Question 2.3

Prove that the total amount of time spent in the relaxation steps is linear in the number nodes if the fan-in of each gate is constant (say, at most 3).

Note that it is not true that each relaxation step can be done in constant time if the fan-in of the gates is not constant.

Prove linear running time in the number of nodes if
(i) every net feeds a single input terminal and (ii)
the number of outputs of each gate is constant.
(You may not assume that the fan-in of every gate is constant.)

מבנה מחשבים

תרגול מספר 4

פתרון לתרגיל בית 2.3

ei רלקסציה של הרשת

- .ei לכל כניסה שמוזנת ע"י tpd •
- סימולציה של פונקציונליות: חישוב פונקציה בוליאנית על מספר הקלטים של שער g שפולט את ei את
 - הסיבוכיות הכוללת

$$\sum_{e_i} O(fanout(e_i^{})) + O(in - deg \, ree(G))$$

פתרון לתרגיל בית 2.3

Fan-out(e)

e רשת

In-degree(G),out-degree(G)

G שער

פתרון לתרגיל בית 2.3

$$\begin{split} \sum_{e_i} O(fanout(e_i)) + O(in - deg \, ree(G)) \\ \sum_{G_i \text{feeds}_e} O(fanout(e_i)) &= \sum_{G_i} O(in - deg \, ree(G)) \\ \sum_{e_i} O(in - deg \, ree(G)) &= \sum_{G_i} O(in - deg \, ree(G)) \cdot out - deg \, ree(G)) \\ &\leq c \sum_{G_i} out - deg \, ree(G) \leq c \sum_{G_i} in - deg \, ree(G) = O(n) \end{split}$$

כל יציאה מזינה לפחות כניסה אחת.

A circuit with $2^{n/2}$ paths

Note: n/2 stages with 2 options each, resulting in $2^{n/2}$ paths.

→ There is no need to check all the paths, only the longest. This takes a linear time.

פתרון לתרגיל בית 2.3

Fanout(e_i)=1 Out-degree(G)

- התנאי 1 שקול לכך שמספר היציאות שווה למספר הכניסות.
- דרגת היציאה של כל שער היא קבוע ולכן מספר הקשתות בגרף לינארי במספר הצמתים.
 - סיבוכיות האלגוריתם היא לינארית במספר הצמתים.

A circuit with 2ⁿ paths

- ...cannot be built!
- Why? A combinational circuit is a DAG, therefore we cannot reorder the gates to create different paths. Our only option is to include or exclude gates to create different paths.
- But, having n gates, we only have 2ⁿ such paths. Each gate can be included or excluded, therefore 2ⁿ.

Definition:

A Boolean function $f: \{0,1\}^n \Longrightarrow \{0,1\}$ is monotone if $x \ge y \Longrightarrow f(x) \ge f(y)$

(where $x \ge y$ means : for every $i \ x_i \ge y_i$).

Prove the following claim:

 $f:\{0,1\}^n \Longrightarrow \{0,1\}$ is monotone **iff** f can be implemented by a combinational circuit that contains only **AND-gates** and **OR-gates**.

Question 3.3

Design a zero-tester defined as follows.

Input: x[n-1:0].

Output: y Functionality:

 $y = 1 \text{ iff } x[n-1:0] = 0^n$:

- 1. Suggest a design based on an or-tree.
- 2. Suggest a design based on an and-tree.
- 3. What do you think about a design based on a tree of nor-gates?

Associative Boolean functions

A Boolean function

 $f: \{0,1\}^2 \rightarrow \{0,1\}$ is associative if

 $f(f(\sigma_1, \sigma_2), \sigma_3) = f(\sigma_1, f(\sigma_2, \sigma_3))$

for every $\sigma_1, \sigma_2, \sigma_3 \in \{0,1\}$

Question 3.7

Prove that if $n=2^k$ -r, where $0 \le r < 2^{k-1}$, then any partition in which 2^{k-1} -r $\le a \le 2^{k-1}$ and b=n - a is a balanced partition.

balanced partition

Two positive integers a,b are a balanced partition of n if:

- 1. a+b = n,
- 2. $\operatorname{Max}\left\{\lceil \log_2 a \rceil, \lceil \log_2 b \rceil\right\} \leq \lceil \log_2 n \rceil 1$

Question 3.8

Consider the following recursive algorithm for constructing a binary tree T_n with $n \ge 2$ leaves. Prove that the depth of T_n is $\lceil \log_2 n \rceil$.

- 1. The case that n≤2 is trivial (two leaves connected to a root).
- 2. If n > 2, then let a, b be balanced partition of n.
- 3. Compute trees T_a and T_b . Connect their roots to a new root to obtain T_n .