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Preliminary Questions
How is time measured in a synchronous circuit?
What is the functionality of a flip-flop?
What is a stable state? How many stable states does a
flip-flop have?
How does a flip-flop move from one stable state to
another? How fast is this transition?
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Goals
introduce clock signal.
define edge-triggered flip-flops.
discuss parameters of flip-flops: setup time, hold time,
contamination delay, propagation delay.
explain importance of critical segment.
understand timing of a flip-flop.
other memory devices.
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The Clock
logical level

0

1
pulse width

time

clock fall clock rise
clock period

digital signal with periodic oscillations between 0 and 1.
transitions are instantaneous.
each clock period starts with a 0→ 1 transition.
1→ 0 transition in the interior of the clock period.
we denote the clock signal by CLK.
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Clock terminology

logical level

0

1

time

(A)

(B)

(C)

logical level

0

1

time

logical level

0

1

time

clock period - denoted by
ϕ(CLK).
clock pulse - interval
during which CLK(t) = 1.
CLKpw - duration of clock
pulse.
symmetric clock - if
CLKpw = ϕ(CLK)/2.
narrow pulses - if
CLKpw < ϕ(CLK)/2.
wide pulses - if
CLKpw > ϕ(CLK)/2.
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Clock cycles
A clock partitions time into discrete intervals as follows:

Let ti denote the starting time of the ith clock period.
We refer to the half-closed interval [ti, ti+1) as clock
cycle i.
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Parameters of an Edge-triggered Flip-Flop
Setup-time denoted by tsu,
Hold-time denoted by thold,
Contamination-delay denoted by tcont,
Propagation-delay denoted by tpd.

These parameters satisfy −tsu < thold < tcont < tpd.
Notation:

critical segment: Ci = [ti − tsu, ti + thold].
instability segment: Ai = [ti + tcont, ti + tpd].

Ci

clk

Ai – p.7



Definition: Edge-triggered Flip-Flop
Inputs: A digital signal D(t) and a clock CLK.
Output: A digital signal Q(t).
Functionality: If D(t) is stable during the critical segment Ci,

then Q(t) = D(ti) during the interval
(ti + tpd, ti+1 + tcont).

Ci Ai Ci+1 Ai+1

clk

D(t)
tsu

thold

tpd

tcont

Q(t)
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Remarks on definition of flip-flop
Ci Ai Ci+1 Ai+1

clk

D(t)
tsu

thold

tpd

tcont

Q(t)

−tsu < thold < tcont < tpd =⇒ Ci ∩ Ai = ∅.
Stability of D(t) during Ci ⇒ digital value of D(t) during
the critical segment Ci is logical and equals D(ti).
Flip-flop samples D(t) during Ci. The sampled value
D(ti) is output during the interval [ti + tpd, ti+1 + tcont].
Sampling is successful only if D(t) is stable while it is
sampled. This is why we refer to Ci as a critical
segment. – p.9



Remarks on definition of flip-flop - cont.
Ci Ai Ci+1 Ai+1

clk

D(t)
tsu

thold

tpd

tcont

Q(t)

If the input D(t) is stable during the critical segments
{Ci}i, then the output Q(t) is stable in between the
instability segments {Ai}i.
The stability of the input D(t) during the critical
segments depends on the clock period. We will later
see that slowing down the clock (i.e. increasing the
clock period) helps in achieving a stable D(t) during the
critical segments.
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schematic of an edge triggered flip-flop

Q

clk ff

D

clock port is marked by an “arrow”.
we abbreviate and refer to an edge-triggered flip-flop
simply as a flip-flop.

Question: Prove that an edge-triggered flip-flop is not a
combinational circuit.
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Arbitration
Arbitration is the problem of deciding which event occurs
first.

Focus on the task of determining which of two signals
reaches 1 first.

A0(t)

A1(t)

A0(t)

A1(t)

A0(t) reaches 1 first A1(t) reaches 1 first
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Definition: arbiter
Inputs: Non-decreasing analog signals A0(t), A1(t) defined

for every t ≥ 0.
Output: An analog signal Z(t).
Functionality: Assume that A0(0) = A1(0) = 0. Define Ti, for

i = 0, 1, as follows:

Ti
4

= inf{t | dig(Ai(t)) = 1}.

Let t′
4

= 10 + max{T0, T1}. The output Z(t) must satisfy,
for every t ≥ t′,

dig(Z(t)) =











0 if T0 < T1 − 1

1 if T1 < T0 − 1

0 or 1 otherwise.
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Arbiter - remarks

Ti
4

= inf{t | dig(Ai(t)) = 1}.

If T0 or T1 equals infinity, then t′ =∞, and there is no
requirement on the output Z(t).
Arbiter circuit is given 10 time units starting from
max{T0, T1} to determine if T0 < T1 or T1 < T0.
tie: the case that |T0 − T1| ≤ 1.
In the case of a tie, the arbiter is free to decide, but
must decide. Z(t) is stable in the interval [t,∞).

– p.14



Arbiters - an impossibility result
Claim: There does not exist a circuit C that implements an
arbiter.

Inherent limitation - not just a weakness of the digital
abstraction.
Use the claim to show that flip-flops must have critical
segments.
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Proof: every circuit C is not an arbiter
Define A0(t) so that T0 = 100 as follows:

A0(t)
4

=

{

t
100
· Vhigh,in if t ∈ [0, 100]

Vhigh,in if t > 100.

Fix a parameter x ∈ [−2, 2] and define A1(t) so that
T1 = 100 + x as follows:

A1(t)
4

=

{

t
100+x

· Vhigh,in if t ∈ [0, 100 + x]

Vhigh,in if t > 100 + x.

Define the function f(x) by f(x)
4

= Z(200).

We study the function f(x) in the interval x ∈ [−2, 2].
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Proof: every circuit C is not an arbiter - cont.

x = −2⇒T1 = 100 + x = 98. It follows that A1(t) “wins”,
and dig(Z(200)) = 1. Hence f(−2) ≥ Vhigh,out.

x = 2⇒T1 = 100 + x = 102. It follows that A0(t) “wins”,
and dig(Z(200)) = 0. Hence f(2) ≤ Vlow,out.

claim: f(x) is continuous (will prove this later).
Mean Value theorem⇒

∀y ∈ [Vlow,out, Vhigh,out] ∃x ∈ [−2, 2] : f(x) = y.

Pick y such that dig(y) = non-logical.
⇒ There exist valid inputs A0(t), A1(t) with t′ ≤ 112,
such that dig(Z(200)) =non-logical.
⇒ C is not an arbiter. QED.
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Proof: f (x) is continuous
Rely on the assumption that an infinitesimal change in the
energy of input signals causes an infinitesimal change in
the energy of the output. Otherwise, noise would cause
uncontrollable changes in Z(t) and the circuit C would not
be useful anyhow.

The output Z(200) depends on the following:
1. The initial state of the device C at time t = 0. We

assume that the device C is in a stable state and that
the charge is known everywhere.

2. The signal Ai(t) in the interval [0, 200], for i = 0, 1.
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Proof: f (x) is continuous - cont.
Consider an infinitesimal change in x. This change
affects A1(t) but does not affect A0(t) and the initial
state.
infinitesimal change of x⇒ infinitesimal difference in
energy of A1(t).
infinitesimal difference in energy of A1(t)⇒ infinitesimal
difference in Z(200).
⇒ f(x) is continuous.
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Discussion: Arbiters - an impossibility result

Claim is counter-intuitive.
For every judge in a 100-meter dash, there exist two
runners whose running times are such that the judge
still hangs after an hour.
Implies that there does not exist a perfect judge who
can determine the winner in a 100-meters dash even if:
1. high speed cameras located at the finish line and

runners run very slowly.
2. we allow the judge several hours to decide.
3. we allow the judge to decide arbitrarily if the running

times of the winner and runner-up are within a
second.
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player

ball

obstacle

P

Player - rolls a ball. Judge - announces decision if ball
passes point P one day after.
If speed of ball is above v′, then ball passes the
obstacle and then rolls past point P .
If speed of ball is below v′, then ball does not pass the
obstacle.

Judge is in trouble:
If speed= v′, then the ball reaches the tip of the
obstacle and may remain there indefinitely long!
If the ball remains on the obstacle’s tip 24 hours past the
throw, then the judge cannot announce her decision. – p.21



Meta-stability

Meta-stability - a state of equilibrium (i.e. zero force)
which is not a local minimum of energy (i.e. a slight
force causes a movement away from the state).
Inclined to say that the “probability of meta-stability
occurring is very small”. This requires a probability
distribution over the rolling speed v where

lim
ε→0

Pr(|v − v′| < ε) = 0.
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Lessons learned
Certain tasks are not achievable with probability 1.

coin toss might end up with the coin standing on its
perimeter.
noise could be big enough to cause the digital value
of a signal to flip from zero to one. (increase noise
margin to reduce the probability of such an event.)

– p.23



Reducing the probability of meta-stability

Increase length of segment of instability.
Increasing the delay of the arbiter (significantly)
decreases the chances of meta-stability. E.g., ball
resting on the tip of the obstacle is likely to fall to one of
the sides.
Increase the slope of the transfer function in the range
of non-logical values. Similar to sharpening the tip of
the obstacle.
However, increasing the clock rate means that
“decisions” must be made faster (i.e. within a clock
period) and the chance of meta-stability increases.
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Question
Does the proof of the Claim hold only if the signals Ai(t)
rise gradually?
Question: Prove the claim with respect to “fast” non-
decreasing signals Ai(t). Namely, the length of the interval
during which dig(Ai(t)) is non-logical equals ε.
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Flip-flops: necessity of critical segments

DEF: A flip-flop without a critical segment is a flip-flop in
which the setup-time and hold-time satisfy tsu = thold = 0.
The functionality is defined as follows:

For every i, Q(t) is logical (either zero or one) during the
interval t ∈ (ti + tpd, ti+1 + tcont) regardless of whether
D(ti) is logical.
If D(ti) is logical, then Q(t) = D(ti) during the interval
t ∈ (ti + tpd, ti+1 + tcont).

Just as the arbiter’s decision is free if a tie occurs, the flip-flop
is allowed to output either zero or one if D(ti) is not logical.
However, the output of the flip-flip must be logical once the
instability segment ends.
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An arbiter based on a flip-flop without a critical segment

Z(t)

A0(t) ff

A1(t)

Assumptions:
flip-flop is without a critical segment.
tcont, tpd ≈ 10−9 time unit.
intervals during which the inputs A0(t) and A1(t) are
non-logical are also very short (e.g. 10−9 time unit).

Claim: The circuit above is an arbiter.
CORO: There does not exist a flip-flop without a critical sec-
tion. – p.27



Remarks

Z(t)

A0(t) ff

A1(t)

the signal A0(t) is input as a clock to the flip-flop, but
A0(t) is not a clock.
requirements from A0(t) are weaker than the
requirements from a clock. Instead of periodic
instantaneous transitions from zero to one and back,
A0(t) is non-decreasing.
the claim assumes only one “tick of the clock”, so we
may regard A0(t) as a clock with a very long period.
proof of claim does not rely on A0(t) rising slowly; the
claim holds regardless of the rate of change of A0(t). – p.28



Proof that circuit is an arbiter
We consider three cases:
|T1 − T0| ≤ 1: flip-flop’s output Z(t) is always logical at
time T0 + tpd, so circuit functions properly.
T1 < T0 − 1: if T1 < T0 − 1, then dig(A1(T0)) = 1. Hence
sampled value equals 1, and hence, dig(Z(t)) = 1, for
every t ≥ T0 + tpd.
T0 < T1 − 1: we claim that dig(A1(T0)) = 0, and hence,
dig(Z(t)) = 0, for every t ≥ T0 + tpd.
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Proof that circuit is an arbiter - cont.

We need to show that T0 < T1 − 1⇒dig(A1(T0)) = 0.
T0 < T1⇒dig(A1(T0)) ∈ {0, non-logical}.
assumption on the fast transition of dig(A1(t)) implies:

dig(A1(T0)) = non-logical ⇒ dig(A1(T0 + 10−9)) = 1.

Hence, T1 ≤ T0 + 10−9 contradicting T1 > T0 + 1.

It follows that if T0 < T1 − 1, then dig(A1(T0)) = 0. QED
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Corollary: conclusion
Critical segment is required to avoid meta-stability of the
flip-flop.
Without critical segment, flip-flop’s output can be non-logical
even after ti + tpd.
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An example: timing
clk

ff

clk

ff

combinational
circuit

C

D0(t) Q1(t)
D1(t)Q0(t)

d(C)

Ci Ai Ci+1 Ai+1

clk

D0(t)
tsu

thold

D1(t)

tpd

tcont

tpd

tcont

Q0(t)

Q1(t)
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An example: functionality
clk

ff

clk

ff

combinational
circuit

C

D0(t) Q1(t)
D1(t)Q0(t)

f(X)

X

X

f(X)

clk

D0(t)

D1(t)

Q0(t)

Q1(t)
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Non-disjoint segments: Ai ∩ Ci 6= ∅
clk

ff

clk

ff

combinational
circuit

C

D0(t) Q1(t)
D1(t)Q0(t)

d(C)

Ci Ci+1

Ci+1

clk

D0(t)
tsu

thold

D1(t)

Q0(t)

Q1(t)

Ai
Ai+1

tcont

tpd

tcont

tpd

d(C)

Ci Ci+1

Ci+1

clk

D0(t)
tsu

thold

D1(t)

Q0(t)

Q1(t)

Ai
Ai+1

tcont

tpd

tcont

tpd
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What if Ai ∩ Ci 6= ∅?
Stability interval of D1(t) is:

[ti + tpd + d(C), ti+1 + tcont].

If tcont < thold, then D1(t) is not stable during

Ci+1 = [ti+1 − tsu, ti+1 + thold].

In this case, we need to rely on the contamination delay
cont(C) of the combinational circuit C.
Now D1(t) is stable during the interval

[ti + tpd + d(C), ti+1 + tcont + cont(C)].

If tcont + cont(C) > thold, then the signal D1(t) is stable dur-
ing the critical segment Ci+1, and correct functionality is ob-
tained. – p.35



Contamination delay of combinational circuits

Can help in obtaining stability during the critical
segment.
Many combinational gates have a positive
contamination delay. But some don’t.
Relying on the contamination delay of combinational
circuits complicates timing analysis.
We use a strict assumption that cont(C) = 0, for every
combinational circuit C. This does not cause incorrect
circuits even if cont(C) > 0.
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Fixing Ai ∩ Ci 6= ∅

Question: Assume that we have an edge-triggered flip-flop
FF in which thold > tcont. Suppose that we have an inverter
with a contamination delay cont(INV) > 0.

Suggest how to design an edge-triggered flip-flop FF′

that satisfies thold(FF′) < tcont(FF′).
What are the parameters of FF′?
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D-Latch: parameters
characterized by two parameters tsu, thold

the critical segment is defined with respect to the falling
edge of the clock.
t′i - time of the falling edge of the clock during the ith
clock cycle.
critical segment of a D-latch is

[t′i − tsu, t
′
i + thold].

d - combinational delay of the D-latch.
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D-Latch: definition
During the interval [ti + d, t′i), the output Q(t) satisfies:
Q(t) = D(t), provided that D(t) is stable during the
interval [t− d, t]. We say that the D-latch is transparent
during the interval [ti + d, t′i).
During the interval (t′i + thold, ti+1), if D(t) is stable
during the critical segment [t′i − tsu, t′i + thold], then
Q(t) = D(t′i). We say that the D-latch is opaque during
the interval (t′i + thold, ti+1).
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D-Latch : story
D-latches are very important devices.
D-latches are cheaper than flip-flops, and in fact,
D-latches are the building blocks of flip-flops (e.g.
master/slave designs).
using D-latches wisely leads to faster designs.
designs based on D-latches require multiple clock
phases (or at least a clock CLK and its negation CLK).
Although timing with multiple clock phases is an
important and interesting topic, we do not deal with it in
this course.

– p.40



Definition : clock enabled flip-flips
Inputs: Digital signals D(t), CE(t) and a clock CLK.
Output: A digital signal Q(t).
Functionality: If D(t) and CE(t) are stable during the critical

segment Ci, then for every t ∈ (ti + tpd, ti+1 + tcont)

Q(t) =

{

D(ti) if CE(ti) = 1

Q(ti) if CE(ti) = 0.

CE(t) - clock-enable signal.
CE(t) indicates whether the flip-flop samples the input
D(t) or maintains its previous value.
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Clock enabled flip-flips : implementation

clk ff

mux

01

Q(t)

D(t)

ce(t)

(A)

ff

Q(t)

(B)

D(t)

clk

ce(t)
and

Question: Which design is correct?
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Clock enabled flip-flips : implementation - cont

clk ff

mux

01

Q(t)

D(t)

ce(t)

(A)

ff

Q(t)

(B)

D(t)

clk

ce(t)
and

Design (B) is wrong because:
output of the AND-gate is not a clock signal (glitches).
slow transitions of the output of the AND-gate (increase
hold time)
in some technologies, the flip-flop does not retain the
stored bit forever. ⇒ if CE(t) = 0 for a long period, then
the flip-flop’s output may become non-logical.
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Clock enabled flip-flips : implementation - cont

clk ff

mux

01

Q(t)

D(t)

ce(t)

(A)

ff

Q(t)

(B)

D(t)

clk

ce(t)
and

Question: Compute the parameters of the clock-enabled
flip-flop depicted in part (A) in terms of the parameters of the
edge-triggered flip-flop and the MUX.
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Summary
clock signal - definition, terminology
define edge-triggered flip-flops
prove that critical segments are crucial:

arbitration - the problem of deciding “whose first”
prove that arbiters do not exist
use this proof to show that critical segments are
crucial

a timing example
other memory devices: D-latch & clock-enabled flip-flop
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Preliminary Questions
What is a synchronous circuit?
How can we tell if the clock period is not too short? Is it
possible to compute the minimum clock period?
Is it possible to separate between the timing analysis
and functionality in synchronous circuits?
How can we initialize a synchronous circuit?

– p.2



Goals
define synchronous circuits.
analyze timing (start with simple case...).
define: timing constraints.
find out if timing constraints are feasible.
define: minimum clock period.
algorithm: check if timing constraints are feasible.
algorithm: compute minimum clock period.

– p.3



Striping flip-flops away
C - a circuit composed of combinational gates, nets,
and flip-flops with a clock net called CLK.
C ′ - a circuit obtained from C by:
1. deleting the CLK net,
2. deleting the input gate that feeds the CLK net, and
3. replacing each flip-flip with an output gate (instead of

the port D) and an input gate (instead of the port Q).
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Striping flip-flops away - example

clk

ff

and3

clk

ff

or

and3

or
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Definition: Synchronous Circuit
A synchronous circuit is a circuit C composed of
combinational gates, nets, and flip-flops that satisfies the
following conditions:
1. There is a net called CLK that carries a clock signal.
2. The CLK net is fed by an input gate.
3. The set of ports that are fed by the CLK net equals the

set of clock-inputs of the flip-flops.
4. The circuit C ′ obtained from C by stripping away

flip-flops is combinational.
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remarks on the definition of synchronous circuits

CLK connected to all the clock-ports of flip-flops and only
to them.
We already saw that a “bad example” in which CLK feeds
a gate:

clk

ce(t)
and ff

Q(t)

D(t)
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remarks on the definition of synchronous circuits

Question: What is required so that the D-port is stable
during the critical segment in this “bad example”:

comb. logic ffD Q

clkclk

and
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back to the first example

clk

ff

and3

clk

ff

or

and3

or

Question: Is this a synchronous circuit?
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Recognizing a synchronous circuit
Question: Suggest an efficient algorithm that decides if a
given circuit is synchronous.

Recall the definition:
A synchronous circuit is a circuit C composed of
combinational gates, nets, and flip-flops that satisfies the
following conditions:
1. There is a net called CLK that carries a clock signal.
2. The CLK net is fed by an input gate.
3. The set of ports that are fed by the CLK net equals the

set of clock-inputs of the flip-flops.
4. The circuit C ′ obtained from C by stripping away

flip-flops is combinational.
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Synchronous Circuits: canonic form

comb. circuit
λ

comb. circuit
δ

Q D

clk

IN

OUT

S NS

Transform a synchronous to
canonic form:

gather the flip-flops into
one group.
duplicate the combina-
tional circuits to separate
between output and next-
state.
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Stability Interval
stability interval of signal X - interval during which X is
stable.
stable(X)i - stability interval of X corresponding to
clock cycle i.

clk

D0(t)

D1(t)

Q0(t)

Q1(t)

ti ti+1

stable(D0)i−1 stable(D0)i

stable(Q0)i

stable(D1)i

stable(Q1)i
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Timing analysis: the canonic form
Plan:

Define timing constraints for IN and OUT .
Define timing constraints for S and NS.
Find sufficient conditions so that timing constraints are
feasible.
Define minimum clock period.
Infer functionality from syntax.
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Input/output timing constraints
The input/output timing constraints formulate the timing
interface between the the circuit and the “external
world”.
Input timing constraint - tells us when the input is
guaranteed to be stable.
Output timing constraint - tells us when the circuit’s
output is required to be stable.
Usually the external world is also a synchronous circuit.
⇒ IN is an output of another synchronous circuit, and
OUT is an input of another synchronous circuit.
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Input timing constraint
The timing constraint corresponding to IN is defined by two
parameters: pd(IN) > cont(IN) as follows.

∀i : [ti + pd(IN), ti+1 + cont(IN)] ⊆ stable(IN)i.

Remarks:
ti - denotes the starting time of the ith clock period.
Why do we require that pd(IN) > cont(IN)?
If pd(IN) ≤ cont(IN), then the stability intervals
stable(IN)i and stable(IN)i+1 overlap. This means that
IN is always stable, which is obviously not an
interesting case.

– p.15



Output timing constraint
The timing constraint corresponding to OUT is defined by
two parameters: setup(OUT ) and hold(OUT ) as follows.

∀i : [ti+1 − setup(OUT ), ti+1 + hold(OUT )] ⊆ stable(OUT )i.

Remark: Note that that timing constraint of OUT is given
relative to the end of the ith cycle (i.e. ti+1) .
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Remarks
Asymmetry in the terminology regarding IN and OUT .
The parameters associated with IN are pd(IN) and
cont(IN), whereas the parameters associated with
OUT are setup(OUT ) and hold(OUT ).
this is not very aesthetic if OUT is itself an input to
another synchronous circuit.
useful to regard IN as an output of a flip-flip and OUT
as an input of a flip-flop (even if they are not).
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Timing constraint of NS

NS is stable during the critical segments. Namely,

∀i ≥ 0 : Ci+1 ⊆ stable(NS)i.

Remark: Note that, as in the case of the output signal, the
timing constraint of NS corresponding to clock cycle i is
relative to the end of the ith clock cycle (i.e. the critical
segment Ci+1).

Remark: If NS satisfies its timing constraint for i , then S
satisfies:

[ti+1 + tpd, ti+2 + tcont] ⊆ stable(S)i+1.
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Stability Intervals of OUT & NS

We associate a contamination delay cont(x) and a
propagation delay pd(x) with each combinational circuit
x.
If [ti + tpd, ti+1 + tcont] ⊆ stable(S)i, then the stability
intervals of the signals OUT and NS satisfy:

[ti+max{tpd, pd(IN)}+pd(λ), ti+1+min{tcont, cont(IN)}+cont(λ)]

⊆ stable(OUT )i

[ti+max{tpd, pd(IN)}+pd(δ), ti+1+min{tcont, cont(IN)}+cont(δ)]
⊆ stable(NS)i.
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Sufficient conditions: OUT

Claim: If

[ti + tpd, ti+1 + tcont] ⊆ stable(S)i

max{tpd, pd(IN)}+ pd(λ) + setup(OUT ) ≤ ti+1 − ti

min{tcont, cont(IN)}+ cont(λ) ≥ hold(OUT ),

then

[ti+1 − setup(OUT ), ti+1 + hold(OUT )] ⊆ stable(OUT )i.

Proof: stability interval of OUT satisfies:

[ti+max{tpd, pd(IN)}+pd(λ), ti+1+min{tcont, cont(IN)}+cont(λ)]

⊆ stable(OUT )i

2 – p.20



Sufficient conditions: NS

Claim: If

[ti + tpd, ti+1 + tcont] ⊆ stable(S)i

max{tpd, pd(IN)}+ pd(δ) + tsu ≤ ti+1 − ti

thold ≤ min{tcont, cont(IN)}+ cont(δ),

then the signal NS is stable during the critical segment
Ci+1.
Proof: stability interval of NS satisfies:

[ti+max{tpd, pd(IN)}+pd(δ), ti+1+min{tcont, cont(IN)}+cont(δ)]
⊆ stable(NS)i.

2
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Timing constraints for i ≥ 0

CORO: If 4 conditions hold and

[t0 + tpd, t1 + tcont] ⊆ stable(S)0,

then
1. timing constraints of NS and OUT hold wrt every i ≥ 0,
2. ∀i ≥ 0 : [ti + tpd, ti+1 + tcont] ⊆ stable(S)i.

Proof: Induction on i.
Basis: part (1) follows from sufficient conditions for
OUT and NS.
Step: NS is stable during Ci+1 ⇒ part (2).
⇒ part(1).

2
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Simplifying the conditions
Our goal is to simplify the conditions in the 2 Claims.
Prefer: lower bounds on the clock period.
⇒ well defined functionality provided that the clock
period is large enough.
We discuss each of the 4 conditions (2 per claim).
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max{tpd, pd(IN)} + pd(λ) + setup(OUT ) ≤ ti+1 − ti

condition is a lower bound on ϕ(CLK). Great.

– p.24



min{tcont, cont(IN)}+ cont(λ) ≥ hold(OUT )

condition may not hold⇒ serious problem that can lead
to failure to meet the timing constraint of OUT ...
Hope: under reasonable circumstances, condition does
hold. Why?

Suppose IN is the output of a combinational circuit,
all the inputs of which are outputs of flip-flops.
Assume that all the flip-flops are identical.
It follows that cont(IN) ≥ tcont.
By definition: cont(λ) ≥ 0.
⇒ min{tcont, cont(IN)}+ cont(λ) ≥ tcont.
Suppose OUT feeds a combinational circuit that
feeds a flip-flop.
Hence hold(OUT ) ≤ thold.
thold < tcont ⇒ condition holds.
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max{tpd, pd(IN)} + pd(δ) + tsu ≤ ti+1 − ti

condition is a lower bound on ϕ(CLK). Great.
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thold ≤ min{tcont, cont(IN)} + cont(δ)

As before, if cont(IN) ≥ tcont, the condition holds!
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Conclusion
Claim: Assume that cont(IN) ≥ tcont and hold(OUT ) ≤ thold.
If

[t0 + tpd, t1 + tcont] ⊆ stable(S)0,

ϕ(CLK) ≥ max{tpd, pd(IN)}

+ max{pd(λ) + setup(OUT ), pd(δ) + tsu},

then
1. timing constraints of NS and OUT hold wrt every i ≥ 0,
2. ∀i ≥ 0 : [ti + tpd, ti+1 + tcont] ⊆ stable(S)i.

Under reasonable assumptions, all we need is initialization
and a sufficiently long clock period.
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Minimum clock period
DEF: The minimum clock period of a synchronous circuit C
is the shortest clock period for which the timing constraints
of the output signals and signals that feed the flip-flops are
satisfied.
We denote the minimum clock period of a synchronous
circuit by ϕ∗(C).

Minimum clock period does not exist if timing
constraints are infeasible.
“timing constraints are satisfied” - for every value of the
delays provided that they are in their range. (i.e. actual
propagation delay of λ is in [0, pd(λ)].)
if assumptions hold, then in canonic form

ϕ(CLK) ≥ max{tpd, pd(IN)}

+ max{pd(λ) + setup(OUT ), pd(δ) + tsu}.
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Discussion
The timing analysis of synchronous circuits in canonic
form is overly pessimistic.
The problem is that each of the combinational circuits λ
and δ is regarded as a “gate” with a propagation delay.
In practice it may be the case, for example, that the
accumulated delay from the input IN to the output OUT
is significantly different than the accumulated delay from
S to the output OUT . The situation is even somewhat
more complicated in the case of multi-bit signals.
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Initialization
We require that

[t0 + tpd, t1 + tcont] ⊆ stable(S)0.

after power-up, flip-flop output may be non-logical (and
even meta-stable).
solution: introduce a reset signal.
boot-strapping problem: How is a reset signal
generated?
no solution to this problem within the digital abstraction
(meta-stability). All we can try to do is reduce the
probability of such an event.
reset controller - a special circuit that generates a reset
signal.
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Synchronous Circuit: canonic form with reset

comb. circuit
λ

comb. circuit
δ

Q D

clk

IN

OUT

S

NS

initial state

resetmux

0 1

Remark: NS may not be logical during reset.
Implementation of MUX must output initial-state if reset = 1.
Implementation based on drivers has this property, while
implementation based on combinational gates may not
have this property.
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Functionality of Synchronous Circuits: canonic form
Xi - dig(X) during stable(X)i.
Assumptions:

cont(IN) ≥ tcont

hold(OUT ) ≤ thold

[t0 + tpd, t1 + tcont] ⊆ stable(S)0,

ϕ(CLK) ≥ max{tpd, pd(IN)}

+ max{pd(λ) + setup(OUT ), pd(δ) + tsu}.

CORO: Assumptions⇒ ∀i ≥ 0:

NSi = δ(INi, Si)

OUTi = λ(INi, Si)

Si+1 = NSi.
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Finite State Machines
Corollary states that synchronous circuits implement finite
state machines.

DEF: A finite state machine (FSM) is a 6-tuple
A = 〈Q,Σ,∆, δ, λ, q0〉, where

Q is a set of states.
Σ is the alphabet of the input.
∆ is the alphabet of the output.
δ : Q× Σ→ Q is a transition function.
λ : Q× Σ→ Q is an output function.
q0 ∈ Q is an initial state.
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Definition of FSM: remarks
Other terms for a finite state machine are a finite
automaton with outputs, transducer, and Mealy
Machine.
Moore Machine - an FSM in which the output function
λ : Q→ ∆.
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What does an FSM do?
abstract machine that operates as follows.
input sequence {xi}

n−1

i=0
of symbols over alphabet Σ.

output sequence {yi}
n−1

i=0
of symbols over alphabet ∆.

sequence of states {qi}
n
i=0

. The state qi is defined
recursively:

qi+1

4

= δ(qi, xi)

The output yi is defined as follows:

yi
4

= λ(qi, xi).
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State Diagrams
FSMs are often depicted using state diagrams.

DEF: The state diagram corresponding to an FSM A is a
directed graph G = (V,E) with edge labels (x, y) ∈ Σ×∆.
The vertex set V equals the state set S. The edge set E is
defined by

E
4

= {(q, δ(q, x)) : q ∈ Q and x ∈ Σ}.

An edge (q, δ(q, x)) is labeled (x, λ(q, x)).
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State Diagram: example
A state diagram of an FSM that outputs y if the weight of
the input so far is divisible by 4, and n otherwise.

(0, y) (0, n)

(0, n)(0, n)

(1, y)
(1, n)

(1, n)

(1, n)

q0

q3 q2

q1
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Timing analysis: the general case
Deal with a synchronous circuit that is not in canonic
form.
Algorithm that computes the minimum clock period
ϕ∗(C). (if timing constraints are feasible.)
Algorithm that decides whether the timing constraints
are feasible (i.e. conditions used by this algorithm are
less restrictive than the conditions used in previous
claims).
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Review of timing constraints
Input constraints: For every input signal IN , guaranteed:

[ti + pd(IN), ti+1 + cont(IN)] ⊆ stable(IN)i.

Output constraints: For every output signal OUT , require:

[ti+1 − setup(OUT ), ti+1 + hold(OUT )] ⊆ stable(OUT )i.

Critical segments: For every signal NS that feeds a D-port of
a flip-flop, require:

Ci+1 ⊆ stable(NS)i.
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Algorithm: minimum clock period
C ′ ← combinational circuit obtained by stripping away
flip-flops from C.
For every gate v of C ′ define d(v) as follows:

d(v)
4

=































pd(IN) if v feeds input signal IN .
tpd if v corresponds to a Q-port.
setup(OUT ) if v is fed by OUT .
tsu if v corresponds to a D-port.
pd(v) if v is a combinational gate of C.

Let DG(C ′) denote the directed acyclic graph (DAG)
that corresponds to C ′. Let p′ denote the longest path in
DG(C ′) with respect to the delays d(v). Return d(p′).
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Algorithm: correctness
define delays c(v) to non-sink vertices in DG(C ′) as follows.

c(v)
4

=











cont(IN) if v feeds an input signal IN .
tcont if v corresponds to a Q-port of a flip-flop.
cont(v) if v is a combinational gate in C.

Lemma: Consider a combinational gate, an input gate, or a
flip-flop v in the synchronous circuit C. Let Pv denote the
set of all directed paths in the directed acyclic graph DG(C ′)
that begin at a source and end in v. If the output of every
flip-flop is stable in the interval [ti + tpd, ti+1 + tcont], then
every output N of v satisfies

[ti + max
p∈Pv

d(p), ti+1 + min
p∈Pv

c(p)] ⊆ stable(N)i.
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proof: [ti + maxp∈Pv
d(p), ti+1 + minp∈Pv

c(p)] ⊆ stable(N)i.

{v0, . . . , vn−1} - topological sort of vertices of DG(C ′).
Let v = vj . Proof by induction on j.
Basis: two cases: (i) If v is an input gate, then input
constraint. (ii) If v is a flip-flop, then assumption on the
output of flip-flops.
Step: same as basis if v is an input gate or a flip flop.
Assume v is a combinational gate.
Ind. Hyp. : every input N ′ of vj+1 satisfies equation.
⇒ every output N of vj+1 satisfies: (i) N becomes
stable at most d(vj+1) time units after its last input
becomes stable, and (ii) N remains stable at least
c(vj+1) time units after its first input becomes instable.
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Algorithm: correctness (cont.)
Claim: Suppose that: (i) for every signal fed by a Q-port of
a flip-flop, [ti + tpd, ti+1 + tcont] ⊆ stable(S)i, (ii) for every
input IN , cont(IN) ≥ tcont, and (iii) for every output OUT ,
hold(OUT ) ≤ thold. Then,
1. For every clock period ϕ(CLK) ≥ ϕ∗(CLK), the signals

feeding D-ports of flip-flops are are stable during the
critical segment Ci+1.

2. For every clock period ϕ(CLK) ≥ ϕ∗(CLK), the output
timing constraints corresponding to cycle i are satisfied.

3. For every clock period ϕ(CLK) < ϕ∗(CLK), a violation of
the timing constraints is possible.
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Proof: ϕ(CLK) ≥ ϕ∗(CLK) satisfies timing constraints

Let N denote signal that feeds a D-port of a flip-flop v that
is fed by u. By Lemma, N is stable during the interval

[ti + max
p∈Pu

d(p), ti+1 + min
p∈Pu

c(p)].

Since ϕ(CLK) ≥ maxp∈Pv
d(p) = d(v) + maxp∈Pu

d(p) and
d(v) = tsu, we conclude that

ti+1 − ti = ϕ(CLK) ≥ tsu + max
p∈Pu

d(p).

⇒ signal N stable starting at

ti + max
p∈Pu

d(p) ≤ ti+1 − tsu.

⇒ setup-time constraint is satisfied.
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Proof: ϕ(CLK) ≥ ϕ∗(CLK) - cont.

N is stable until ti+1 + minp∈Pu
c(p).

However, every path p ∈ Pu begins at a source. A source
may correspond to an input gate in C or a Q-port of a flip
flop. Since cont(IN) ≥ tcont, we conclude that c(s) ≥ tcont,
for every source s.
It follows that

min
p∈Pu

c(p) ≥ tcont > thold.

Lemma: N is stable until ti+1 + minp∈Pu
c(p) ≥ ti+1 + thold.

⇒ hold-time constraint is satisfied.
⇒ N is stable during the critical segment Ci+1, as required.
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Proof: ϕ(CLK) ≥ ϕ∗(CLK) - cont.

Proof for an output signal OUT is similar.
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Proof: ϕ(CLK) < ϕ∗(CLK) ⇒ violation
p - longest path in DG(C ′) with respect to lengths d(v).
(p begins at a source and ends in a sink v.)
Let p′ denote the path obtained from p by omitting the
sink v. It follows that

ti + d(p′) > ti+1 − d(v).

If the actual propagation delays along p are maximal,
then the signal feeding v is not stable at time ti+1 − d(v).
If v is a flip-flop, then its input is not stable during the
critical segment.
If v is an output gate, then its input does not meet the
output constraint. The claim follows.
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Corollary
If the circuit is properly initialized, then the clock period
computed by the algorithm is the shortest clock period that
satisfies all the timing constraints for all clock cycles i, for
i ≥ 0.
Formally...
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Corollary - formal
CORO: Suppose that: (i) for every signal S fed by a Q-port
of a flip-flop, [t0 + tpd, t1 + tcont] ⊆ stable(S)0, (ii) for every
input IN , cont(IN) ≥ tcont, and (iii) for every output OUT ,
hold(OUT ) ≤ thold. Then,
1. For every clock period ϕ(CLK) ≥ ϕ∗(CLK), the signals

feeding D-ports of flip-flops are are stable during every
critical segment Ci+1, for i ≥ 0.

2. For every clock period ϕ(CLK) ≥ ϕ∗(CLK), the output
timing constraints corresponding to cycle i are satisfied,
for every i ≥ 0.

3. For every clock period ϕ(CLK) < ϕ∗(CLK), a violation of
the timing constraints is possible.

Proof: Proof is by induction on the clock cycle i. 2
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Algorithm: feasibility of timing constraints

So far, reasonable assumptions are made so that it is
guaranteed that a minimum clock period exists.
It is possible that these assumptions do not hold
although the timing constraints are feasible.
We now present an algorithm that verifies whether the
timing constraints are feasible without relying an any
assumptions.
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Follow recipe of the lemma
Lemma states that, for every non-sink v in C ′, the
guaranteed stability interval of the signals that are output by
v is:

[ti + max
p∈Pv

d(p), ti+1 + min
p∈Pv

c(p)].

The ϕ∗(C) algorithm deals with making sure that each such
interval does not start too late (i.e. satisfy setup-time
constraint).
Feasibility means checking that stability intervals do not end
too early (i.e. satisfy hold-time constraint).
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Follow recipe of the lemma - cont
Recall: signal fed by v is stable during

[ti + max
p∈Pv

d(p), ti+1 + min
p∈Pv

c(p)].

Check that
1. For every u that feeds a D-port of a flip-flop, require

min
p∈Pu

c(p) ≥ thold.

2. For every u that feeds an output signal OUT , require

min
p∈Pu

c(p) ≥ hold(OUT ).

violation⇒ timing constraints are infeasible.
no violation⇒ timing constraints are feasible.
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Algorithmic Aspect
All we need to check if timing constraints are feasible is
to compute

∀ non-sink v : min
p∈Pv

c(p).

Compute shortest path in a DAG (can be done in linear
time using depth first search).
After these values are computed for all the non-sinks,
the algorithm simply checks hold-time constraints for
every D-port and for every output.
If a violation is found, then the timing constraints are
infeasible.
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Recap
We started with a syntactic definition of a synchronous
circuit.
We then attached timing constraints to the inputs and
outputs of synchronous circuit.
For a given synchronous circuit C with input/output
timing constraints, we differentiate between two cases:

timing constraints are infeasible⇒ cannot guarantee
well defined functionality of C. For example, if the
timing constraints are not met, then inputs of
flip-flops might not be stable during the critical
segments, and then the flip-flop output is not
guaranteed to be even logical.
timing constraints are feasible⇒ functionality is well
defined provided that the clock period satisfies
ϕ(CLK) ≥ ϕ∗(CLK).
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Functionality
Assume that the timing constraints are feasible.
Introduce a trivial timing model called the zero delay
model.
In this model, time is discrete and in each clock cycle,
the circuit is reduced to a combinational circuit.
Advantage: decouple timing issues from functionality
and enables simple logical simulations.
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The zero delay model
In the zero delay model we assume that all the
parameters of all the components are zero or
infinitesimal (i.e. ∀ε > 0: tsu = −ε, thold = tcont = tpd = ε,
pd(IN) = cont(IN) = hold(OUT ) = ε, setup(OUT ) = −ε
and d(G) = tcont(G) = 0, for every combinational gate
G). Under this unrealistic assumption, the timing
constraints are feasible.
Must pay attention to endpoints of intervals of stability:
Output of flip-flip satisfies:

(ti + tpd, ti+1 + tcont) ⊆ stable(Q)i.

Hence,
(ti, ti+1] ⊆ stable(Q)i.
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The zero delay model - cont
Similarly,

(ti + pd(IN), ti+1 + cont(IN)) ⊆ stable(IN)i.

Hence,
(ti, ti+1] ⊆ stable(IN)i.

Following Corollary (synchronous circuit implements an
FSM), we conclude that, for every signal X, Xi is well
defined.
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Simulation of a synchronous circuit
Simulation during cycles i = 0, . . . , n− 1 in the zero
propagation model proceeds as follows:
assume: flip-flops are initialized ( ~S0 - initial values of FFs).
1. Construct comb. circuit C ′ that corresponds to C.
2. For i = 0 to n− 1 do:

(a) Simulate C ′ with input values ~Si and ~IN i.
(b) For every output OUT j, let y denote the value that is

fed to y. We set OUT j
i = y.

(c) For every D-port NSj of a flip-flop, let y denote the
value that is fed to the flip-flop. We set NSj

i = y.
(d) For every Q-port Sj of a flip-flop, define Sj

i+1
← NSj

i ,
where NSj denotes the signal that feeds the D-port
of the flip-flop.
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Summary
define synchronous circuits.
canonic form of synchronous circuits:

definition of timing constraints.
formulation of sufficient conditions for satisfying the
timing constraints.
simplify sufficient conditions by relying on the
assumption that the input originates from a flip-flop
and the output is eventually fed to a flip-flop.
define the minimum clock period.
initialization.
synchronous circuits implement FSMs.
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Summary -cont.
general case of synchronous circuits (not in canonic
form).

algorithm: min. clock period.
algorithm: feasibility of timing constraints.

functionality:
zero delay model.
simulation.
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