Solution to exercise 2
1. (q5.1) 

a. We prove the correctness of the design for the case when n is 2k.  Let <s> be the value of, then by the correctness of the decoder(k), we know that all the bits on the output of the decoder are 0 except for the bit in the k-place. Hence we conclude that in the output of the parallel AND gate, all the bits are 0, except for the bit <s> which equals D[<s>]. Now we deal with two cases: if this bit is 0, then all the bits entering the OR-tree are 0, and the output is 0. If on the other hand this bit is 1, then the output of the OR-tree is 1, which completes the proof. 
b. d(n) = 1+d(OR-tree(n))+d(DECODER(log n)) = (log n).

c. c(n) = 1+c(OR-tree(n))+c(DECODER(log n)) = (n).

d. The optimality of both factors follows from cone arguments, since y depends non-trivially on all the bits of the inputs D. Namely, if we assume (by contradiction) that it doesn't depend on D[j], then by choosing S such that <s> = j, we get that the circuit errs when this input takes either 0 or 1 (note the output of such independent circuit must take the same value for both inputs).
2. (q5.2) We prove the correctness of the design by induction on k. For the case k=1, the design is trivial. Assume the design is correct for k, we prove it for k+1. If <s> < n/2 then S[k-1] = 0, and hence in the last MUX we choose the right value. If on the other hand, <s> ≥ n/2 S[k-1] = 1 and we choose the left value. For the first case the result follows from the induction hypothesis. For the second case, the number of the bit in the leftt string is <S[k-2:0]>, and hence we may use the induction hypothesis and the claim follows. 
d(n) = d(n/2) +1 ( d(n) = (log n). c(n) = 2*c(n/2) + 1 ( c(n) = (n). 

The proof of the lower bound remains unchanged.

3. (q5.4) Claim: The CLS operation is commutative, namely CLS(CLS(S,k),j) = CLS(CLS(S,j),k). This claim follows trivially from checking the new place of a bit S(z) under both transformations. Note that mod(mod(z+j,2)+k,2) = mod(z+j+k,2) = mod(z+k+j,2) = mod(mod(z+k,2)+j,2). 
Applying this claim for all 1 ≤ z ≤ n the result follows. 
d(n) = d(CLS(n,0)) + d(CLS(n,1)) + … d(CLS(n,k)) = 1+1+..1 = (log n).

c(n) = c(CLS(n,0)) + c(CLS(n,1)) + … c(CLS(n,k)) = n+n+..n = (n log n).

The delay of the design follows from cone arguments, since any output bit

 depends on the value of all input bits. 
A lower bound of the cost is linear for the same reasons. 

4. (q4.8) We prove it by induction on n. The basis of induction (n=1) is trivial, since we need to encode 2 bits, so the two smaller encoders are empty and the output bit exactly equals the OR-tree. (it is 0 both if all bits are 0 and if the first bit is 1).  
Assume the design is correct for all n ≤ k, we prove it for n = k+1. We divide it to three cases. The case where all input bits equals 0, yields that the results of the smaller encoders are 0. ( All the bits that enters the OR gates are 0, and the output is 0. 

The case where the 1 is in the right part is also trivial, since by the induction hypothesis, we get that the left part of the circuit is 0, (and hence the leftmost bit 0 too), whereas the right part encode the number correctly. 

The case where the 1 is in the left part of the y, needs a closer look. Assume the bit y[2n-1] = 1, then yL[0] = y[2n-1] = 1, hence the result of the OR-tree is 1. However, the result of both encoders are 0, so the inputs of the parallel OR are all 0, and the obtained number is 100…00, as should be. Assume on the other hand that the bit y[2n-1+r] = 1 (where r>0), than the right encoder outputs 0, and the left encoder output <r>. However, for any such <r>  at least one of the bits is 1, so the output of the OR-tree is 1 as well, and the correctness is proved. 
