
Chapter 13

The ISA of a simplified DLX

In this chapter we describe a specification of a simple microprocessor called the simplified
DLX. The specification is called an instruction set architecture (ISA). The ISA consists of
objects and a machine language which is simply a list of instructions. The ISA describes
the set of objects (memory and registers) and how they are manipulated by the machine
language instructions.

13.1 Why use abstractions?

The term architecture according to the Collins Dictionary means the art of planning,
designing, and constructing buildings. Computer architecture refers to computers rather
than buildings. Computers are rather complicated; even a very simple microprocessor is
built from tens of thousands of gates and an operating system spans thousands of lines
of code. To simplify things, people focus at a given time on certain aspects of computers
and ignore other aspects. For example, the hardware designer ignores questions such as:
which programs will be executed by the computer? The programmer, on the other hand,
often does not even know exactly which type of computer will be executing the program
she is writing. It is the task of the architect to be aware of different aspects so that the
designed system meets certain price and performance goals.

To facilitate focusing on certain aspects, abstractions are used. Several abstractions
are used in computer systems. For example, the C programmer uses the abstraction of
a computer that runs C programs, owns a private memory, and has access to various
peripheral devices (such as a printer, a monitor, a keyboard, etc.). Supporting this
abstraction requires software tools (e.g., editor, compiler, linker, loader, debugger). The
user, who runs various applications, uses the abstraction of a computer that is capable of
running several applications concurrently, supports a file system, and responds to mouse
movements and typing on the keyboard. Supporting the user’s abstraction requires an
operating system (to coordinate between several programs running in the same time
and manage the file system), and hardware (that executes programs, but not in C).
The hardware designer, is given a specification, called the Instruction Set Architecture
(in short, ISA). Her goal is to design a circuit that implements this specification while

167



168 CHAPTER 13. THE ISA OF A SIMPLIFIED DLX

minimizing cost and delay.
The architect is supposed to be aware of these different viewpoints. The architect’s

goal main goal is to suggest an ISA. On one hand, this ISA should provide support for
the users of the ISA (these are the programmer, the end user, and even the operating
system). On the other, the ISA should be simple enough so that the hardware designer
can come up with an implementation that is not too expensive or slow.

What exactly is the ISA? The ISA is a specification of the microprocessor from the
programmer’s point of view. However, this is not a C programmer or a programmer that
is programming in a high level language. Instead, this is a programmer programming in
machine language. Since it is not common anymore for people to program in machine
language, the machine language programmer is actually a program!

Programs in machine language are output by a program called an assembler. The
input of an assembler is a program in assembly language. Most assembly programs are
also written by programs called compilers. Compilers are input a program in a high level
and output assembly programs.

This chain of translations starting from a C program and ending with a machine
language program has several advantages:

1. The microprocessor executes programs written in a very simple language (machine
language). This facilitates the design of the microprocessor.

2. The C programmer need not think about the actual platform that executes the
program. Hence the same program can compiled and assembled so that it can be
executed on different architectures.

3. Every stage of the translation works in a certain abstraction. The amount of detail
increases as one descends to lower level abstractions. In each translation step,
decisions can be made that are optimal with respect to the current abstraction.

One can see that all these advantages have to do with good engineering practice.
Namely, a task is partitioned in smaller subtasks that are simpler and easier. Clear and
precise borderlines between the subtasks guarantee correctness when the subtasks are
“glued” together.

Question 13.1 Explain why it is not common anymore for people to program in assembly
or machine code. Consider issues such as: cost of programming in a high level language
compared to assembly or machine code, ease of debugging programs, protections provided
by high level programming, and length and efficiency of final machine code program.

13.2 Instruction set architecture

We now describe the ISA of the simplified DLX. The term instruction set architecture
refers to the specification of the computer from the point of view of the machine language
programmer. This abstraction has the following components:



13.2. INSTRUCTION SET ARCHITECTURE 169

• The objects that are manipulated. The objects are words (i.e. binary strings)
stored in registers or in memory.

• The instructions (or commands) that tell the computer what to do to the objects.

13.2.1 Architectural Registers and Memory

Both the registers and the memory store words. In the DLX ISA, a word is a 32-bit
string. The memory is often called also the main memory.

The memory. The memory is used to store both the program itself (i.e., instructions)
and the data (i.e., constant and variables used by the program). We regard the memory
is an array M [0 : 232 − 1] of words. Each element M [i] in the array holds one word.
The memory is organized like a Random Access Memory (RAM). This means that the
processor can access the memory in one of two ways:

• Read or load M [i]. Request to copy the contents of M [i] to a register called MDR

(Memory Data Register).

• Write or store in M [i]. Request to store the contents of a register called MDR in
M [i].

Note that writing to the memory require two “operands”. Namely, we need to specify
which word we would like to store and we need to specify where we wish to store it. As
mentioned above, a special register, called the MDR, stores the word that we wish to
write to the memory. The index or address i in which we would like to store the contents
of the MDR is output by a register called the MAR (Memory Address Register).

Hence the (partial) semantics of a write operation are:

M [〈MAR〉]←MDR.

Note the angular brackets around the MAR; they signify that we interpret the binary
string stored in the MAR as a binary number.

Similarly, the (partial) semantics of a read operation are:

MDR←M [〈MAR〉].

The reason that we refer to this description as a partial semantics is that an actual
write operation involves loading the MAR and MDR. (In a read operation we need to
load the MAR and copy to MDR to a final destination.) However, from the point of
view of the memory the above semantics is correct when data is written or read.

This relatively neat description is incorrect when we consider the task of reading an
instruction from the memory. As we will see later, the address of an instruction is stored
in a register called PC and M [PC] is stored in a register called IR.



170 CHAPTER 13. THE ISA OF A SIMPLIFIED DLX

Registers. The architectural registers of the simplified DLX are all 32 bits wide and
listed below.

• 32 General Purpose Registers (GPRs) called R0 to R31. Loosely speaking, the
general purpose registers are the objects that the program directly manipulates.

• Program Counter (PC). The PC stores the address (i.e., index in memory) of the
instruction that is currently being executed.

• Instruction Register (IR). The IR stores the current instruction (i.e., IR = M [PC]).

• Special Registers: MAR, MDR. As mentioned above, these registers are used for
specifying the interface between the microprocessor and the memory when data is
written and read.

Example 13.1 Consider a high level instructions x := y + z. Such an instruction is
implemented by the following sequence of instructions. Suppose that x is stored in M [1],
y is stored in M [2], and z is stored in M [3]. We first need to copy x and y to the GPRs.
Namely, we first need to perform two read operations that copy M [1] to R1 and M [2] to
R2. We then perform the actual addition: R3← R1 + R2. Finally, we copy R3 using a
write operation to the memory location M [3].

Question 13.2 Parts of the main memory in many computers are read-only memory
and even nonvolatile. Read-only means that the contents cannot be changed. Nonvolatile
means that the contents are kept even when power is turned off. Can you explain why?

Question 13.3 We said that the same memory is used to store operating system pro-
grams and data as well as the user’s program and data. How can we make sure that
the user program does not write to areas in the memory that “belong” to the operating
system?

13.2.2 Instruction Set

The machine language of a processor is often called an instruction set. In general, a
machine language has very few rules and a very simple syntax. In the case of the simplified
DLX, every sequence of instructions constitutes a legal program (is this the case in C
or in Java?). This explains why the machine language is referred to simply as a set of
instructions.

Instruction formats. Every instruction in the instruction set of the simplified DLX is
represented by a single word. There are two instruction formats: I-type and R-type. The
partitioning of each format into fields is depicted in Figure 13.1. The opcode field encodes
the instruction (e.g., load, store, add, jump). The RS1, RS2, RD fields encode (in binary
representation) the indexes of general purpose registers. The immediate field encodes (in
two’s complement representation) a constant. The function field (in an R-type instruction
format) is used to encode the instruction.



13.2. INSTRUCTION SET ARCHITECTURE 171

I−type:

R−type:

Opcode RS1 RD immediate
6 5 165

Opcode RS1 RDRS2 Function
6 5 65 5 5

Figure 13.1: Instruction formats of the simplified DLX. (Bits are ordered in descending
order; namely, the leftmost bit is in position [31] and the rightmost bit is in position [0].)

List of instructions. We list below the instruction set of the simplified DLX. In this
list, imm denotes the immediate field in an I-Type instruction and sext(imm) denotes a
two’s complement sign extension of imm to 32 bits. The semantics of each instruction
are informally abbreviated and are formally explained after each group of instructions.

Note that every instruction (except for jump instructions and halt), has the side
effect of increasing the PC. Namely, apart from doing whatever the instructions says,
the microprocessor also performs the operation:

PC← bin(mod(〈PC〉+ 1, 232)). (13.1)

Informally, Equation 13.1 simply means add one to the binary number represented
by the PC. To be precise, the sum is computed modulo 232, namely, if the sum equals
232, then replace the sum by zero. Note that binary representation is used for storing the
address of the current instruction in the PC.

Load/Store Instructions (I-type). Load and store instructions deal with copying
words between the memory and the GPRs. An informal and abbreviated interpretation
of the load and store instruction is given in the table below.

Load/Store Semantics
lw RD RS1 imm RD := M[sext(imm+RS1]
sw RD RS1 imm M[sext(imm)+RS1] := RD

The precise semantics of load and store instructions are rather complicated. We first
define the effective address; informally, the effective address is the index of the memory
word that is accessed in a load or store instruction.

Definition 13.1 The effective address in a load or store instruction is defined as follows.
Let j = 〈RS1〉, namely the binary number represented by the 5-bit field RS1 in the
instruction. Let Rj denote the word stored in the GPR whose index is j. Let 〈Rj〉 denote
the binary number represented by Rj. Recall that [imm] denotes the two’s complement
number represented by the 16-bit field imm. We denote the effective address by ea. Then,

ea
4

= mod(〈Rj〉+ [imm] , 232).

The following questions help clarify the cumbersome definition of the effective address.



172 CHAPTER 13. THE ISA OF A SIMPLIFIED DLX

Question 13.4 If we ignore the issue of overflow, then the effective address is simply
〈Rj〉 + [imm]. Why is this better than say using the definition of 〈Rj〉 + 〈imm〉 as the
effective address?

In the next question we show the modulo operation implies that there is no difference
between addition in two’s complement and in binary representation, provided that sign
extension takes place.

Question 13.5 Let X[31 : 0] and Y [31 : 0] be two binary strings. Prove that addition
modulo 232 is not sensitive to binary or two’s complement representation. Namely,

mod
(

〈 ~X〉+ 〈~Y 〉, 232

)

= mod
([

~X
]

+ 〈~Y 〉, 232

)

= mod
([

~X
]

+
[

~Y
]

, 232

)

.

Prove that ea = mod([imm] + [Rj] , 232)] = mod(〈sext(imm)〉+ 〈Rj〉, 232)].

Question 13.6 Consider the computation of the effective address. Suppose that we wish
to detect the event that the computation overflows. Formally,

〈Rj〉+ [imm] ≥ 232 or 〈Rj〉+ [imm] < 0.

Suggest how to compute the effective address and how to detect overflow.

The semantics of load and store instruction are as follows.

Definition 13.2 Let i = 〈RD〉, namely the binary number represented by the 5-bit field
RD in the instruction. Let Ri denote the word stored in the GPR whose index is i. A
load instruction has the following meaning:

Ri←M [ea].

This means that the word stored in M [ea] is copied to register Ri.
A store instruction has the following meaning:

M [ea]← Ri.

This means that the word stored in Ri is copied to M [ea].

Notation. Following the notation used for load and store instructions we use the fol-
lowing notation:

• Ri denotes the word stored in the GPR whose index is 〈RD〉.

• Rj1 denotes the word stored in the GPR whose index is 〈RS1〉.

• Rj2 denotes the word stored in the GPR whose index is 〈RS2〉.

Obviously, 〈Rj1〉 denotes the binary number represented by the word Rj1. Similarly,
[Rj2] denotes the two’s complement number represented by the work Rj2.



13.2. INSTRUCTION SET ARCHITECTURE 173

Add Instruction (I-type). There are two add instructions in the ISA. We describe
below the add instruction that belongs to the I-type format. In the table below an
informal description is provided.

Instruction Semantics
addi RD RS1 imm RD := RS1 + sext(imm)

The precise semantics of an add-immediate instruction are as follows.

RD ← bin(mod([Rj1] + [imm] , 232)). (13.2)

Equation 13.2 is too terse; we clarify it now. The goal is to add two numbers. The first
addend is the two’s complement number represented by the word stored in the register
whose index is 〈RS1〉. The second addend is the two’s complement number represented
by the string stored in the immediate field of the instruction. The addition is modulo
232. The binary representation of the sum is stored in the register whose index is 〈RD〉.

This definition is a bit confusing. One might ask why not encode the sum as a two’s
complement number? Namely, why not simply use the definition [RD] = [Rj1] + [imm]?
The problem with this “simple” specification is what to do if the result overflows.

The following question shows that if no overflow occurs then Equation 13.2 is identical
to “ordinary” two’s complement addition.

Question 13.7 Let ~A and ~C denote 32-bit binary strings. Let ~B denote a binary string

of any length. Suppose that
[

~A
]

=
[

~B
]

and that 〈 ~C〉 = mod(
[

~B
]

, 232). Prove that

~A = ~C.

When we deal with interrupts, we will also define two additional “side-effects” of
addition instructions, namely, the setting of the overflow and negative flags.

Shift Instructions (R-type). The shift instructions perform a logical shift by one
position either to the left or to the right. The input is word Rj1 and the shifted word is
stored in Ri.

Instruction Semantics
sll RD RS1 RD := RS1 << 1
srl RD RS1 RD := RS1 >> 1

ALU Instructions (R-type). The R-type arithmetic and logical unit (ALU) instruc-
tions are: add, subtract, and logical bitwise operations (e.g., or, and, xor). An informal
description of these instruction appears in the following table.

Instruction Semantics
add RD RS1 RS2 RD := RS1 + RS2
sub RD RS1 RS2 RD := RS1 − RS2
and RD RS1 RS2 RD := and(RS1, RS2)
or RD RS1 RS2 RD := or(RS1, RS2)
xor RD RS1 RS2 RD := xor(RS1, RS2)



174 CHAPTER 13. THE ISA OF A SIMPLIFIED DLX

Formally, the semantics of the add and subtract instructions are:

RD ← bin(mod([Rj1] + [Rj2] , 2
32))

RD ← bin(mod([Rj1]− [Rj2] , 2
32)).

The semantics of the bitwise logical instructions are simple. For example, in an and

instruction RD[i] = and(Rj1[i],Rj2[i]).

Test Instructions (I-type). The test instructions compare the two’s complement
numbers [Rj1] and [imm]. The result of the comparison is stored in RD.

For example, consider the slti instruction. The semantics of the slti instruction
are:

RD =

{

1 if [Rj1] < [imm]

0 otherwise.

There are six different test instructions: slti, seqi, sgti, slei, sgei, snei.
We summarize there functionality below.

Instruction Semantics
sreli RD RS1 imm RD := 1, if condition is satisfied,

RD := 0 otherwise
if rel =lt test if RS1 < sext(imm)
if rel =eq test if RS1 = sext(imm)
if rel =gt test if RS1 > sext(imm)
if rel =le test if RS1 ≤ sext(imm)
if rel =ge test if RS1 ≥ sext(imm)
if rel =ne test if RS1 6= sext(imm)

Branch/Jump Instructions (I-type). Branch and jump instructions modify the
value stored in the the PC. Recall that during the execution of every instruction the PC

is incremented. In a branch or jump instruction an additional change is made to the PC.
The simplest instruction in this set is the “jump register” (jr) instruction. It simply

changes the PC so that PC← Rj1. Hence the next instruction is the instruction stored
in M [Rj1].

A somewhat more evolved instruction is the “jump and link register” (jalr) instruc-
tion. This instruction saves the incremented PC in R31. The idea is that this instruction
is used for calling a procedure and the return address is stored in R31. Formally, the
semantics of jalr are:

R31← PC + 1

PC← Rj1.

We also have two branch instructions: “branch if zero” (beqz) and “branch if not
zero” (bnez). In a beqz instruction, if Rj1 = 032 then a branch takes place and the
address of the next instruction is PC + 1 + [imm]. If Rj1 6= 032, then the branch is



13.3. SUMMARY 175

not taken, and the address of the next instruction is PC + 1. In a bnez instruction, the
conditions are reversed.
We summarize these four instructions in the following table.

Instruction Semantics
beqz RS1 imm PC = PC + 1 + sext(imm), if RS1 = 0

PC = PC + 1, if RS1 6= 0
bnez RS1 imm PC = PC + 1, if RS1 = 0

PC = PC + 1 + sext(imm), if RS1 6= 0
jr RS1 PC = RS1
jalr RS1 R31 = PC+1; PC = RS1

Question 13.8 Why is the address of the next instruction defined as PC + 1 + [imm]
instead of PC + [imm] when a branch is taken?

Miscellaneous Instructions (I-type). There are a few special instructions in the
I-type format. The first special instruction is a the “no operation” (special-nop) in-
struction. This instruction has a null effect, and the only thing that happens during its
execution is that the PC is incremented.

The second special instruction is the “halt” (halt) instruction. This instruction causes
the microprocessor to “freeze” and stop the execution of the program.

Question 13.9 Try to explain when the no-operation and halt instruction are used.

13.3 Summary

In this chapter we described the ISA of the simplified DLX. Even though the ISA is rather
simple, most C programs can be translated to the DLX machine language. There are a
few exceptions such as supporting systems calls, distinguishing between protected mode
and user mode, etc. This important issues will be addressed when we discuss interrupts.


