with n+1 leaves whose height is smaller than the height of T. Hence it is suffices to show that for this tree the claim holds (this is because we are interested in a lower bound for the height). If a has one son, we repeat this argument until we reach a vertex v which has 2 sons (there must be such a vertex otherwise the tree is T1).
For the case where the r has two sons, we denote by r' and r'' the sons, and denote by T' and T'' the trees rooted at them. Each of these trees has less than n+1 leaves, but the sum of the leaves must be n+1, therefore either T' or T'' (or both) have at least ┌(n+1)/2┐ leaves. Assume without loss of generality that T' have k ≥ ┌(n+1)/2┐ leaves. Then using the induction hypothesis, its height is at least ┌log(┌(n+1)/2┐)┐. However : height(T)≥1+height(T')≥1+┌log(┌(n+1)/2┐)┐≥┌log (n+1) ┐ and the claim follows.
4. (q3.5) Let n be a power of 2, i.e., n = 2k. We prove that a complete binary tree with n leaves has depth k. The proof is done by induction on k. The induction basis is trivial, since the only complete binary tree with 1 leaf is just the leaf, so its depth is 1. 

Assume that for any s≤k a complete binary tree of 2s leaves is of depth s, we prove it for complete binary tree of 2k+1 leaves. Let r be the root of the tree, since the tree is complete r has two sons, a and b. Each tree rooted in either a or b is complete, and has exactly 2k leaves. This follows since in a complete tree these sub-trees are congruent. Now we apply the induction hypothesis for these trees, and obtain that their height is k. ( The height of the whole tree is k+1.  
5. (q3.7) Note that the ┌log2 a┐ is the number of digits in its binary form. Next, a number n of the given form, is bigger than 2k-1, and hence its length is k (if we denote the LSB as bit #0, then the bit number k-1 is 1). Finally, the requirements on a and b are such that at least one of them must be bigger than ┌n/2┐. Hence at least one of them has 1 in digit k-2, and the claim follows. 
6. (q3.8) From question 3.4 we now that the height of any binary tree with leaves is at least f(n) ≡ ┌log2 n┐, hence all we need to prove that the height of the tree is no bigger than ┌log2 n┐. The proof is by induction on n. The basis of induction are the cases n=1,2 and they follow directly from step 1 of the algorithm. 
Assume this height of the tree that algorithm generates for any k≤n-1 is f(k), we prove it for k=n. 

We analyze the first step of the algorithm. Let a and b be the numbers the 


Algorithm chose. Using the induction hypothesis, the height of the tree Ta and 


Tb is f(a) and f(b) correspondingly. However, since (a,b) is a balanced

 
partition, we have height(T) = 1+max{height(a),height(b)} = 1+max{f(a),f(b)} 


(this follows from the induction hypothesis) 
= 1 + f(n) – 1 (this follows from

 definition 3.5) = f(n). 

7. (q3.9) First we need the following claim: Let T be a tree of degree bounded by k, and let S(T) be the number of interior nodes in T, and L(T) be the number of leaves in T. Then S(T) ≥ (L(T) – 2)/(k-2). 
We prove this claim by induction on the number of leaves. For L<3 it is trivial, for L=3 we must have one interior node, proving the basis. 

We prove the induction step. Let T be a tree with n+1 leaves, we root T in an arbitrary node r, and find a leaf a, which is most distant from r. We denote by p the parent of a in the rooted tree. If p has less then k-1 leaves, we may add leaves to p and it would only strengthen the claim. Hence we may assume without loss of generality that p has k-1 leaves. Now we remove the leaves of p, and perform the calculations on the smaller tree T'. L(T') =  L(T) – (k-1)+1 = L(T) – (k-2). S(T') = S(T) – 1. Using the induction hypothesis on L(T') and S(T'), the claim follows. 
Now we can repeat the proof: For a tree-circuit, the cone is input +output hence equals n+1, so there must be at least (cone-1)/(k-2) interior gates. The second part of the claim in which construct a "spanning" sub-graph does not change the bound, and hence we obtain c(C) ≥ (cone(f) – 1)/(k-2). 
