
Chapter 1: The digital abstraction
Computer Structure - Spring 2007

c©Dr. Guy Even

Tel-Aviv Univ.

– p.1

http://www.eng.tau.ac.il/~guy/

Preliminary questions
Can you justify or explain the saying that “computers
use only zeros and ones”?
Can you explain the following anomaly? The design of
an adder is a simple task. However, the design and
analysis of a single electronic device (e.g., a single
gate) is a complex task.

– p.2

Digital Circuits vs. Analog Devices

Property Digital Circuit Analog Device
values {0, 1} R

description simple (Boolean
function)

complicated (dif-
ferential eq.)

real? abstract model very real

Conclusion: much easier to use the digital abstraction
than the realistic, complete, complicated analog model.

– p.3

More questions
what is an analog device? (components, behavior)
in what way does a digital circuit model an analog
device?

can every analog device be modeled as a digital
circuit?
what type of digital circuits do we want?
why is one inverter better than another?

how can we tell if an analog device is a gate (say, an
inverter)?

– p.4

Transistors
Computers⇐ VLSI chips⇐ gates & flip-flops⇐ transistors
Transistors are the basic components.
Most common VLSI technology is called CMOS.
In CMOS: only two types of transistors:

N-transistor
P-transistor

in case you are curious:
VLSI = Very Large Scale Integration (which means “millions
of transistors placed on one small chip”)
CMOS = Complementary Metal Oxide Semiconductor
(which means that both NMOS and PMOS transistors are
used).

– p.5

N-transistor & P-transistor

gate gate

N−transistor

drain

drainsource
P−transistor

source

Inputs: gate & source
Output: drain
(not accurate! just for the sake of this discussion)

– p.6

N-transistor & P-transistor

gate gate

N−transistor

drain

drainsource
P−transistor

source

Functionality of N-transistor:
If v(gate) = high, then resistance(source, drain) = 0 (and
then v(drain)← v(source))
If v(gate) = low, then resistance(source, drain) =∞

Functionality of P-transistor:
If v(gate) = high, then resistance(source, drain) =∞

If v(gate) = low, then resistance(source, drain) = 0

Story true if: v(s) = high in P & v(s) = low in N.
– p.7

Example: a CMOS inverter

OUTIN

0 volts

5 volts

N−transistor

P−transistor

IN = low:
P-transistor is conducting
N-transistor is not conducting

⇒ v(OUT) = high

IN = high:
P-transistor is not conducting
N-transistor is conducting

⇒ v(OUT) = low
– p.8

Qualitative Analysis vs. Quantitative Analysis

Qualitative analysis:
gives an idea about “how an inverter works”.
no idea about actual voltages of output as a function
input voltage.
no idea about how long it takes the output to stabilize.

Quantitative analysis:
based on precise modeling of transistor.
computes precise input-output relationship.
requires a lot of work (usually done with the aid of a
computer program called SPICE).

– p.9

Analog signals
An analog signal is a real function

f : R→ R,

where f(t) = voltage as a function of the time.
Assumption: wires have zero resistance, zero capacity, and
signals propagate through wires without delay.
⇒ voltage along a wire is identical at all times.
Since a signal describes the voltage (i.e. derivative of
energy as a function of charge), we also assume that a
signal is a continuous function.

– p.10

Digital signals
A digital signal is a function

g : R→ {0, 1, non-logical}.

The value of a digital signal describes the logical value
carried along a wire as a function of time.

zero & one : logical values.
non-logical: indicates that the signal is neither zero or
one.

– p.11

Interpreting analog signals as digital signals

Q: How does one interpret an analog signal as a digital
signal?
naive answer: define a threshold voltage V ′.
Consider an analog signal f(t).
The digital signal dig(f(t)) is defined as follows.

dig(f(t))
4

=

{

0 if f(t) < V ′

1 if f(t) > V ′

Q: is this a useful definition?

– p.12

problems with definition of dig(f (t))

All devices in a circuit must use exactly the same
threshold V ′. This is impossible due to manufacturing
tolerances.
Perturbations of f(t) around the threshold V ′ lead to
unexpected values of dig(f(t)).
Example: Measure weight w by measuring the length `
of a spring. Suppose we wish to know if w > w′. This
can be done by checking if ` > `′. However, spring
length oscillates around `. If ` ≈ `′, then comparison
requires a long time.

⇒ must use separate thresholds for 0 and for 1.

– p.13

Interpreting analog signals as digital signals

Q: How does one interpret an analog signal as a digital
signal?
A: Two voltage thresholds are defined: Vlow < Vhigh.
Consider an analog signal f(t).
The digital signal dig(f(t)) is defined as follows.

dig(f(t))
4

=







0 if f(t) < Vlow
1 if f(t) > Vhigh
non-logical otherwise.

– p.14

digital interpretation of an analog signal

Vhigh

logical zero

f(t)

Vlow

logical one

t

– p.15

did we solve the problems of a single threshold?
manufacturing requirements: a low output must be
≤ Vlow & a high output must be ≥ Vhigh.

fluctuations of f(t) around Vlow still cause fluctuations
of dig(f(t)).
However, these fluctuations are between 0 and
“non-logical” (not between 0 and 1). This is still a
problem, but not as bad...

Will noise cause a problem?
Noise = undesired changes to f(t). Back to the example of
a weight hanging from a spring: wind causes changes in the
spring length and disturbs measurement of spring length.

– p.16

An inverter
Q: define an inverter.
A:

dig(OUT (t))
4

=







0 if dig(IN(t)) = 1

1 if dig(IN(t)) = 0

arbitrary otherwise.

We will see shortly that: noise⇒ cannot use these
definitions to build correct circuits.

Before we discuss these issues, we must introduce transfer
functions and noise...

– p.17

Transfer functions
DEF: transfer function - the relation between the voltage at
an output of a gate and the voltages of the inputs of the
gate.
Example: An inverter with an input x and an output y. The
value of the signal y(t′) at time t′ is a function of the signal
x(t) in the interval (−∞, t′].
Static transfer function: if the input x(t) is stable for a
sufficiently long period of time and equals x0, then the
output y(t) stabilizes on a value y0 that is a function of x0.

history vs. present: if a device does not have a static transfer
function, then the device is a memory device not a logical
gate.

– p.18

Static transfer function
Let G denote a gate with one input x and one output y.
DEF: A function f : R→ R is a static transfer function of a
gate G if

∃∆ > 0 ∀x0 ∀t0 :

∀t ∈ [t0 −∆, t0] x(t) = x0 =⇒ y(t0) = f(x0).

∆ - propagation delay (time required for stable output)
x0 - stable input voltage
t0 - time in which y(t) is measured

– p.19

Static transfer function - remarks
(1) Since circuits operate over a bounded range of volt-
ages, static transfer functions are usually only defined over
bounded domains and ranges (say [0, 5] volts).

– p.20

Static transfer function - remarks
(2) Allow perturbations of x(t) and y(t).

∀ε ∃δ,∆ > 0 ∀x0, t1, t2 :

∀t ∈ [t1, t2] : |x(t)− x0| ≤ δ

=⇒

∀t ∈ [t1 + ∆, t2] : |y(t)− f(x0)| ≤ ε.

δ - measures stability of input x(t)

ε - measures stability of output y(t)

[t1, t2] - interval during which x(t) is δ-stable.
[t1 + ∆, t2] - interval during which y(t) is ε-stable.

Propagation delay ∆ depends only on ε (which is fixed and
the same for all voltages).

– p.21

back to the definition of an inverter

dig(OUT (t))
4

=







0 if dig(IN(t)) = 1

1 if dig(IN(t)) = 0

arbitrary otherwise.
or equivalently,

IN(t) < Vlow =⇒ OUT (t) > Vhigh
IN(t) > Vhigh =⇒ OUT (t) < Vlow

Q: Define a NAND-gate.

– p.22

Noise
wireA(t) B(t)

Noise signal: the difference B(t)− A(t). (reference signal =
A(t)).
Q: what causes noise?
A: The main source of noise is heat. Heat causes ran-
dom movement of electrons. These random movements do
not cancel out perfectly, and random currents are created.
These random currents create perturbations in the voltage.

– p.23

Bounded noise model
Bounded noise model - the noise signal along every
wire has a bounded absolute value.
Uniform bounded noise model:

∃ε > 0 such that : | noise | ≤ ε.

Justification - noise is a random variable whose
distribution has a rapidly diminishing tail. If the ε is
sufficiently large, then

Prob[|noise| > ε] ≈ 0.

– p.24

The digital abstraction in the presence of noise

z
y

x

Assume that:
x > Vhigh, so dig(x) = 1,

y = Vlow − ε′, for a very small ε′ > 0.
⇒ dig(z) = 1.

What if input to 2nd inverter equals y(t) + ny(t)?
If ny(t) > ε′, then dig(y(t) + ny(t)) = non-logical, and can’t
deduce that dig(z) = 1.
⇒ must strengthen the digital abstraction!

– p.25

Redefining the digital interpretation of analog signals

Deal with noise: interpret input signals and output signals
differently.
Input Signal: a signal measured at an input of a gate.
Output Signal: a signal measured at an output of a gate.

– p.26

Redefining the digital interpretation (cont.)
Instead of two thresholds, Vlow and Vhigh, we define the
following four thresholds:

Vlow,in - an upper bound on a voltage of an input signal
interpreted as a logical zero.
Vlow,out - an upper bound on a voltage of an output
signal interpreted as a logical zero.
Vhigh,in - a lower bound on a voltage of an input signal
interpreted as a logical one.
Vhigh,out - a lower bound on a voltage of an output
signal interpreted as a logical one.

These four thresholds satisfy the following equation:

Vlow,out < Vlow,in < Vhigh,in < Vhigh,out.
– p.27

Redefining the digital interpretation (cont.)

Vhigh,out

Vlow,out

logical zero - output

Vhigh,in

Vlow,in

logical zero - input

logical one - output

logical one - input

t

f(t)

– p.28

Digital interpretation of input & output signals

Consider an input signal fin(t). The digital signal dig(fin(t))
is defined as follows.

dig(fin(t))
4

=







0 if fin(t) < Vlow,in
1 if fin(t) > Vhigh,in
non-logical otherwise.

Consider an output signal fout(t). The digital signal
dig(fout(t)) is defined analogously.

dig(fout(t))
4

=







0 if fout(t) < Vlow,out
1 if fout(t) > Vhigh,out
non-logical otherwise.

– p.29

Noise margins
The differences

Vlow,in − Vlow,out and Vhigh,out − Vhigh,in

are called noise margins.
Claim: Suppose that a wire transmits an output signal
fout(t) to an input signal fin(t). Suppose that |n(t)| is less
than the noise margin. If dig(fout)(t) ∈ {0, 1}, then
dig(fin(t)) = dig(fout(t)).
Proof: If the absolute value of the noise n(t) is bounded by
the noise margins, then an output signal fout(t) < Vlow,out
will result with an input signal
fin(t) = fout(t) + n(t) < Vlow,in. 2

– p.30

Inverter - revisited
We are now ready to define an inverter.

Definition: Let G denote a device with one input x and
one output y. The device G is an inverter if its static transfer
function f(x) satisfies:

x(t) < Vlow,in =⇒ y(t) > Vhigh,out
x(t) > Vhigh,in =⇒ y(t) < Vlow,out.

Q: can you define a NAND-gate?

– p.31

Logical & stable analog signals
back to the zero-noise model (to simplify the discussion)...

logical signal: f(t) is logical at time t if dig(f(t)) ∈ {0, 1}.
stable signal: f(t) is stable during the interval [t1, t2] if f(t) is

logical for every t ∈ [t1, t2].

Claim: If an analog signal f(t) is stable during the interval
[t1, t2] then one of the following holds:
1. dig(f(t)) = 0, for every t ∈ [t1, t2], or
2. dig(f(t)) = 1, for every t ∈ [t1, t2].

Proof: Continuity of f(t) & Vlow < Vhigh. 2

– p.32

Logical & stable digital signals
Let x(t) denote a digital signal.
logical signal: x(t) is logical at time t if x(t) ∈ {0, 1}.
stable signal: x(t) is stable during the interval [t1, t2] if x(t) is

logical for every t ∈ [t1, t2].

– p.33

Summary
Signals - analog & digital
Noise - bounded noise model & zero noise model
Digital interpretation of analog signals
Transfer functions
Definition of gate (e.g. inverter) using transfer function
Stable & logical signals

– p.34

Chapter 2: Foundations of
combinational circuits

Computer Structure - Spring 2007
c©Dr. Guy Even

Tel-Aviv Univ.

– p.1

http://www.eng.tau.ac.il/~guy/

Preliminary Questions
Does every collection of gates and wires constitute a
combinational circuit?
Which of these tasks is easy?

Check if a circuit is combinational.
Simulate a combinational circuit.
Estimate the propagation delay of a combinational
circuit.

Suggest criteria for comparing functionally equivalent
combinational circuits.

– p.2

Goals
define combinational circuits.
prove that every Boolean function can be implemented
by a combinational circuit.
prove that every combinational circuit implements a
Boolean function.
present an algorithm for simulating a combinational
circuit.
present an algorithm for analyzing the delay of a
combinational circuit.

– p.3

Boolean functions
{0, 1}n - the set of n-bit strings.
A Boolean function - a function f : {0, 1}n → {0, 1}k.

n: input length
k: output length

– p.4

Gates & static transfer functions
DEF: A gate is a device whose functionality is specified by
a static transfer function.

∃∆ > 0

∀x0

∀t ∈ [t1, t2] : x(t) = x0 ⇒ ∀t ∈ [t1 + ∆, t2] : y(t) = f(x0).

This means that output = func (input) if the input did not
change for a while.
This does not mean that the output must be logical (even if
the input is fixed).

– p.5

Extension of dig(x) to vectors
Suppose ~y ∈ R

n, where ~y = (y1, y2, · · · , yn).
The function dign : R

n → {0, 1, non-logical}n is defined
by

dign(y1, y2, · · · , yn)
4

= (dig(y1), dig(y2), · · · , dig((yn))).

To simplify notation, we denote dign simply by dig when
the length n of the vector is clear.

– p.6

Def: combinational gate
DEF: Consider a gate G with n inputs (denoted by ~x) and k
outputs (denoted by ~y). The gate G is a combinational gate
if there exists a ∆ > 0, such that, for all ~x(t) ∈ R

n,

∀t ∈ [t1, t2] : dig(~x(t)) ∈ {0, 1}n

⇒ ∀t ∈ [t1 + ∆, t2] : dig(~y(t)) ∈ {0, 1}k.

Remark:
Logically stable input⇒ logical output.
Static transfer function satisfies:

dig(~x) ∈ {0, 1}n ⇒ dig(f(~x)) ∈ {0, 1}k.

~x may fluctuate but must remain logically stable.
– p.7

Boolean functionality of a combinational gate
Suppose f : R

n → R
k is a static transfer function of a

combinational gate G.
Define a Boolean function Bf : {0, 1}n → {0, 1}k as follows.
Given a Boolean vector (b1, · · · , bn) ∈ {0, 1}n,

xi
4

=

{

Vlow − ε if bi = 0

Vhigh + ε if bi = 1.

The Boolean function Bf is defined by

Bf (~b)
4

= dig(f(~x)).

G combinational circuit ⇒ dig(f(~x)) is logical ⇒ Bf is a
Boolean function.

– p.8

Boolean functionality of a combinational gate - cont.
Since

Bf (~b)
4

= dig(f(~x)).

we can rephrase

dig(~x) ∈ {0, 1}n ⇒ dig(f(~x)) ∈ {0, 1}k.

by

dig(~x) ∈ {0, 1}n ⇒ dig(f(~x)) = Bf (dig(~x)).

⇒ Claim: In a combinational gate, the relation between
the logical values of the inputs and the logical values of the
outputs is specified by a Boolean function.

– p.9

A consistent combinational gate
propagation delay - upper bound on the amount of time that
elapses from the moment that the inputs (nearly) stop
changing till the moment that the output (nearly) equals the
value of the static transfer function.

DEF: A combinational gate G with inputs ~x(t) and outputs
~y(t) is consistent at time t if dig(~x(t)) ∈ {0, 1}n and
~y(t) = Bf (dig(~x(t))).

propagation delay - upper bound on time that elapses from
logically stable inputs till gate is consistent.

– p.10

brief roundup
static transfer func⇒ gate⇒ comb. gate where

gate: outputs = func(inputs)
combinational gate: log. stable inputs⇒ logical outputs
consistency : when dig(~y) = Bf (dig(~x)).
propagation delay: upper bound on time needed to
reach consistency.

Very helpful if you need to deal with the following question:
Is a device G a good candidate for an AND-gate?

Not helpful if you are given a library of gates to work with. In
this case one prefers not to deal with analog signals...

– p.11

Back to the digital world
digital signals - refer to input and output signals as
digital signals.
goals for combinational gates:

specification - specify functionality using a Boolean
function.
consistency - define when a gate satisfies the
specification.
performance - quantify how fast it takes a gate to
satisfy the specification.

propagation delay - loosen definition (allow analog
inputs to change as long as they are logically stable)

– p.12

Specification & Consistency
Consider a combinational gate G with 2 inputs, denoted
by x1, x2, and a single output, denoted by y.
x1(t), x2(t) - the digital signals corresponding to inputs.
y(t) - the digital signal corresponding to the output.
B : {0, 1}2 → {0, 1} - a binary function (specification)

DEF: G is consistent with the Boolean function B at time t
if the input values are digital at time t and

y(t) = B(x1(t), x2(t)).

– p.13

Propagation delay of comb. gate
DEF: A combinational gate G implements a Boolean
function B : {0, 1}2 → {0, 1} with propagation delay tpd if the
following holds.
For every σ1, σ2 ∈ {0, 1}, if xi(t) = σi, for i = 1, 2, during the
interval [t1, t2], then

∀t ∈ [t1 + tpd, t2] : y(t) = B(σ1, σ2).

Equivalently,

x1, x2 stable in [t1, t2]

⇒

G is consistent with B in the interval [t1 + tpd, t2].

– p.14

Propagation delay - remarks
If t2 < t1 + tpd, then the statement in the above definition
is empty.
Propagation delay is an upper bound. The actual
amount of time that passes till a combinational gate is
consistent is very hard to compute (there is also
randomness involved). We may always be overly
pessimistic (i.e., using a propagation delay that is larger
than the actual delay will not introduce errors).

– p.15

Contamination delay
Contamination delay - a lower bound on the amount of time
that the output of a consistent gate remains stable after its
inputs stop being stable.
Contamination delay tells us how fast an output can “react”
to a change in the input

We we will assume that the contamination delay is zero.

– p.16

Example: propagation delay and contamination delay

inputs

tpd

outputs
tcont

x-axis: time.
red segments: signal is not guaranteed to be logical.
green segments: signal is guaranteed to be stable.

– p.17

Combinational circuits - building blocks
Combinational circuits are built of combinational gates and
wires & nets.

– p.18

Combinational gates
Implement a Boolean function.
Since we consider only combinational gates, we refer to
a combinational gate, in short, as a gate.
Typical gates: inverter (NOT-gate), OR-gate, NOR-gate,
AND-gate, NAND-gate, XOR-gate, NXOR-gate,
multiplexer (MUX).
fan-in : number of input terminals (typically, at most 3).

Input ports denoted by the set {in(G)i}
n
i=1, where n denotes

the fan-in of G.
Output ports denoted by the set {out(G)i}

k
i=1, where k de-

notes the number of output ports of G.

– p.19

Wires & Nets
Wires connect points to each other. Very often we need to
connect several terminals (i.e. inputs and outputs of gates)
together.
Ignore how connections are actually made.
Net - subset of terminals that are connected by wires. In the
digital abstraction we assume that the signals all over a net
are identical (why?).

fan-out of a net N - the number of input terminals that are
connected to N .

– p.20

Drawing nets
Three different drawings of the same net (of fan-out 4). We
may draw a net in any way that we find convenient or
aesthetic. The interpretation of the drawing is that terminals
that are connected by lines or curves constitute a net.

– p.21

Digital signals for nets
We would like to define the digital signal N(t) for a whole
net N .
Noise creates different analog signals along the net.
Define N(t) to logical only if there is a consensus among all
the digital interpretations of analog signals at different
terminals of the net.
In other words:

N(t) is zero if the digital values of all the analog signals
along the net are zero.
N(t) is one if the digital values of all the analog signals
along the net are one.
If there is no consensus, then N(t) is non-logical.

– p.22

Directions in nets
A net N feeds an input terminal t if the input terminal t in N .
A net N is fed by an output terminal t if t is in N .

G

a net fed by G
a net that feeds G

Information is “supplied” by output terminals and is
“consumed” by input terminals.
In “pure” CMOS gates, output terminals are connected via
resistors either to the ground (low voltage) or to the power
(high voltage). Input terminals are connected only to
capacitors.

– p.23

Simple nets
Def: A net N is simple if:
1. N is fed by exactly one output terminal, and
2. N feeds at least one input terminal.

Consider a simple net N = {tout, t1, t2, . . . , tk}, where tout

is an output terminal, and {ti}ki=1 are input terminals.

N can be modeled by a “star” of wires {wi}i∈I . Each
wire wi connects tout and ti. We may regard each wire
wi as a directed edge tout → ti.

– p.24

Directed graph corresponding to simple nets

If every every net N in a circuit C is simple, then we can
model C by a directed graph.

DG(C) - a directed graph.
Nodes - gates of C.
Directed edges - directed edge u→ v if there is a net N
such that: (i) an output terminal of gate u feeds N , and
(ii) an input terminal of v is fed by N .

– p.25

Example of a circuit C and a directed graph DG(C)

– p.26

Are these circuits combinational circuits?

– p.27

Input gates & output gates
Input and output gates model communication with the
“external world”. Solve the problem of “hanging” wires.

Output GateInput Gate

input gate - a gate with zero inputs and a single output.
output gate - a gate with one input and zero outputs.

– p.28

Syntactic definition of combinational circuits

Def: A combinational circuit is a pair C = 〈G,N〉 that
satisfies the following conditions:
1. G is a set of gates.
2. N is a set of nets over terminals of gates in G.
3. Every terminal t of a gate G ∈ G belongs to exactly one

net N ∈ N .
4. Every net N ∈ N is simple.
5. The directed graph DG(C) is acyclic.

– p.29

Syntactic definition - remarks
Definition of combinational circuits is independent of the
gate types (e.g. inverter, NAND-gate, etc.). The question of
whether a circuit is combinational is a purely topological
question (i.e. are the interconnections between gates
legal?).
syntax - “grammar” rules for forming compound circuits from
simple circuits.

– p.30

Back to “bad” examples...
Which conditions in the syntactic definition of combinational
circuits are violated by the “bad” circuits?

Question: Design an efficient algorithm to check if a given
circuit is combinational.

– p.31

Combinational circuits: Syntax⇒ Semantics

Completeness: for every Boolean function B, there
exists a combinational circuit that implements B
(exercise).
Soundness: every combinational circuit implements a
Boolean function. (NP-Complete to decide if a given
combinational circuit ever outputs a 1.)
Simulation: given the digital values of the inputs of a
combinational circuit, one can simulate the circuit in
time that is linear in the circuit’s size.
Delay analysis: given the propagation delays of all the
gates in a combinational circuit, one can compute in
linear time the propagation delay of the circuit (upper
bound).

– p.32

Simulation theorem of combinational circuits
C = 〈G,N〉 - a combinational circuit with k input gates.
{xi}

k
i=1 - digital input signals

[t1, t2] - a sufficiently long interval of time.

Theorem: If the digital signals {xi(t)}
k
i=1 are stable during

the interval [t1, t2], then, for every net N ∈ N there exist:
1. a Boolean function BN : {0, 1}k → {0, 1}, and
2. a propagation delay tpd(N)

such that

N(t) = BN (x1(t), x2(t), . . . , xk(t)),

for every t ∈ [t1 + tpd(N), t2].

– p.33

Example - simulation of combinational circuit

XOR

ANDOR

xyzw

AND(x,y)
t_pd(AND)t_pd(OR)

XOR(AND(x,y) , OR(z,w))
t_pd(XOR) + MAX { t_pd(AND) , t_pd(OR) }

OR(z,w)

process nets according to topological order (i.e. u
before v if there is an edge u→ v in DG(C)).
assign Boolean function to each net.
assign tpd to each net.

– p.34

Proof of Simulation Theorem
Notation:

~x(t) - the vector x1(t), . . . , xk(t).
v1, v2, . . . , vn - topological order of vertices (gates) in
DG(C).
WLOG: v1, . . . , vk are the input gates.
xi(t) is the digital signal output by vi (for 1 ≤ i ≤ k).
ei - nets fed by gate vi (assume only one).
e1, e2, . . . , em - ordering of the nets in N .
Note that e1 is fed by v1, . . . , ek is fed by vk, hence
e1 = x1, . . . , ek = xk.

– p.35

Proof - Induction hypothesis
For every i ≤ m′ there exist:
1. a Boolean function Bei

: {0, 1}k → {0, 1}, and
2. a propagation delay tpd(ei)

such that the network ei implements the Boolean function

Bei
: {0, 1}k → {0, 1}

with propagation delay tpd(ei).

– p.36

Proof - Induction basis
Instead of proving for m′ = 1, we prove for m′ = k.
Consider an i ≤ k. The net ei is fed by vi, and the digital
signal corresponding to ei is xi(t).
=⇒ define

Bei
(σ1, . . . , σk) = σi.

tpd(ei) = 0.

now to induction step...

– p.37

Proof - Induction step
Ind. Hyp.(m′) =⇒ Ind. Hyp.(m′ + 1).

Focus on em′+1:
Let vi denote the gate that feeds em′+1.
For simplicity: assume that vi has 2 inputs fed by the
nets ej & ek, respectively. Also, assume that vi has a
single output.
Topological ordering⇒ j, k ≤ m′.
Ind. Hyp. ⇒:

ej implements a Boolean function Bej
with tpd(ej).

ek implements a Boolean function Bek
with tpd(ek).

⇒ both inputs to gate vi are stable during the interval

[t1 + max{tpd(ej), tpd(ek)}, t2].

– p.38

Proof - Ind. step - cont.
Gate vi implements a Boolean function Bvi

with
propagation delay tpd(vi).
⇒ the output of gate vi equals

Bvi
(Bej

(~x(t)), Bek
(~x(t)))

during the interval

[t1 + max{tpd(ej), tpd(ek)}+ tpd(vi), t2].

Define

Bem′+1
(~σ) = Bvi

(Bej
(~σ), Bek

(~σ)).

tpd(em′+1) = max{tpd(ej), tpd(ek)}+ tpd(vi).

QED
– p.39

Simulation theorem - Corollaries
simulation algorithm
timing analysis algorithm
may regard a combinational circuit as a “macro-gate”.
All instances of the same combinational circuit
implement the same Boolean function and have the
same propagation delay.

very simple algorithms...

– p.40

Simulation and timing-analysis algorithm

construct the directed graph DG(C).
sort gates in topological order .
order the nets e1, e2, . . . , em.
For i = 1 to m do:

Let vj denote the gate that feeds ei.

val(ei)← Bvj

(
{val(ek)}ek feeds vj

)

tpd(ei)← tpd(vj) + max{tpd(ek)}ek feeds vj
.

Complexity: linear if each gate has a single output terminal
and computing Bvj

requires constant time. (why?)

– p.41

Quality measures of combinational gates

Suppose C1 and C2 are combinational circuits that
compute the same Boolean function. How do we decide
which one is better? We use two criteria:
Cost
Propagation delay

– p.42

Cost
We associate a cost with every gate. We denote the cost of
a gate G by c(G).
Def: The cost of a combinational circuit C = 〈G,N〉 is
defined by

c(C)
4

=
∑

G∈G

c(G).

Remark: Naive cost measure - ignores wiring. The more
interesting measure is area. However, computing the area
requires detailed physical design (which is hard to compute
and is very sensitive to technology).

– p.43

Propagation delay
We associate a propagation delay with every gate. We
denote the propagation delay of a gate G by tpd(G).
Def: The propagation delay of a combinational circuit
C = 〈G,N〉 is defined by

tpd(C)
4

= max
N∈N

tpd(N).

We often refer to the propagation delay of a combinational
circuit as its depth or simply its delay.

– p.44

Delays of paths
path - a sequence p = {v0, v1, . . . , vk} of gates that form
a path in the directed graph DG(C).
delay of a path p -

tpd(p) =
∑

v∈p

tpd(v).

Claim:
tpd(C) = max{tpd(p) | paths p}.

critical path - a path p that satisfies tpd(p) = tpd(C).

Q: Number of paths can be exponential. How were we able
to compute max{tpd(p) : paths p}?

– p.45

Example: gate costs and delays
Müller and Paul compiled the following costs and delays of
gates. These figures were obtained by considering ASIC
libraries of two technologies and normalizing them with
respect to the cost and delay of an inverter.

Gate Motorola Venus
cost delay cost delay

INV 1 1 1 1
AND,OR 2 2 2 1
NAND, NOR 2 1 2 1
XOR, NXOR 4 2 6 2
MUX 3 2 3 2

– p.46

Syntax & Semantics
semantics - function that a circuit implements. Also
called functionality or even the behavior of the circuit.
In general, formal description that relates

input values 7−→ output values.

In non-combinational circuits, the output depends not
only on the current inputs, so semantics cannot be
described simply by a Boolean function.
syntax - a formal set of rules that govern how
“grammatically correct” circuits are constructed from
smaller circuits (just as words form sentences).

syntax 6=⇒ useful circuit (e.g. adder).
syntax =⇒ well defined functionality, simple
simulation, & simple timing analysis.

– p.47

Summary
gates - implement simple Boolean functions
nets & wires - used to connect terminals of gates
formal (syntactic) definition of combinational circuits
combinational gates are easy to:

recognize
simulate
analyze (propagation delay)

quality criteria: cost & delay

– p.48

Chapter 3: Trees
Computer Structure - Spring 2007

c©Dr. Guy Even

Tel-Aviv Univ.

– p.1

http://www.eng.tau.ac.il/~guy/

Preliminary Questions
Which Boolean functions are suited for implementation
by tree-like combinational circuits?
In what sense are tree-like implementations optimal?

– p.2

Goals
define associative Boolean functions (and classify
them).
trees - combinational circuits that implement associative
Boolean funcs.
analyze delay & cost of trees.
prove optimality.

– p.3

Associative dyadic boolean functions

Def: A Boolean function f : {0, 1}2 → {0, 1} is associative if

f(f(σ1, σ2), σ3) = f(σ1, f(σ2, σ3)),

for every σ1, σ2, σ3 ∈ {0, 1}.

Q: List all the associative Boolean functions

f : {0, 1}2 → {0, 1}.

“A”: There are 16 dyadic Boolean functions, only need to list
them and check...

– p.4

fn : composing f : {0, 1}2 → {0, 1}

Def: Let f : {0, 1}2 → {0, 1} denote a Boolean function. The
function fn : {0, 1}n → {0, 1}, for n ≥ 2 is defined by
induction as follows.
1. If n = 2 then f2 ≡ f .
2. If n > 2, then fn is defined based on fn−1 as follows:

fn(x1, x2, . . . xn)
4

= f(fn−1(x1, . . . , xn−1), xn).

Example:

NOR4(x1, x2, x3, x4) = NOR(NOR(NOR(x1, x2), x3), x4).

Note that NOR is not associative!

– p.5

fn : the associative case
If f(x1, x2) is associative, then parenthesis are not
important. Formally:
Claim: If f : {0, 1}2 → {0, 1} is an associative Boolean
function, then for every k ∈ [2, n− 2]:

fn(x1, x2, . . . xn) = f(fk(x1, . . . , xk), fn−k(xk+1, . . . , xn)).

Q: Show that the set of functions fn(x1, . . . , xn) that are
induced by associative dyadic Boolean functions is

{constant 0, constant 1, x1, xn, ANDn, ORn, XORn, NXORn} .

Remark: Only last 4 functions are “interesting”. We focus
on ORn.

– p.6

Definition of OR-trees
Def: A combinational circuit C = 〈G,N〉 that satisfies the
following conditions is called an OR-tree(n).
1. Input: x[n− 1 : 0].
2. Output: y ∈ {0, 1}

3. Functionality: y = OR(x[0], x[1], · · · , x[n− 1]).
4. Gates: All the gates in G are OR-gates.
5. Topology: The underlying graph of DG(C) (i.e.

undirected graph obtained by ignoring edge directions)
is a tree.
Note that in the tree:

leaves correspond to the inputs x[n− 1 : 0] and the
output y.
interior nodes - OR-gates.
Could root the tree, and then the root is the output.

– p.7

Recursive definition of OR-trees
Def: an OR-tree(n) is defined recursively as follows:

basis: (n = 1) - a trivial circuit
in which input directly feeds
output.

step: (n > 1) - compose two
trees Tn1

& Tn2
by feeding their

output to a new gate.
or

or-tree(n1) or-tree(n2)

– p.8

Example: OR-tree(4)

or

or

x[3]

y

x[2]

or

or

or

x[0] x[1] x[2] x[3]

or

x[0] x[1]

y

Cost - both trees have 3 gates.
Delay - 2 gates vs. 3.

– p.9

Cost of OR-trees
Claim: The cost of every OR-tree(n) is (n− 1) · c(OR).

Proof: By induction on n.

Induction basis: n = 2. In this case, OR-tree(2) contains a
single OR-gate. What about n = 1?

– p.10

Cost of OR-trees - Induction step
let C denote an OR-tree(n).
let g denote the OR-gate that outputs the output of C.
g is fed by two wires e1 and e2.
e1 is the output of C1 - an OR-tree(n1)

e2 is the output of C2 - an OR-tree(n2)

n1 + n2 = n

Ind. Hyp. ⇒ c(C1) = (n1 − 1) · c(OR) &
c(C2) = (n2 − 1) · c(OR).

c(C) = c(g) + c(C1) + c(C2)

= (1 + n1 − 1 + n2 − 1) · c(OR)

= (n− 1) · c(OR). QED
– p.11

Delay of OR-trees
Since all gates in an OR-tree are identical, delay of tree is
proportional to the length of longest path from input to
output (i.e., depth of tree).
DEF: A rooted tree is a minimum depth tree if its depth is
minimum among all the rooted trees with the same number
of leaves.
Since all trees with n inputs have the same cost, we may
focus on min. depth trees.
Question: How many min. depth trees are there with n = 2k

inputs?

– p.12

Example: delay of OR-trees

or

or

or

or

or or

or

or

or

or

Question: Are these min. depth trees?

– p.13

Lower bound on depth
Question: Prove that if Tn is a rooted binary tree with n

leaves, then the depth of Tn is at least dlog2 ne.

– p.14

Upper bound on depth
Wish to present a simple procedure for constructing Tn

with depth dlog2 ne.
Natural candidate: balanced trees...

DEF: Two positive integers a, b are a balanced partition of n
if: (1) a + b = n, and (2) max{dlog2 ae, dlog2 be} ≤ dlog2 ne − 1.

Example: Suppose n = 6. In this case dlog2 ne = 3. Hence
a = b = 3 is a balanced partition, but so is a = 4, b = 2.

– p.15

Procedure for constructing “balanced” trees

Question: Consider the following recursive algorithm for
constructing a binary tree Tn with n ≥ 2 leaves. Prove that
the depth of Tn is dlog2 ne.
1. The case that n ≤ 2 is trivial (two leaves connected to a

root).
2. If n > 2, then let a, b be balanced partition of n.
3. Compute trees Ta and Tb. Connect their roots to a new

root to obtain Tn.

– p.16

Are balanced OR-trees optimal?
What is the best (min. cost & delay) choice of a
topology for a combinational circuit that implements the
Boolean function ORn? Is a tree indeed the best
topology?
Could one do better if another implementation is used?

– p.17

Optimality of balanced OR-trees
Would like to prove that every combinational circuit C that
implements ORn satisfies:

c(C) ≥ n− 1

tpd(C) ≥ log2 n.

We need to be more accurate about the model:

Q: what is the cost/delay of an n-input OR-gate?
assumption 1: the fan-in of every gate ≤ 2, so we have to
build big gates from basic gates.
assumption 2: the cost & delay of every basic gate is ≥ 1.
(input/output gates are free)

– p.18

Optimality of balanced OR-trees
Would like to prove that every combinational circuit C that
implements ORn satisfies:

c(C) ≥ n− 1

tpd(C) ≥ log2 n.

Looking for proof also for the case that DG(C) is not a tree!

– p.19

Restriction of a Boolean function
Def: Let f : {0, 1}n → {0, 1} denote a Boolean function. Let
σ ∈ {0, 1}. The Boolean function g : {0, 1}n−1 → {0, 1}
defined by

g(w0, . . . , wn−2)
4

= f(w0, . . . , wi−1, σ, wi, . . . , wn−2)

is called the restriction of f with xi = σ. We denote it by
f�xi=σ.

Examples:
XOR�x2=1(x1)

4

= XOR(x1, 1)

MAJORITY�xn=1(x1, . . . , xn−1)
4

=

{

1 if ∑n−1
i=1 xi + 1 > n/2

0 otherwise.
– p.20

Cone of a Boolean function
A boolean function f : {0, 1}n → {0, 1} depends on its ith
input if

f�xi=0 6≡ f�xi=1.

Def: The cone of a Boolean function f is defined by

cone(f)
4

= {i : f depends on its ith input}.

Claim: The Boolean function ORn depends on all its inputs,
namely

|cone(ORn)| = n.

– p.21

Input-Output reachability
Claim: If a combinational circuit C implements a Boolean
function f , then there must be a path in DG(C) from every
input in cone(f) to the output of C.

Proof: by contradiction,
assume i ∈ cone(f).
let gi ∈ G denote the input gate that feeds the ith input.
assume that in DG(C) there is no path from gi to the
output y.
show that C does not implement f .

– p.22

Input-Output reachability - cont.
Find vectors w′, w′′ ∈ {0, 1}n such that

f(w′) 6= f(w′′)

w′[i] 6= w′′[i]

.w′[j] = w′′[j], for every j 6= i

.

Proof of Simulation Algorithm
⇒ C outputs the same value in y when input w′ and w′′.

⇒ C errs either with w′ or with w′′. QED

– p.23

Linear Cost Lower Bound Theorem
assumptions:

fan-in of every gate at most 2.
cost of trivial gates (i.e. input/output gates) is zero.
cost of non-trivial gate is at least 1.

Theorem: If C is a combinational circuit that implements a
Boolean function f , then

c(C) ≥ |cone(f)| − 1.

Corollary: If Cn is a combinational circuit that implements
ORn, then c(Cn) ≥ n− 1.
Easy to prove theorem for trees, but what about arbitrary
DAGs?

– p.24

DAG terminology
Consider the directed acyclic graph (DAG) DG(C).

degin(v): in-degree of a vertex v is the number of edges
that enter the vertex v.
degout(v): out-degree of a vertex v : is the number of
edges that emanate from the vertex v.
source - a vertex with in-degree zero.
sink - a vertex with out-degree zero.
interior vertex - a vertex that is neither a source or a
sink.

sources

sinks
interior vertices

– p.25

Leaves and interior vertices in trees
Let T = (V,E) denote a tree with at least two vertices.
A leaf is a vertex of degree 1.
An interior vertex is a vertex that is not a leaf.
leaves(V) - set of leaves in V .
interior(V) - set of interior vertices in V .
Claim:
If the degree of every vertex in T is at most three, then

|interior(V)| ≥ |leaves(V)| − 2.

– p.26

Underlying graph of DG(C)

C - a combinational circuit & DG(C) = (V,A) - a DAG
underlying graph of DG(C) - undirected graph
G = (V,E), where (u, v) ∈ E ⇔ (u→ v) ∈ A.
If fan-in of every gate in C is at most 2 and G is a tree,
then degree of every vertex in G is at most 3.
Leaves in G correspond to input and output gates in C.
Interior vertices in G correspond to non-trivial gates in
C.
Case of a tree:
Claim: Assume C has n inputs and a single output.
Assume fan-in of all gates is at most 2. If G is a tree,
then

c(C) ≥ n− 1.

– p.27

Proof of linear cost lower bound theorem
If underlying graph of DG(C) is a tree, then previous
claim proves the theorem.
If DG(C) = (V,E) is not a tree, then construct a directed
“binary tree” T ′ = (V ′, E′) such that

V ′ ⊆ V & E′ ⊆ E

sources(T ′) = cone(f)

output gate ∈ V ′.
in T ′ we have |interior nodes| ≥ |sources| − 1.
But interior nodes of T are also interior in DG(C), and
number of sources in T equals |cone(f)|. QED.

Left to show how T is constructed...

– p.28

Construction of T

v1 v2 v3 v4

y

– p.29

larger fan-in
Q: Generalize the lower bound on the cost to the case that
the fan-in of every gate is bounded by a constant k.

– p.30

Logarithmic Delay Lower Bound Theorem

Theorem: Let C = 〈G,N〉 denote a combinational circuit
that implements a non-constant Boolean function
f : {0, 1}n → {0, 1}. If the fan-in of every gate in G is at most
k, then the delay of C is at least logk |cone(f)|.

Corollary: Let Cn denote a combinational circuit that
implements ORn. Let k denote the maximum fan-in of a gate
in Cn. Then

tpd(Cn) ≥ dlogk ne .

– p.31

Proof of logarithmic lower bound
deal only with the graph DG(C).
show that exists a path with at least logk |cone(f)|
interior vertices in DG(C).
why interior?
input/output gates and constants have zero delay⇒
should not be counted.
only sources & sinks have zero delay⇒ count interior
vertices.
cone(v) - set of sources from which v is reachable. Note
that |cone(output)| ≥ |cone(f)|.
d(v) - max number of interior vertices along a path from
a source in cone(v) to v (including v).
suffice to prove that d(v) ≥ logk |cone(v)|.

– p.32

Proof: d(v) ≥ logk |cone(v)|

Proof by induction on d(v).
Basis: d(v) = 0. In this case v is
a source, |cone(v)| = 1.
Step: d(v) = i + 1. Edges
entering v are
v1 → v, . . . , vk′ → v, for k′ ≤ k.
by def: d(v) = max{d(vi)}

k′

i=1 + 1.

cone(v) =
⋃k′

i=1 cone(vi).

cone(v)1 cone(v)2 cone(v)k’

v1 v2 vk’

v

|cone(v)| ≤
k′

∑

i=1

|cone(vi)|

≤ k′ ·max{|cone(vi)|}
k′

i=1}.
– p.33

Cont. proof: d(v) ≥ logk |cone(v)|
Let v′ denote a predecessor of v that satisfies

|cone(v′)| = max{|cone(vi)|}
k′

i=1 ≥ |cone(v)|/k′.

The induction hypothesis implies that

d(v′) ≥ logk |cone(v′)|.

But,

d(v) ≥ 1 + d(v′)

≥ 1 + logk |cone(v′)|

≥ logk k + logk |cone(v)|/k′

≥ logk |cone(v)|.

– p.34

Cont. proof: d(v) ≥ logk |cone(v)|

Finally, we deal with the case that v is a sink.
v has a unique predecessor v′.
we have d(v) = d(v′) and cone(v) = cone(v′).
induction step applies to v′, and hence we have

d(v) ≥ logk |cone(v)|,

as required.

– p.35

Summary
associative Boolean functions.
extend dyadic functions to functions with n arguments.
only four non-trivial associative Boolean functions.
OR-tree(n) - combinational circuits that implement ORn

using a topology of a tree.
cost(OR-tree) = n− 1.
tpd(balanced OR-tree) = log2 n.
Balanced OR-trees optimal cost & delay.
two lower bounds:

cost ≥ |cone(f)| − 1.
tpd ≥ logk |cone(f)|.

– p.36

Chapter 4: Decoders & Encoders
Computer Structure - Spring 2007

c©Dr. Guy Even

Tel-Aviv Univ.

– p.1

http://www.eng.tau.ac.il/~guy/

Preliminary questions
Suggest methods for designing combinational circuits
that implement nontrivial Boolean functions.
How do we check if a design of a combinational circuit
is correct?

– p.2

Goals
vector notation: buses, indexed signals, multiple copies
of gates
representation: binary representation
Decoders:

definition (specification)
implementation
correctness proof
analyze delay & cost
optimality

Encoders: same ritual... (definition (specification),
correctness proof, analyze delay & cost, optimality)

– p.3

Parallel nets
We could use separate names for each net:

a
b
c

– p.4

Indexing parallel nets
We could index the names of the nets:

a[1]
a[2]
a[3]

– p.5

Bus notation
We could refer to the nets as a bus a[1 : 3]:

a[1:3]

To make sense we would have to give indexed names to
inputs/output terminals.
For example: input terminals in[1 : 3] and output terminals
out[1 : 3]. And then a[i] feeds in[i] and is fed by out[i].

– p.6

Bus notation
Indexes of terminal names match indexes of bus names:

a[1:3]
out[1:3]

in[1:3]

– p.7

Bus related definitions
bus - set of nets that are connected to the same
modules.
bus width - number of nets in the bus.

Example: The bus a[1 : 3] connects the output terminals
out[1 : 3] to the input terminals in[1 : 3]. The width is 3.

– p.8

Indexed buses
Assignment in[1 : 4]← out[1 : 4] means
in[1]← out[1], . . . , in[4]← out[4].
Reversing in[1 : 4]← out[4 : 1] means
in[1]← out[4], . . . , in[4]← out[1].
Hardwired shifting in[i : j]← out[i + 5 : j + 5] means
in[i]← out[i + 5], . . . , in[j]← out[j + 5].

– p.9

Bus assignment conventions
Unless stated explicitly, reversing is not used. The
assignments:

b[i : j]← a[i : j] & b[j : i]← a[i : j]

have the same meaning (so we don’t have to worry
about ascending/descending indexes).
Hardwired-shifting is used for shifted index ranges. For
example,

b[i + 5 : j + 5]← a[i : j]

means

b[i + 5]← a[i] b[i + 6]← a[i + 1] · · · b[j + 5]← a[j]

– p.10

Signals on buses
Consider a bus a[5 : 1].
The signal on a[3] at time t is a[3](t).
Abbreviate and simply write a[3] as the signal on a[3]
after it stabilizes.
Similarly: a[5 : 1] refers both to the bus and to the stable
signal on the bus.
=⇒ a[5 : 1] is both a bus and a binary string.
Abbreviate a[5 : 1] and write ~a if index range is clear
from context.

– p.11

multiple instances of the same gate

G0

a0 b0

z0

n n

n

G1

a1 b1

z1

Gn−1

an−1 bn−1

zn−1

(A) (B)

G(n)

z[0 : n− 1]

a[0 : n − 1] b[0 : n− 1]

Gi - the ith instance of gate G in G(n).
ai, bi - the two input terminals of Gi.
zi - the output terminal of Gi.

– p.12

Common input in G(n)
b is fed to the second input terminal of all the gates.

n

n

G1

a1

z1

Gn−1

an−1

zn−1

(A) (B)

G(n)

z[0 : n− 1]

a[0 : n − 1]b

1

b

G0

a0

z0

Fanout of the net b is n. In practice, a large fanout increases
the capacity of a net and causes an increase in the delay of
the circuit. Ignore this phenomenon in this course.

– p.13

Concatenation of binary strings
assume that a and b are binary strings.
a · b - the string obtained by concatenating a and b.
example: if a = 01 and b = 10, then a · b = 0110.
ai - the string a · a · · · a

︸ ︷︷ ︸

i times
.

example: if a = 01 and i = 3, then ai = 010101.
If A is a set of strings, then Ai is the set of strings

Ai = {a1 · · · · ai : ∀j ≤ i : aj ∈ A}.

example: {0, 1}n - set of binary strings of length n.
A∗ 4

= ∪∞i=0A
i (A0 = {Λ}, not the empty set).

A+ 4

= ∪∞i=1A
i.

– p.14

Values represented by binary strings
Binary strings can be used to represent numbers. Among
the many methods for representing natural numbers:

Binary representation
Unary representation
1-out-of-n (one-hot).

– p.15

Binary representation
The value represented in binary representation by a binary
string a[n− 1 : 0] is denoted by 〈a[n− 1 : 0]〉. It is defined as
follows

〈a[n− 1 : 0]〉
4

=
n−1∑

i=0

ai · 2
i.

Could define a function 〈〉n : {0, 1}n → [0, 2n − 1].
Usually omit the parameter n - clear from context.

Inverse function bin : [0, 2n − 1]→ {0, 1}n.

∀a[n− 1 : 0] ∈ {0, 1}n : binn(〈a[n− 1 : 0]〉) = a[n− 1 : 0].

– p.16

Division by 2k in binary representation
reminder: division by b with remainder:

x = q · b + r, where r ∈ [0, b− 1].

q - quotient equals bx/bc

r - remainder equals mod(x, b).
Consider a binary string a[n− 1 : 0] and
x = 〈a[n− 1 : 0]〉.
How do we compute (the binary representation of)
bx/2kc & mod(x, 2k)?

r = 〈a[k − 1 : 0]〉

q = 〈a′[n− k − 1 : 0]〉, where
a′[n− k − 1 : 0]← a[n− 1 : k] (with shifting).

– p.17

Decoders
A decoder with input length n is a combinational circuit
specified as follows:
Input: x[n− 1 : 0] ∈ {0, 1}n.
Output: y[2n − 1 : 0] ∈ {0, 1}2

n

Functionality:
y[i] = 1⇐⇒ 〈~x〉 = i.

|outputs| of a decoder is exponential in |inputs|.
exactly one bit of the output ~y is set to one. (called also
one-hot encoding or 1-out-of-k encoding.)
DECODER(n) - a decoder with input length n

example: DECODER(3) - on input x = 101, the output y equals
00100000.

– p.18

DECODER(8) - schematic

z0

z255

z36

w4

y2

4-Input Binary
DecoderEn

x3 x2 x1 x0

1

15 . . .4 3 2 1 0

0 1 0 0

4-
In

pu
t B

in
ar

y
De

co
de

r
15

 .

 .
.

2
 1

 0

En
x7

x6

x5

x4

E

0
0
1
0

1

1

1

from: Introduction to Digital Systems, M.D. Ercegovac, T. Lang, and J.H. Moreno, Wiley and Sons, 1998. – p.19

DECODER(n) - schematic

z0

z 2 n - 1

E

ys

En

DE
CO

DE
R

Y

x n-1

xn/2

En DECODER W

x0x n/2-1

wt

1

w0

y0

n/22 s+tz

n/22 -1w

n/22 -1y

from: Introduction to Digital Systems, M.D. Ercegovac, T. Lang, and J.H. Moreno, Wiley and Sons, 1998. – p.20

Weaknesses of standard decoder descriptions

Why is the design correct?
Can you prove correctness?
Can’t prove it unless the design is formally defined...
Is the design (asymptotically) optimal?
Why partition into n/2 & n/2? Is that the best partition?

– p.21

Formal description of DECODER(n)

Use recursion.
Basis: DECODER(1): is simply one inverter where:

y[0]← INV(x[0])

y[1]← x[0].

– p.22

Formal description of DECODER(n) - recursive step

Decoder(k)

k

2
k

xR[k − 1 : 0]
4

= x[k − 1 : 0]

R[2k
− 1 : 0]

Decoder(n − k)

andq,r

y[q · 2k + r]

Q[q]

R[r]

2n−k
× 2k

array of

and-gates
Q[2n−k

− 1 : 0]

n − k 2
n−kxL[n − k − 1 : 0]

x[n − 1 : k]

4

=

– p.23

Correctness proof
The proof is by induction.
Induction hypothesis for n: if DECODER(n) is input x[n− 1 : 0],
then the output y[2n − 1 : 0] satisfies:

∀0 ≤ i < 2n : y[i] = 1 ⇐⇒ 〈x[n− 1 : 0]〉 = i.

Induction basis: n = 1: trivial.

Induction step: show that:

[∀n′ < n : Ind. Hyp. (n′)] =⇒ Ind. Hyp. (n).

– p.24

induction step - cont.
Fix i ∈ [2n − 1 : 0] and prove that y[i] is correct.
Divide by 2k: i = q · 2k + r.
Ind. Hyp. (k)⇒

R[r] = 1⇐⇒ 〈xR[k − 1 : 0]〉 = r.

Ind. Hyp. (n− k)⇒

Q[q] = 1⇐⇒ 〈xL[n− k − 1 : 0]〉 = q

Now y[i] = y[q · 2k + r], hence

y[i] = 1⇐⇒ R[r] = 1 and Q[q] = 1

⇐⇒ 〈xR[k − 1 : 0]〉 = r and 〈xL[n− k − 1 : 0]〉 = q.

⇐⇒ 〈x[n− 1 : 0]〉 = i QED

– p.25

Cost analysis
The cost c(n) satisfies the following recurrence equation:

c(n) =

{

c(INV) if n=1
c(k) + c(n− k) + 2n · c(AND) otherwise.

It follows that

c(n) = c(k) + c(n− k) + Θ(2n)

Obviously c(n) = Ω(2n).
Next slide: for every choice of k, c(n) = O(2n).
See lecture notes for tight analysis with k = n/2.

– p.26

Cost analysis - cont.
Claim: c(n) = O(2n).

Proof: Set β = c(AND), and
α = max{3β, c(1)/2, c(2)/4, c(3)/8}.
We prove by induction that c(n) ≤ α · 2n. Induction basis
follows for n ≤ 3 by definition of α.

Induction step for n ≥ 4:

c(n) = c(k) + c(n− k) + β · 2n

≤ α · 2k + α · 2n−k + β · 2n

≤ α · 2n−1 + α · 2 + β · 2n

= 2n

(
α

2
+ β +

2α

2n

)

.

But,
β ≤ α/3, and
n ≥ 4⇒ 2

2n ≤
1
6 .

Hence c(n) ≤ α · 2n.

– p.27

Delay analysis
The delay of DECODER(n) satisfies the following recurrence
equation:

d(n) =

{

d(INV) if n=1
max{d(k), d(n− k)}+ d(AND) otherwise.

Set k = n/2, and it follows that d(n) = Θ(log n).

Question: Prove that DECODER(n) is asymptotically optimal
with respect to cost and delay.

– p.28

Weight of binary strings
Def: The Hamming weight of a binary string is defined by

wt(a[n− 1 : 0])
4

= |{i : a[i] 6= 0}|.

Note that

wt(a[n− 1 : 0]) =
n−1∑

i=1

a[i].

example:
wt(01101) = 3.

– p.29

Encoders - Definitions
We define the encoder partial function as follows.
Def: The function

ENCODERn : {~y ∈ {0, 1}2
n

: wt(~y) = 1} → {0, 1}n

is defined as follows:

wt(y) = 1 =⇒ y[〈ENCODERn(~y)〉] = 1.

Examples:

ENCODER2(0100) = 10

ENCODER2(0101) = undefined.

– p.30

Encoder - Defs. - cont.

ENCODER(n) - a comb. circuit with 2n inputs and n outputs
that implements the Boolean function ENCODERn.

Functionality is not defined for all binary strings.
encoder = decoder−1.

– p.31

Encoders - Defs. - cont.
ENCODER(n) can be also specified as follows:
Input: y[2n − 1 : 0] ∈ {0, 1}2

n .
Output: x[n− 1 : 0] ∈ {0, 1}n.
Functionality:

wt(~y) = 1 =⇒ y[〈~x〉] = 1.

If wt(~y) 6= 1, then the output ~x is arbitrary.

examples: Consider an encoder ENCODER(3).
- on input 00100000, the output equals 101.
- on input 01101011, the output is not specified.

– p.32

Encoder - implementation
Plan:

Design a simple encoder ENCODER′(n).
Prove correctness of ENCODER′(n).
Improve ENCODER′(n) to obtain ENCODER∗(n).
Prove functional equivalence

ENCODER∗(n) ≡ ENCODER′(n),

and hence, correctness of ENCODER∗(n).
Prove asymptotic optimality of ENCODER∗(n).

– p.33

ENCODER′(n)
Use recursion.

Basis: ENCODER(1): is simply x[0]← y[1] (zero cost, zero
delay).

Recursion step: Partition input y[2n − 1 : 0]

yL[2n−1 − 1 : 0] = y[2n − 1 : 2n−1]

yR[2n−1 − 1 : 0] = y[2n−1 − 1 : 0].

Apply ENCODER′(n− 1) to ~yL and to ~yR.

Problem: if ~yL = 02n−1, then output of ENCODER′(n− 1) is
arbitrary, and design can’t be correct...
⇒ Must specify output for an all-zeros input.

– p.34

Define ENCODERn(0
2n

)

We augment the definition of the ENCODERn function so that
its range also includes the all zeros string 02n. We define

ENCODERn(02n

)
4

= 0n.

Note: In ENCODER′(1): x[0]← y[1], so if input is 00 then output
is 0. Hence, ENCODER′(1) also meets this new condition, and
the induction basis of the correctness proof holds.

– p.35

ENCODER′(n) - recursive step

n− 1 n− 1

or(n− 1)

n − 1

x[n− 2 : 0]

2
n−1

1

4

= y[2n
− 1 : 2n−1]

4

= y[2n−1
− 1 : 0]

2
n−1

a[n− 2 : 0]b[n− 2 : 0]

or-tree(2n−1)

encoder
′(n− 1) encoder

′(n− 1)

x[n− 1]

yL[2n−1
− 1 : 0] yR[2n−1

− 1 : 0]

– p.36

Correctness of ENCODER′(n) - induction step

Three cases, depending on which “half” of ~y contains a 1.

(1) wt(~yL) = 0 & wt(~yR) = 1:

Ind. Hyp. ⇒
~b = 0n−1 & yR[〈~a〉] = 1.
⇒ desired output is
~x = 0 · ~a.
actual output is
~x = OR-tree(~yL) · OR(~b,~a)

= 0 · ~a.

n− 1 n− 1

or(n− 1)

n − 1

x[n− 2 : 0]

2
n−1

1

4

= y[2n
− 1 : 2n−1]

4

= y[2n−1
− 1 : 0]

2
n−1

a[n− 2 : 0]b[n− 2 : 0]

or-tree(2n−1)

encoder
′(n− 1) encoder

′(n− 1)

x[n− 1]

yL[2n−1
− 1 : 0] yR[2n−1

− 1 : 0]

– p.37

Correctness of ENCODER′(n) - induction step - cont.

(2) wt(~yL) = 1 & wt(~yR) = 0:

Ind. Hyp. ⇒
yL[〈~b〉] = 1 & ~a = 0n−1.
⇒ desired output is
~x = 1 ·~b.
actual output is
~x = OR-tree(~yL) · OR(~b,~a)

= 1 ·~b.

n− 1 n− 1

or(n− 1)

n − 1

x[n− 2 : 0]

2
n−1

1

4

= y[2n
− 1 : 2n−1]

4

= y[2n−1
− 1 : 0]

2
n−1

a[n− 2 : 0]b[n− 2 : 0]

or-tree(2n−1)

encoder
′(n− 1) encoder

′(n− 1)

x[n− 1]

yL[2n−1
− 1 : 0] yR[2n−1

− 1 : 0]

– p.38

Correctness of ENCODER′(n) - induction step - cont.

(3) wt(~yL) = 0 & wt(~yR) = 0:

desired output is
~x = 0n.
Ind. Hyp. ⇒
~b = 0n−1 & ~a = 0n−1.
actual output is
~x = OR-tree(~yL) · OR(~b,~a)

= 0 · 0n−1.

n− 1 n− 1

or(n− 1)

n − 1

x[n− 2 : 0]

2
n−1

1

4

= y[2n
− 1 : 2n−1]

4

= y[2n−1
− 1 : 0]

2
n−1

a[n− 2 : 0]b[n− 2 : 0]

or-tree(2n−1)

encoder
′(n− 1) encoder

′(n− 1)

x[n− 1]

yL[2n−1
− 1 : 0] yR[2n−1

− 1 : 0]

– p.39

Delay analysis of ENCODER′(n)

Let d(n) denote tpd(ENCODER′(n)).

d(n) =

{

0 if n=1
max{(n− 1) · tpd(OR), d(n− 1) + tpd(OR)} otherwise.

Guess the solution: d(n) = (n− 1) · tpd(OR).

– p.40

Cost analysis of ENCODER′(n)

Let c(n) denote c(ENCODER′(n)).

c(n) =

{

0 if n=1
2 · c(n− 1) + (2n−1 − 1 + n− 1) · c(OR) otherwise.

Substitute C(2n) = c(n), and re-write for N = 2n:

C(N) = 2 · C(N/2) + Θ(N).

⇒ C(N) = Θ(N log N)

⇒ c(ENCODER′(n)) = Θ(n · 2n).

– p.41

Sanity test
d(ENCODER′(n)) = Θ(n) & c(ENCODER′(n)) = Θ(n · 2n).
But we can compute each x[i] using a separate OR-tree:

x[i] = OR({y[j] : binn(j)[i] = 1}).

Cost of each tree is O(2n) and delay is O(n).

⇒ a trivial design with delay O(n) and cost O(n · 2n).

We conclude that ENCODER′(n) is not a good design... Can
we fix it?!

– p.42

Commuting bitwise-OR and ENCODERn−1

claim: If wt(y[2n − 1 : 0]) ≤ 1, then

OR(ENCODERn−1(~yL), ENCODERn−1(~yR)) = ENCODERn−1(OR(~yL, ~yR)).

n− 1 n− 1

or(n− 1)

n − 1

z[n− 2 : 0]

2
n−1

2
n−1

a[n− 2 : 0]b[n− 2 : 0]

encoder(n− 1) encoder(n− 1)

yL[2n−1
− 1 : 0] yR[2n−1

− 1 : 0]

encoder(n− 1)

n− 1

z[n− 2 : 0]

2
n−1

2
n−1

2
n−1

yR[2n−1
− 1 : 0]yL[2n−1

− 1 : 0]

or(2n−1)

– p.43

Proof: OR(En−1(~yL), En−1(~yR)) = En−1(OR(~yL, ~yR))

Trivial: ~y = 02n.
wt(~yL) = 0 & wt(~yR) = 1:

Assume that yR[i] = 1.
⇒

En−1(OR(~yL, ~yR)) = En−1(OR(02n−1

, ~yR))

= En−1(~yR)).

However,

OR(En−1(~yL), En−1(~yR)) = OR(En−1(0
2n−1

), En−1(~yR))

= OR(0n−1, En−1(~yR))

= En−1(~yR),

(other case is analogous) QED
– p.44

ENCODER′(n) −→ ENCODER∗(n)

n− 1 n− 1

or(n− 1)

n − 1

x[n− 2 : 0]

2
n−1

1

4

= y[2n
− 1 : 2n−1]

4

= y[2n−1
− 1 : 0]

2
n−1

a[n− 2 : 0]b[n− 2 : 0]

or-tree(2n−1)

encoder
′(n− 1) encoder

′(n− 1)

x[n− 1]

yL[2n−1
− 1 : 0] yR[2n−1

− 1 : 0]

2
n−1

n− 1

encoder
∗(n− 1)

1

or-tree(2n−1)

x[n− 1]

2
n−1

or(2n−1)

2
n−1

x[n− 2 : 0]

~yL ~yR

– p.45

Correctness of ENCODER∗(n)

No need to prove from “the beginning” (although not a
hard task).
Claim proves that ENCODER′(n) ≡ ENCODER∗(n).
We already proved that ENCODER′(n) is correct.
⇒ ENCODER∗(n) is correct!
Very useful method for hardware design:

start with a naive design (e.g. naive divide &
conquer)
manipulate design (improve but preserve
functionality)

– p.46

Cost analysis of ENCODER∗(n)

c(ENCODER∗(n)) =

{

0 if n=1
c(ENCODER∗(n− 1)) + 2n · c(OR) otherwise.

We expand this recurrence to obtain:

c(ENCODER∗(n)) = c(ENCODER∗(n− 1)) + 2n · c(OR)

= (2n + 2n−1 + . . . + 4) · c(OR)

= (2 · 2n − 3) · c(OR))

= Θ(2n).

– p.47

Delay analysis of ENCODER∗(n)
The delay of ENCODER∗(n) satisfies the following recurrence
equation:

d(ENCODER∗(n)) =







0 if n=1
max{d(OR-tree(2n−1),

d(ENCODER∗(n− 1) + d(OR))} otherwise.

Since d(OR-tree(2n−1) = (n− 1) · d(OR), it follows that

d(ENCODER∗(n)) = (n− 1) · d(OR) = Θ(n).

Optimality: Prove that the cost and delay of ENCODER∗(n) are
asymptotically optimal.

– p.48

Summary
vector notation for schematics and binary strings.
review of binary representation.
Decoder & Encoder - design, correctness, optimality.
Techniques:

Divide & Conquer
Extend specification to make problem easier
Evolution - improve naive and correct design while
preserving functionality.

– p.49

Chapter 5: Selectors and Shifters
Computer Structure - Spring 2007

c©Dr. Guy Even

Tel-Aviv Univ.

– p.1

http://www.eng.tau.ac.il/~guy/

Preliminary questions
Which types of shifts are you familiar with in your
favorite programming language? What is the
differences between these shifts? Why do we need
different types of shifts?
How are these shifts executed in a microprocessor?
Should shifters be considered to be combinational
circuits? After all, they simply “move bits around” and
do not compute “new bits”.

– p.2

Goals
Selectors:

review definition of multiplexer.
build (n : 1)-multiplexers.

Shifters:
Cyclic shifter (Barrel shifter)
Logical Shifter
Arithmetic Shifter

– p.3

Multiplexer
DEF: A MUX-gate (also known as a (2 : 1)-multiplexer) is a
combinational gate that has three inputs D[0], D[1], S and
one output Y . The functionality is defined by

Y =

{

D[0] if S = 0

D[1] if S = 1.

Equivalently: Y = D[S] mux

0 1

D[0] D[1]

S

Y

– p.4

Selectors
DEF: An (n:1)-MUX is a combinational circuit defined as
follows:
Input: D[n− 1 : 0] and S[k − 1 : 0] where k = dlog2 ne.
Output: Y ∈ {0, 1}.
Functionality:

Y = D[〈~S〉].

Example: Let n = 4, D[3 : 0] = 0101, and S[1 : 0] = 11. The
output Y should be 0.

~D - data input
~S - select input
simplify: assume that n is a power of 2, namely, n = 2k.

– p.5

Implementation of (n:1)-MUX

We will present two implementations:
a decoder based implementation
a tree-like implementation

– p.6

(n:1)-MUX : a decoder based implementation

Question:
correctness
cost
delay
asymptotic optimality

k

2k2k

2k

1

DECODER(k)

S[k − 1 : 0]D[n − 1 : 0]

Y

AND(2k)

OR-tree(2k)

– p.7

(n:1)-MUX : a tree-like implementation

S[k − 1]

(n

2
: 1)-MUX

n/2

1

S[k − 2 : 0]

D[n
2
− 1 : 0]

(n

2
: 1)-MUX

n/2

1

S[k − 2 : 0]

D[n − 1 : n
2
]

1

MUX

Y

YL YR

1 0

Question:
correctness
cost
delay
asymptotic optimality

– p.8

Which design is better?
both designs are asymptotically optimal.
based on the tables of Müller & Paul, the tree-like
design is better.
decision is based on specific gate costs in the
technology one uses.
fast MUX-gates in CMOS (transmission gates) do not
restore the signals well.
⇒ long paths consisting only of MUX-gates are not
allowed.

– p.9

Cyclic shift - example

9
10

11
12

1

2
3

4

5
6

7

8

"clock"reads:
5,3,1,11,...,8,10,12

"clock"reads:
8,10,12,...,2,4,6

9
10

11
12

1

2
3

4

5
6

7

8

5

3
1

11

972

4
6

8

10 12

5

3111

9
7

2

4 6 8

10
12

rotate clockwise
by 3 positions

– p.10

Cyclic shift - definition
The string b[n− 1 : 0] is a cyclic left shift by i positions of the
string a[n− 1 : 0] if

∀j : b[j] = a[mod(j − i, n)].

Example: Let a[3 : 0] = 0010. A cyclic left shift by one position
of ~a is the string 0100. A cyclic left shift by 3 positions of ~a is
the string 0001.

– p.11

Barrel Shifter
DEF: A BARREL-SHIFTER(n) is a combinational circuit defined
as follows:
Input: x[n− 1 : 0] and sa[k − 1 : 0] where k = dlog2 ne.
Output: y[n− 1 : 0].
Functionality: ~y is a cyclic left shift of ~x by 〈 ~sa〉 positions.

Formally,

∀j ∈ [n− 1 : 0] : y[j] = x[mod(j − 〈 ~sa〉, n)].

~x - data input
~sa - shift amount input
simplify - assume that n is a power of 2, namely, n = 2k.

– p.12

CLS(n, i) - Cyclic Left Shift by 2i positions

DEF: A CLS(n, i) is a combinational circuit defined as
follows:
Input: x[n− 1 : 0] and s ∈ {0, 1}.
Output: y[n− 1 : 0].
Functionality:

∀j ∈ [n− 1 : 0] : y[j] = x[mod(j − s · 2i, n)].

Equivalently,

y[j] =

{

x[j] if s = 0

x[mod(j − 2i, n)] if s = 1.

⇒ can implement CLS(n, i) with a row of n MUX-gates.
– p.13

CLS(4, 1)

1

s

1 0

mux

y[2]

1

s

1 0

mux

y[1]

s

1

y[3]

1

s

1 0

mux

y[0]

1 0

mux

x[0]x[1]x[2]x[3]

Evident that a CLS(n, i) requires a lot of area for the wires.
Our model does not capture routing cost.

– p.14

BARREL-SHIFTER(n) - a chain of CLS(n, i)

cls(n, 0)sa[0]

cls(n, 1)sa[1]

cls(n, k − 1)sa[k − 1]

x[n− 1 : 0]

y[n− 1 : 0]

– p.15

BARREL-SHIFTER(n) - correctness
Define the strings yi[n− 1 : 0], for 0 ≤ i ≤ k − 1, recursively
as follows:

y0[n− 1 : 0]← CLSn,0(x[n− 1, 0], sa[0])

yi+1[n− 1 : 0]← CLSn,i+1(yi[n− 1, 0], sa[i + 1])

Claim: yk−1[n− 1 : 0] is a cyclic left shift of x[n− 1 : 0] by
〈sa[k − 1 : 0]〉 positions.
Proof: Induction. k = 0 - trivial because CLS(n, 0) shifts by
zero/one position.

– p.16

induction step

yi[j] = CLSn,i(yi−1[n− 1, 0], sa[i])[j] (by definition of yi)
= yi−1[mod(j − 2i · sa[i], n)] (by definition of CLSn,i).

Let ` = mod(j − 2i · sa[i], n).
Ind. Hyp. ⇒ yi−1[`] = x[mod(`− 〈sa[i− 1 : 0]〉, n).
Note that

mod(`− 〈sa[i− 1 : 0]〉, n) = mod(j − 2i · sa[i]− 〈sa[i− 1 : 0]〉, n)

= mod(j − 〈sa[i : 0]〉, n).

Therefore yi[j] = x[mod(j − 〈sa[i : 0]〉, n)], and the claim
follows.

– p.17

Logical Shifting - motivation
Used for shifting binary strings that represent unsigned
integers in binary representation.
Shifting to the left by s positions corresponds to

〈~y〉 ← mod(〈~x〉 · 2s, 2n).

Shifting to the right by s positions corresponds to

〈~y〉 ←

⌊
〈~x〉

2s

⌋

.

– p.18

Bi-Directional Logical Shifter - definition

A LOG-SHIFT(n) is a combinational circuit defined as follows:
Input:

x[n− 1 : 0] ∈ {0, 1}n,
sa[k − 1 : 0] ∈ {0, 1}k, where k = dlog2 ne, and
` ∈ {0, 1}.

Output: y[n− 1 : 0] ∈ {0, 1}n.
Functionality: If ` = 1, then logical left shift as follows:

y[n− 1 : 0]
4

= x[n− 1− 〈 ~sa〉 : 0] · 0〈 ~sa〉.

If ` = 0, then logical right shift as follows:

y[n− 1 : 0]
4

= 0〈 ~sa〉 · x[n− 1 : 〈 ~sa〉].

– p.19

Bi-Directional Logical Shifter - example

Example: Let x[3 : 0] = 0010. If sa[1 : 0] = 10 and ` = 1, then
LOG-SHIFT(4) outputs y[3 : 0] = 1000. If ` = 0, then the output
equals y[3 : 0] = 0000.

– p.20

Bi-Directional Logical Shifter - implementation

As in the case of cyclic shifters, we break the task of
designing a logical shifter into sub-tasks of logical shifts
by powers of two.
Loosely speaking, an LBS(n, i) is a logical bi-directional
shifter that outputs one of three possible strings:

the input shifted to the left by 2i positions,
the input shifted to the right by 2i positions, or
the input without shifting.

We now formally define this circuit....

– p.21

LBS(n, i) - definition

DEF: An LBS(n, i) is a combinational circuit defined as
follows:
Input: x[n− 1 : 0] and s, ` ∈ {0, 1}.
Output: y[n− 1 : 0].
Functionality: Define x′[n− 1 + 2i : −2i] ∈ {0, 1}n+2·2i as

follows:

x′[j]
4

=

{

x[j] if n > j ≥ 0

0 otherwise.

The value of the output y[n− 1 : 0] is specified by

∀j ∈ [n− 1 : 0] : y[j] = x′[j + (−1)` · s · 2i].

– p.22

y[j] = x′[j + (−1)` · s · 2i]

x′[n− 1 + 2i : −2i] = 02i

· x[n− 1 : 0] · 02i.
` - determines if the shift is a left shift or a right shift. If
` = 1 then (−1)` = −1, and the shift is a left shift (since
increasing indexes from j − 2i to j has the effect of a left
shift).
s - determines if a shift (in either direction) takes place
at all. If s = 0, then y[j] = x[j], and no shift takes place.

– p.23

A bit-slice of an implementation of LBS(n, i)

22 0

x′[j − 2i]

1

x′[j + 2i]

y[j]

2

x[j]

decodings, ` (3 : 1)-mux

1. (3 : 1)-MUX. Implemented either by a “pruned” tree-like
construction or we can simply consider a (3 : 1)-MUX as
a basic gate. Simple circuit⇒ best option can be easily
determined based on the technology at hand.

2. decoding circuit - not a decoder! Decoding of s and `
causes the (3 : 1)-MUX to select the correct input.

– p.24

A bit-slice of an implementation of LBS(n, i)

22 0

x′[j − 2i]

1

x′[j + 2i]

y[j]

2

x[j]

decodings, ` (3 : 1)-mux

Question: This question deals with various aspects and
details concerning the design of a logical shifter.
1. Design a “pruned” tree-like (3 : 1)-MUX.
2. Design the decoding box.
3. Show how LBS(n, i) circuits can be cascaded to obtain a

LOG-SHIFT(n).
Hint: follow the design of a BARREL-SHIFTER(n).

– p.25

Arithmetic Shifters - motivation
Used for shifting binary strings that represent signed
integers in two’s complement representation.
logical left shifting = arithmetic left shifting.
Arithmetic right shifting corresponds to dividing by a
power of 2 (with sign extension).

– p.26

Arithmetic right shifter - definition

DEF: An ARITH-SHIFT(n) is a combinational circuit defined as
follows:
Input: x[n− 1 : 0] ∈ {0, 1}n and sa[k − 1 : 0] ∈ {0, 1}k, where

k = dlog2 ne.
Output: y[n− 1 : 0] ∈ {0, 1}n.
Functionality: The output ~y is a (sign-extended) arithmetic

right shift of ~x by 〈 ~sa〉 positions. Formally,

y[n− 1 : 0]
4

= x[n− 1]〈 ~sa〉 · x[n− 1 : 〈 ~sa〉].

Example: Let x[3 : 0] = 1001. If sa[1 : 0] = 10, then
ARITH-SHIFT(4) outputs y[3 : 0] = 1110.

– p.27

Arithmetic right shifter - implementation

Question: Consider the definitions of CLS(n, i) and LBS(n, i).
Suggest an analogous definition ARS(n, i) for arithmetic right
shift (i.e., modify the definition of ~x′ and use (2 : 1)-MUXs).
Suggest an implementation of an arithmetic right shifter
based on cascading ARS(n.i) circuits.

– p.28

Further questions

Question: Design a bi-directional cyclic shifter. Such a
shifter is like a cyclic left shifter but has an additional input
` ∈ {0, 1} that indicates the direction of the required shift.
Hint: Consider reducing a cyclic right shift to a cyclic left
shifter. To simplify the reduction you may assume that
n = 2k − 1 (hint: use one’s complement negation). Suggest
a simple reduction in case n = 2k (hint: avoid explicit
subtraction!).

– p.29

Further questions - cont.

Question: CPUs often support all three types of shifting:
cyclic, logical, and arithmetic shifting.
1. Write a complete specification of a shifter that can

perform all three types of shifts.
2. Propose an implementation of such a shifter.

– p.30

Summary
(n : 1)-multiplexers:

definition.
two implementations: decoder based & tree-like.
both designs are optimal.

three types of shifts: cyclic, logical, and arithmetic shifts.
Design method: cascade a logarithmic number of
shifters (with parameter i) that either perform a shift by
2i positions or no shift at all.

– p.31

Chapter 6: Priority Encoders
Computer Structure - Spring 2007

c©Dr. Guy Even

Tel-Aviv Univ.

– p.1

http://www.eng.tau.ac.il/~guy/

Preliminary questions
Suppose that many devices wish to transmit data along
a shared bus. How does the bus controller decide
which device gets to use the bus?
Consider the binary fraction 0.000010101. In many
cases, an arithmetic unit is supposed to shift the
fraction so that its value is in the range [1/2, 1) (this is
often called normalization). How is the shift amount
computed?

– p.2

Leading One
Consider a binary string x[0 : n− 1] (ascending indexes!).
DEF: The leading one of a binary string x[0 : n− 1] is
defined by

LEADING-ONE(x[0 : n− 1])
4

=

{

min{i | x[i] = 1} if x[0 : n− 1] 6= 0n

n otherwise.

Example: Consider the string x[0 : 6] = 0110100. The
leading one is the index [1]. Note that indexes are in
ascending order and that x[0] is the leftmost bit.
Claim: For every binary string x[n− 1 : 0]

LEADING-ONE(~a) = LEADING-ONE(~a · 1).

– p.3

Unary Representation
DEF: A binary string x[0 : n− 1] represents a number in
unary representation if x[0 : n− 1] ∈ 1∗ · 0∗. The value
represented in unary representation by the binary string
1i · 0j is i.
Example: The binary string 01001011 does not represent
a number in unary representation. Only a string that is ob-
tained by concatenating an all-ones string with an all-zeros
string represents a number in unary representation.

– p.4

Parallel Prefix Computation
DEF: A parallel prefix computation OR circuit of length n is a
combinational circuit specified as follows.
Input: x[0 : n− 1].
Output: y[0 : n− 1].
Functionality:

y[i] = OR(x[0 : i]).

We denote parallel prefix computation OR circuit of length n

by PPC–OR(n).

– p.5

Priority Encoders
A priority encoder is a combinational circuit that
computes the leading one.
We consider two types of priority encoders:

A unary priority encoder - outputs the leading one in
unary representation.
A binary priority encoder -outputs the leading one in
binary representation.

– p.6

Unary priority encoder
DEF: A unary priority encoder U-PENC(n) is a combinational
circuit specified as follows.
Input: x[0 : n− 1].
Output: y[0 : n− 1].
Functionality:

y[i] = INV(OR(x[0 : i])).

Example:
If x[0 : 6] = 0110100, then PPC–OR(7) outputs 0111111.
U-PENC(7) outputs 1000000.
If ~x 6= 0n, then U-PENC(n) outputs y[0 : n− 1] = 1j · 0n−j ,
where j = min{i | x[i] = 1}.
If ~x = 0n, then ~y = 1n and ~y is a unary representation of
n.

– p.7

Binary Priority Encoder
DEF: A binary priority encoder B-PENC(n) is a combinational
circuit specified as follows.
Input: x[0 : n− 1].
Output: y[k : 0], where k = blog2 nc. (Note that if n = 2`, then

k = `.)
Functionality:

〈~y〉 = LEADING-ONE(~x)

n = 2k =⇒ length of the output of a B-PENC(n) is k + 1 bits;
otherwise, the number n could not be represented by the
output.
Example: Given input x[0 : 5] = 000101, a U-PENC(6) outputs
y[0 : 5] = 111000, and B-PENC(6) outputs y[2 : 0] = 011.

– p.8

U-PENC(n) - Implementation
Invert the outputs of a PPC–OR(n).
Brute force design of PPC–OR(n):

separate OR-tree for each output bit.
delay = O(log n)

cost = O(n2).
How can we efficiently combine these trees? To be
discussed in detail when we discuss fast addition.
We now present a (non-optimal) design based on
divide-and-conquer.

– p.9

divide & conquer PPC–OR(n)
If n = 1, then y[0]← x[0].

If n > 1:

n/2

ppc–or(n

2
)

n/2

n/2 n/2

ppc–or(n

2
)

or(n

2
)

y[n

2
: n− 1]

x[0 : n

2
− 1] x[n

2
: n− 1]

1

y[0 : n

2
− 1]

n/2 [n

2
− 1] yR[n

2
: n− 1]

– p.10

divide & conquer PPC–OR(n) - cont.

n/2

ppc–or(n

2
)

n/2

n/2 n/2

ppc–or(n

2
)

or(n

2
)

y[n

2
: n− 1]

x[0 : n

2
− 1] x[n

2
: n− 1]

1

y[0 : n

2
− 1]

n/2 [n

2
− 1] yR[n

2
: n− 1]

Question:
1. Prove the correctness of the design.
2. Extend design for values of n that are not powers of 2.
3. Analyze the delay and cost of the design.
4. Prove the asymptotic optimality of the delay of the

design.
– p.11

divide & conquer PPC–OR(n) - cost analysis

c(n) =

{

0 if n=1
2 · c(n

2) + (n/2) · c(OR) otherwise.

It follows that

c(n) = 2 · c(
n

2
) + Θ(n)

= Θ(n · log n).

Question: Prove a lower bound on c(PPC–OR(n)).
Promise: In the chapter on fast addition we will present a
cheaper implementation of PPC–OR(n) (with logarithmic de-
lay).

– p.12

Implementation of a binary priority encoder

We present two designs for a binary priority encoder.
design based on a reduction to PPC–OR(n).
design based on divide-and-conquer

– p.13

reduction of B-PENC(n) to PPC–OR(n)

n

encoder(k + 1)

zero-test(n)

1z

nn

k + 1 k + 1

2k+1

u[0 : n− 1]

diff(n)

ppc–or(n)

u′[0 : n− 1] n

x[0 : n− 1]

y′[k : 0]bin(n)

y[k : 0]

mux(k + 1)

pad-zeros(2k+1)

u”[0 : 2k+1
− 1]

apply PPC–OR(n)

difference:

u′[i] =

{

u[0] if i = 0

u[i]− u[i− 1] otherwise.

if ~x 6= 0n, then ~u′ is a
1-out-of-n representation
of leading one’s position.
Pad & Encode.
Select bin(n) if ~x = 0n.

– p.14

cost analysis

n

encoder(k + 1)

zero-test(n)

1z

nn

k + 1 k + 1

2k+1

u[0 : n− 1]

diff(n)

ppc–or(n)

u′[0 : n− 1] n

x[0 : n− 1]

y′[k : 0]bin(n)

y[k : 0]

mux(k + 1)

pad-zeros(2k+1)

u”[0 : 2k+1
− 1]

zero cost: padding with
zeros.
logarithmic cost:
multiplexer
linear cost:

difference
encoder
zero tester

=⇒

c(B-PENC(n)) = c(PPC–OR(n))+O(n).

If c(PPC–OR(n)) = O(n),
then also c(B-PENC(n)) =
O(n).

– p.15

delay analysis

n

encoder(k + 1)

zero-test(n)

1z

nn

k + 1 k + 1

2k+1

u[0 : n− 1]

diff(n)

ppc–or(n)

u′[0 : n− 1] n

x[0 : n− 1]

y′[k : 0]bin(n)

y[k : 0]

mux(k + 1)

pad-zeros(2k+1)

u”[0 : 2k+1
− 1]

zero delay: padding with
zeros.
constant delay:

difference
multiplexer

logarithmic delay:
PPC–OR(n)

encoder
zero tester

=⇒

d(B-PENC(n)) = O(log n).

– p.16

B-PENC(n): a divide-and-conquer design for n = 2k

k − 1

b-penc(n

2
) b-penc(n

2
)

k

n/2 n/2

k − 1 k − 1

and

y[k]

yR[k − 1]

and

y[k − 1]

inv(yR[k − 1])

mux(k − 1)

y[k − 2 : 0]

x[0 : n

2
− 1] x[n

2
: n− 1]

0 1

yL[k − 2 : 0] yR[k − 2 : 0]

yR[k − 1]

k

yL[k − 1]

– p.17

correctness
We prove correctness by induction.

Induction basis: n = 1 is trivial.
Induction step deals with 3 cases:

leading one is in left half x[0 : n
2 − 1].

leading one is in right half x[n2 : n− 1].
~x = 0n.

– p.18

correctness: case x[0 : n
2 − 1] 6= 0n/2

k − 1

b-penc(n

2
) b-penc(n

2
)

k

n/2 n/2

k − 1 k − 1

and

y[k]

yR[k − 1]

and

y[k − 1]

inv(yR[k − 1])

mux(k − 1)

y[k − 2 : 0]

x[0 : n

2
− 1] x[n

2
: n− 1]

0 1

yL[k − 2 : 0] yR[k − 2 : 0]

yR[k − 1]

k

yL[k − 1]

Ind. Hyp. ⇒ required output is 0 · yL[k − 1 : 0].
index of the leading one < n/2⇒ yL[k − 1] = 0.
⇒ y[k] = y[k − 1] = 0 and y[k − 2 : 0] = yL[k − 2 : 0].
⇒ output ~y = 0 · yL[k − 1 : 0].

– p.19

correctness: case x[0 : n
2
− 1] = 0n/2 & x[n

2
: n− 1] 6= 0n/2

k − 1

b-penc(n

2
) b-penc(n

2
)

k

n/2 n/2

k − 1 k − 1

and

y[k]

yR[k − 1]

and

y[k − 1]

inv(yR[k − 1])

mux(k − 1)

y[k − 2 : 0]

x[0 : n

2
− 1] x[n

2
: n− 1]

0 1

yL[k − 2 : 0] yR[k − 2 : 0]

yR[k − 1]

k

yL[k − 1]

Ind. Hyp. ⇒ index of the leading one is n/2 + 〈 ~yR〉.
⇒ required output is 0 · 1 · yR[k − 2 : 0].
Ind. Hyp. ⇒ yL[k − 1] = 1 and yR[k − 1] = 0.
⇒ y[k] = 0 & y[k − 1] = 1.
yL[k − 1] = 1 ⇒ y[k − 2 : 0] = yR[k − 2 : 0].

– p.20

correctness: case x[0 : n
2
− 1] = 0n/2 & x[n

2
: n− 1] = 0n/2

k − 1

b-penc(n

2
) b-penc(n

2
)

k

n/2 n/2

k − 1 k − 1

and

y[k]

yR[k − 1]

and

y[k − 1]

inv(yR[k − 1])

mux(k − 1)

y[k − 2 : 0]

x[0 : n

2
− 1] x[n

2
: n− 1]

0 1

yL[k − 2 : 0] yR[k − 2 : 0]

yR[k − 1]

k

yL[k − 1]

required output is 1 · 0k.
Ind. Hyp. ⇒ yL[k − 1 : 0] = yR[k − 1 : 0] = 1 · 0k−1.
yL[k − 1] = yR[k − 1] = 1 ⇒ y[k] = 1.
yL[k − 1] = yR[k − 1] = 1 ⇒ y[k − 1] = 0.
yL[k − 1] = 1 ⇒ y[k − 2 : 0] = yR[k − 2 : 0] = 0k−1.

– p.21

cost analysis

k − 1

b-penc(n

2
) b-penc(n

2
)

k

n/2 n/2

k − 1 k − 1

and

y[k]

yR[k − 1]

and

y[k − 1]

inv(yR[k − 1])

mux(k − 1)

y[k − 2 : 0]

x[0 : n

2
− 1] x[n

2
: n− 1]

0 1

yL[k − 2 : 0] yR[k − 2 : 0]

yR[k − 1]

k

yL[k − 1]

c(B-PENC(n)) =







c(NOR) if n=2
2 · c(B-PENC(n/2)) + 2 · c(AND)

+(k − 1) · c(MUX) otherwise.

Solution is c(n) = O(n), same recurrence as for ENCODER ′′(k)
with substitution k = log n.

– p.22

delay analysis

k − 1

b-penc(n

2
) b-penc(n

2
)

k

n/2 n/2

k − 1 k − 1

and

y[k]

yR[k − 1]

and

y[k − 1]

inv(yR[k − 1])

mux(k − 1)

y[k − 2 : 0]

x[0 : n

2
− 1] x[n

2
: n− 1]

0 1

yL[k − 2 : 0] yR[k − 2 : 0]

yR[k − 1]

k

yL[k − 1]

d(B-PENC(n)) =

{

tpd(NOR) if n=2
d(B-PENC(n/2)) + max{d(MUX), d(AND)} otherwise.

=⇒ d(B-PENC(n)) = O(log n)

– p.23

Summary - priority encoders
Two types of priority encoders: U-PENC(n) & B-PENC(n).
Implementation of U-PENC(n):

brute force (separate OR-trees): cost O(n2), delay
O(log n).
divide-&-conquer: cost O(n log n), delay O(log n).
to be shown: cost O(n) and delay O(log n).

Implementation of B-PENC(n):
reduction to U-PENC: overhead in cost - O(n) & delay -
O(log n).
divide-&-conquer: cost O(n), delay O(log n).

– p.24

Chapter 7: Half-Decoders
Computer Structure - Spring 2007

c©Dr. Guy Even

Tel-Aviv Univ.

– p.1

http://www.eng.tau.ac.il/~guy/

Preliminary questions
How can we reduce the task of a bi-directional logical
shift to a cyclic left shift?
Is it easy to compare a number x represented in unary
representation with a constant i?

– p.2

Half-decoder
DEF: H-DEC(n) is a combinational circuit defined as follows:
Input: x[n− 1 : 0].
Output: y[0 : 2n − 1]

Functionality:

y[0 : 2n − 1] = 1〈x[n−1:0]〉 · 02n−〈x[n−1:0]〉.

Decoder: binary→ 1-out-of-2n.
Half-decoder: binary→ unary.
Example: x[2 : 0] = 101 =⇒ y[0 : 7] = 11111000.
Example: ~x = 0n =⇒ ~y = 02n.
Example: ~x = 1n =⇒ ~y = 12n−1 · 0.
Remark: always y[2n − 1] = 0.

– p.3

Try to design H-DEC(n) using known modules

Question: Suggest an implementation of a half-decoder
based on a decoder and a unary priority encoder. Analyze
the cost and delay of the design. Is it optimal with respect to
cost or delay?

Look for a better design...

– p.4

Claim 1

y[i] = 1⇐⇒ i < 〈~x〉.

Follows trivially from definition of H-DEC(n):

y[0 : 2n − 1] = 1〈x[n−1:0]〉 · 02n−〈x[n−1:0]〉.

– p.5

Claim 2
z[0 : n− 1] - represents the number wt(~z) in unary
representation.
i ∈ [0, n− 1] - a fixed constant

Easy to compare wt(~z) and i:

wt(~z) < i⇐⇒ z[i− 1] = 0

wt(~z) > i⇐⇒ z[i] = 1

wt(~z) = i⇐⇒ z[i] = 0 and z[i− 1] = 1.

Example: z[0 : 5] = 111100 and wt(~z) = 4

wt(~z) < 4⇐⇒ z[3] = 0

wt(~z) > 4⇐⇒ z[4] = 1

wt(~z) = 4⇐⇒ z[4] = 0 and z[3] = 1.

– p.6

Comparison box COMP(~z, i)

Input: z[0 : n− 1]

Output: GT,EQ,LT ∈ {0, 1}.
Functionality:

GT = 1 if wt(~z) > i

EQ = 1 if wt(~z) = i

LT = 1 if wt(~z) < i
Implementation:

GT = z[i]

LT = INV(z[i− 1])

EQ = AND(z[i− 1], INV(z[i])) (wt(~z) < i + 1 and wt(~z) > i− 1)

– p.7

Claim 3: comparison based on quotient & remainder

partition ~x into ~xL and ~xR

xL[n− k − 1 : 0] = x[n− 1 : k] and xR[k − 1 : 0] = x[k − 1 : 0].

Binary representation implies that

〈~x〉 = 2k · 〈~xL〉+ 〈~xR〉.

Divide i ∈ [0, 2n − 1] by 2k:

i = 2k · q + r, where r ∈ [0, 2k − 1].

claim:

i < 〈~x〉 ⇐⇒ q < 〈~xL〉 or (q = 〈~xL〉 and r < 〈~xR〉)

– p.8

Implementation: H-DEC(n)

Recursive divide-and-conquer design.
Recursion basis: H-DEC(1) - y[0]← x[0]. (unary
representation ≡ binary representation for a single bit).
Recursion step...

– p.9

Recursion step: H-DEC(n)

h-dec(k)

k

comp(~zR, j)2
k
−1

j=0

2
k

h
-
d
e
c
(n

−
k
)

c
o
m
p
(
~z L

,i
)2

n
−

k
−

1

i=
0

2
n−k

2
k

2
n−k

2
n−k

xR[k − 1 : 0]
4

= x[k − 1 : 0]

~zR

2n−k
× 2k

array of

G-gates

xL[n − k − 1 : 0]

x[n − 1 : k]

4

=
n − k

~RGT

~zL

~QGT

~QEQ

Gq,r - G-gate in row q and column r

computes y[q · 2k + r].

y[q · 2k + r]
4

=OR(QGT [q],

AND(QEQ[q], RGT [r]))

– p.10

remarks

h-dec(k)

k

comp(~zR, j)2
k
−1

j=0

2
k

h
-
d
e
c
(n

−
k
)

c
o
m
p
(
~z L

,i
)2

n
−

k
−

1

i=
0

2
n−k

2
k

2
n−k

2
n−k

xR[k − 1 : 0]
4

= x[k − 1 : 0]

~zR

2n−k
× 2k

array of

G-gates

xL[n − k − 1 : 0]

x[n − 1 : k]

4

=
n − k

~RGT

~zL

~QGT

~QEQ

Comparison signal
RGT [j] = zR[j].
⇒ “column” comparison box is
trivial. (zero cost and delay)

– p.11

example

h-dec(k)

k

comp(~zR, j)2
k
−1

j=0

2
k

h
-
d
e
c
(n

−
k
)

c
o
m
p
(
~z L

,i
)2

n
−

k
−

1

i=
0

2
n−k

2
k

2
n−k

2
n−k

xR[k − 1 : 0]
4

= x[k − 1 : 0]

~zR

2n−k
× 2k

array of

G-gates

xL[n − k − 1 : 0]

x[n − 1 : k]

4

=
n − k

~RGT

~zL

~QGT

~QEQ

n = 4, k = 2.
i = 6 =⇒ q = 1, r = 2.
y[6] = 1⇐⇒ 〈x[3 : 0]〉 > 6

⇐⇒ (〈x[3 : 2]〉 > 1)
or (〈x[3 : 2]〉 = 1 and 〈x[1 : 0]〉 > 2)

QGT [q] = 1 =⇒ y[6] = 1.
QEQ[q] = 1 =⇒ y[6] = RGT [r].
otherwise, y[6] = 0

– p.12

Correctness: H-DEC(n)

Proof by induction on n.
Induction basis: H-DEC(1) - trivial.
Induction step: by Claim 1, suffices to show that

y[i] = 1⇐⇒ i < 〈~x〉.

Claim 3:

i < 〈~x〉 ⇐⇒ (q < 〈~xL〉) or ((q = 〈~xL〉) and (r < 〈~xR〉)).

The induction hypothesis implies that:

q < 〈~xL〉 ⇐⇒ zL[q] = 1

q = 〈~xL〉 ⇐⇒ zL[q] = 0 and zL[q − 1] = 1

r < 〈~xR〉 ⇐⇒ zR[r] = 1.
– p.13

Correctness - cont.
Definition of comparison boxes implies that:

q < 〈~xL〉 ⇐⇒ zL[q] = 1⇐⇒ QGT [q] = 1

q = 〈~xL〉 ⇐⇒ INV(zL[q]) · zL[q − 1]⇐⇒ QEQ[q] = 1

r < 〈~xR〉 ⇐⇒ zR[r] = 1⇐⇒ RGT [r] = 1.

Gq,r outputs:

y[i] = OR(QGT [q], AND(QEQ[q], RGT [r])).

=⇒ y[i] is correct. QED

– p.14

Cost analysis: H-DEC(n)

c(H-DEC(n)) =







0 if n=1
c(H-DEC(k)) + c(H-DEC(n− k))

+2n−k · c(EQ) + 2n · c(G) otherwise.

cost of computing the EQ is c(INV) + c(AND).
c(G) = c(AND) + c(OR).
It follows that

c(H-DEC(n)) = c(H-DEC(k)) + c(H-DEC(n− k)) + Θ(2n)

same recurrence in the case of decoders.
⇒ c(H-DEC(n)) = Θ(2n).

– p.15

H-DEC(n) - lower bound on cost
Question*: Prove that every implementation of a half-
decoder design must contain at least 2n−2 non-trivial gates.
(Here we assume that every non-trivial gate has a single out-
put, and we do not have any fan-in or fan-out restrictions).

– p.16

Delay analysis: H-DEC(n)

d(H-DEC(n)) =







0 if n=1
max{d(H-DEC(k)),

d(H-DEC(n− k)) + d(EQ)}

+d(G) otherwise.

d(EQ), d(G) are constant.
Set k = dn2 e, then the recurrence degenerates to

d(H-DEC(n)) = d(H-DEC(n/2)) + Θ(1)

= Θ(log n).

Delay of H-DEC(n) is asymptotically optimal since all the
inputs belong to the cone of a half-decoder.

– p.17

Summary - Half decoders
half decoder translates binary −→ unary.
implementation:

variation of decoder design (divide-and-conquer with
array of simple gates).
based on comparison of a unary number with a
constant.
asymptotically optimal cost and delay.

– p.18

Chapter 8: Addition
Computer Structure - Spring 2007

c© Dr. Guy Even

Tel-Aviv Univ.

– p.1

http://www.eng.tau.ac.il/~guy/

Preliminary questions
What is the definition of an adder?
What is the smallest possible delay of an adder? Do
you know of an adder that achieves this delay?
Can you prove the correctness of the addition algorithm
taught in elementary school?
Suppose you are given the task of adding very long
numbers. Could you share this work with friends so that
you could work on it simultaneously to speed up the
computation?

– p.2

Goals
Binary addition - definition
Ripple Carry Adder - definition, correctness, cost, delay
Carry bits - definition, properties
(*) Conditional Sum Adder - definition, correctness,
cost, delay
(*) Compound Adder - definition, correctness, cost,
delay

– p.3

Binary Addition
DEF: A binary adder with input length n is a combinational
circuit specified as follows.
Input: A[n− 1 : 0], B[n− 1 : 0] ∈ {0, 1}n, and C[0] ∈ {0, 1}.
Output: S[n− 1 : 0] ∈ {0, 1}n and C[n] ∈ {0, 1}.
Functionality:

〈~S〉+ 2n · C[n] = 〈 ~A〉+ 〈 ~B〉+ C[0]

~A, ~B - binary representations of the addends.
C[0] - the carry-in bit.
~S - binary representation of the sum.
C[n] - the carry-out bit.

Question: is the functionality of ADDER(n) is well defined?
– p.4

Lower bounds
Prove that for every ADDER(n):

c(ADDER(n)) = Ω(n)

d(ADDER(n)) = Ω(log n)

– p.5

Full Adder
A Full-Adder is a combinational circuit with 3 inputs
x, y, z ∈ {0, 1} and 2 outputs c, s ∈ {0, 1} that satisfies:

2c + s = x + y + z.

A Full Adder computes a binary representation of the
sum of 3 bits.
s - called the sum output.
c - called the carry-out output.
We denote a Full-Adder by FA.

– p.6

Ripple Carry Adder - RCA(n)

sc
fa0

S[0]

A[0]B[0]

sc
fa1

A[1]B[1]

C[2] S[1]C[n − 2]

sc
fa

n−2
sc

fa
n−1

S[n − 2]C[n − 1]S[n − 1]C[n] C[1]

A[n − 2]B[n − 2]A[n− 1]B[n− 1]

C[0]

carry-out output of FAi is denoted by c[i + 1].
weight of every signal is two to the power of its index.
RCA(n) - algorithm that we use for adding numbers by
hand.

– p.7

Correctness proof
To facilitate the proof, we use an equivalent recursive
definition of RCA(n).

The recursive definition is as follows.
Basis: an RCA(1) is simply a Full-Adder.
Step:

S[n − 2 : 0]

n-1n-1

n-1

sc
fa

n−1

S[n − 1]C[n]

C[0]
rca(n− 1)

A[n− 1]B[n− 1]

C[n − 1]

A[n − 2 : 0]B[n − 2 : 0]

– p.8

Correctness - cont.
The proof is by induction on n.

The induction basis, for n = 1, follows directly from the defi-
nition of a Full-Adder.

– p.9

Induction Step
The induction hypothesis, for n− 1, is

(1) 〈A[n− 2 : 0]〉+ 〈B[n− 2 : 0]〉+ C[0] =

2n−1 · C[n− 1] + 〈S[n− 2 : 0]〉.

Full-Adder definition

(2) A[n − 1] + B[n − 1] + C[n − 1] = 2 · C[n] + S[n − 1].

Multiply (2) by 2n−1 to obtain

(3) 2n−1 · A[n− 1] + 2n−1 ·B[n− 1] + 2n−1 · C[n− 1] =

2n · C[n] + 2n−1 · S[n− 1].

– p.10

(1) 〈A[n− 2 : 0]〉+ 〈B[n− 2 : 0]〉+ C[0] =

2n−1 · C[n− 1] + 〈S[n− 2 : 0]〉.

(3) 2n−1 · A[n− 1] + 2n−1 ·B[n− 1] + 2n−1 · C[n− 1] =

2n · C[n] + 2n−1 · S[n− 1].

Note that 2n−1 · A[n− 1] + 〈A[n− 2 : 0]〉 = 〈A[n− 1 : 0]〉.
(1) + (3) =⇒

2n−1 · C[n− 1] + 〈A[n− 1 : 0]〉+ 〈B[n− 1 : 0]〉+ C[0] =

2n · C[n] + 2n−1 · C[n− 1] + 〈S[n− 1 : 0]〉.

Cancel out 2n−1 · C[n− 1]. QED.

– p.11

Cost & Delay Analysis
The cost of an RCA(n) satisfies:

c(RCA(n)) = n · c(FA) = Θ(n).

The delay of an RCA(n) satisfies

d(RCA(n)) = n · d(FA) = Θ(n).

– p.12

Is RCA(n) good enough?

Clock rate = 1GHz = 109Hz
⇒ clock period = 10−9sec = 1ns.
Delay of gate ≈ 100ps = 0.1ns.
d(FA) ≈ 2 · d(gate) ≈ 0.2ns.
⇒Within a clock period we can only add 5-bit
numbers...
Question: How are > 100 bits added in one clock cycle?

– p.13

Carry bits
DEF: The carry bits associated with an addition
〈 ~A〉+ 〈 ~B〉+ C[0] are the signals C[n : 0] in an RCA(n).

sc
fa0

S[0]

A[0]B[0]

sc
fa1

A[1]B[1]

C[2] S[1]C[n − 2]

sc
fa

n−2
sc

fa
n−1

S[n − 2]C[n − 1]S[n − 1]C[n] C[1]

A[n − 2]B[n − 2]A[n− 1]B[n− 1]

C[0]

– p.14

remark 1: redundant & non-redundant representations

Functionality of an adder:

〈A[n− 1 : 0]〉+ 〈B[n− 1 : 0]〉+ C[0] = 2n ·C[n] + 〈S[n− 1 : 0]〉.

Let x = 〈 ~A〉+ 〈 ~B〉+ C[0].
x admits two representations (left-hand side, right-hand
side)
C[n] · S[n− 1 : 0] - binary representation of x.
Binary representation is non-redundant:

Every value has a unique representation.
〈 ~X〉 = 〈~Y 〉 ⇐⇒ X = Y .

– p.15

remark 1 - cont
Functionality of an adder:

〈A[n− 1 : 0]〉+ 〈B[n− 1 : 0]〉+ C[0] = 2n ·C[n] + 〈S[n− 1 : 0]〉.

x = 〈A[n− 1 : 0]〉+ 〈B[n− 1 : 0]〉+ C[0].
many possible combinations of 〈 ~A〉, 〈 ~B〉 and C[0]. For
example: 8 = 4 + 3 + 1, and also 8 = 5 + 3 + 0.
→ redundant representation.
in redundant representation:

X 6= Y 6=⇒ value(X) 6= value(Y).

⇒ in redundant representation: comparison is
complicated.
ADDER(n) - translates a redundant representation to a
non-redundant binary representation.

– p.16

remark 2: cones
The correctness proof of RCA(n) implies that, for every
0 ≤ i ≤ n− 1,

〈A[i : 0]〉+ 〈B[i : 0]〉+ C[0] = 2i+1 · C[i + 1] + 〈S[i : 0]〉.

This equality means that:

cone(C[i + 1]), cone(S[i : 0]) ⊆ A[i : 0]
⋃

B[i : 0]
⋃

C[0].

Question: Prove that

cone(S[i]), cone(C[i + 1]) = A[i : 0]
⋃

B[i : 0]
⋃

C[0].

– p.17

remark 3

〈A[i : 0]〉+ 〈B[i : 0]〉+ C[0] = 2i+1 · C[i + 1] + 〈S[i : 0]〉.

=⇒ for every 0 ≤ i ≤ n− 1,

〈S[i : 0]〉 = mod(〈A[i : 0]〉+ 〈B[i : 0]〉+ C[0], 2i+1).

– p.18

remark 4: reductions sum-bits←→ carry-bits
The correctness of RCA(n) implies that, for every
0 ≤ i ≤ n− 1,

S[i] = XOR(A[i], B[i], C[i]).

=⇒ for every 0 ≤ i ≤ n− 1,

C[i] = XOR(A[i], B[i], S[i]).

=⇒ constant-time linear-cost reductions:
S[n− 1 : 0] 7−→ C[n− 1 : 0]

C[n− 1 : 0] 7−→ S[n− 1 : 0]

=⇒ if Circuit computes C[n− 1 : 0] with O(n) cost and (log n)

delay, then we know how to add with same asymptotic cost
& delay.

– p.19

Conditional Sum Adder - CSA(n)

1 0

csa(k)

k

A[k − 1 : 0]

k

B[k − 1 : 0]

k

C[0]

S[k − 1 : 0]

C[k]

csa(n− k)

n − k + 1

csa(n− k)

n − k + 1

n − k + 1

B[n − 1 : k] A[n − 1 : k]

n − k n − k

C0[n] · S0[n − 1 : k]

B[n − 1 : k] A[n − 1 : k]

n − k n − k

C1[n] · S1[n − 1 : k]

mux(n− k + 1)

C[n] · S[n − 1 : k]

01

Question: Prove the correctness of the CSA(n) design.

– p.20

Delay analysis

To simplify the analysis we assume that n = 2`.
To optimize the cost and delay, we use k = n/2.
d(FA) - delay of a Full-Adder.
The delay of a CSA(n) satisfies the following recurrence:

d(CSA(n)) =

{

d(FA) if n = 1

d(CSA(n/2)) + d(MUX) otherwise.

It follows that the delay of a CSA(n) is

d(CSA(n)) = ` · d(MUX) + d(FA)

= O(log n).

– p.21

Cost Analysis
c(FA) - cost of a Full-Adder.
The cost of a CSA(n) satisfies the following recurrence:

c(CSA(n)) =

{

c(FA) if n = 1

3 · c(CSA(n/2)) + (n/2 + 1) · c(MUX) otherwise.

master theorem for recurrences - provides a solution.
We will solve this recurrence from scratch.
open two steps of the recurrence:

c(n) = 3 · c
(n

2

)

+ c (MUX) ·
(n

2
+ 1
)

= 3 ·
(

3 · c
(n

4

)

+ c(MUX) ·
(n

4
+ 1
))

+ c(MUX) ·
(n

2
+ 1
)

= 32 · c
(n

4

)

+ c(MUX) ·
n

2
·

(

1 +
3

2

)

+ (1 + 3) · c (MUX)

– p.22

Cost Analysis - cont.
c(n) = 32 · c

(n

4

)

+ c(MUX) ·
n

2
·

(

1 +
3

2

)

+ (1 + 3) · c (MUX)

good guess (which can be proved by induction):

c(n) = 3` · c
(n

2`

)

+ c(MUX) ·
n

2
·

(

1 +
3

2
+ · · ·

(
3

2

)`−1
)

+ (1 + 3 + · · · + 3`−1) · c(MUX).

Since ` = log2 n, it follows that
3` = nlog2 3 and (1 + 3 + · · · + 3`−1) < 3`/2.
n
2 ·
(

1 + 3
2 + · · ·

(
3
2

)`−1
)

< nlog2 3.

We conclude that
c(n) < nlog2 3 ·

(

c(FA) +
3

2
· c(MUX)

)

≈ Θ
(
n1.58

)
. – p.23

Conditional Sum Adder - Discussion
d(CSA(n)) = Θ(log n).
c(CSA(n)) ≈ Θ

(
n1.58

)
.

CSA(n) is rather costly.. but only adder we know so far
whose delay is logarithmic.
method allows to use three half-sized adders (i.e.
addends are n/2 bits long) in order to implement a full
sized adder (i.e. addends are n bits long).

– p.24

Conditional Sum Adder - Discussion - cont.

Question: What is the effect of fanout to the delay and cost
of CSA(n)?

The fanout of the carry-bit C[k] is n/2 + 1 if k = n/2.
Suppose that we associate a delay of log2(f) with a
fanout f . How would taking the fanout into account
change the delay analysis of a CSA(n)?
Suppose that we associate a cost O(f) with a fanout f .
How would taking the fanout into account change the
cost analysis of a CSA(n)?

– p.25

Compound Adder
CSA(n) - uses two adders in the upper part, one with a
zero carry-in and one with a one carry-in.
compound adder - computes both the sum and the
incremented sum.

– p.26

Compound Adder
DEF: A Compound Adder with input length n is a
combinational circuit specified as follows.
Input: A[n− 1 : 0], B[n− 1 : 0] ∈ {0, 1}n.
Output: S[n : 0], T [n : 0] ∈ {0, 1}n+1.
Functionality:

〈~S〉 = 〈 ~A〉+ 〈 ~B〉

〈~T 〉 = 〈 ~A〉+ 〈 ~B〉+ 1.

Compound Adder does not have carry-in input.
S[n] - carry-out of the sum.
T [n] - carry-out of the incremented sum.
COMP-ADDER(n) - a compound adder with input length n.

– p.27

COMP-ADDER(n) - implementation
We apply divide-and-conquer to design a
COMP-ADDER(n).
For n = 1, we simply use a Full-Adder and a Half-Adder
(one could optimize this a bit).
The design for n > 1...

– p.28

COMP-ADDER(n) - implementation

1 01 0

T
′[k] S

′[k]

n − k + 1

mux(n− k + 1)

S[n : k]

S
′[k]

n− k + 1

mux(n− k + 1)

T [n : k]

T
′[k]

T”[n : k] S”[n : k]

comp-adder(n− k)

n− k + 1 n− k + 1

A[n − 1 : k]

n− k

B[n− 1 : k]

n− k

T [k − 1 : 0]

T
′[k : 0]

S[k − 1 : 0]

S
′[k : 0]

comp-adder(k)

k + 1 k + 1

k k

A[k − 1 : 0]

k

B[k − 1 : 0]

k

– p.29

1 01 0

T
′[k] S

′[k]

n − k + 1

mux(n− k + 1)

S[n : k]

S
′[k]

n− k + 1

mux(n− k + 1)

T [n : k]

T
′[k]

T”[n : k] S”[n : k]

comp-adder(n− k)

n− k + 1 n− k + 1

A[n − 1 : k]

n− k

B[n− 1 : k]

n− k

T [k − 1 : 0]

T
′[k : 0]

S[k − 1 : 0]

S
′[k : 0]

comp-adder(k)

k + 1 k + 1

k k

A[k − 1 : 0]

k

B[k − 1 : 0]

k

Example: COMP-ADDER(4) with inputs A[3 : 0] = 0110 &
B[3 : 0] = 1001.

S′[2 : 0] = 011 and T ′[2 : 0] = 100.
S[1 : 0] = S′[1 : 0] = 11 and T [1 : 0] = T ′[1 : 0] = 00.
The upper part: S ′′[4 : 2] = 011 and T ′′[4 : 2] = 100.
The output S[4 : 2] = S ′′[4 : 2] since S′[2] = 0.
The output T [4 : 2] = T ′′[4 : 2] since T ′[2] = 1.
Hence S[4 : 0] = 01111 and T [4 : 0] = 10000. – p.30

Compound adder

1 01 0

T
′[k] S

′[k]

n − k + 1

mux(n− k + 1)

S[n : k]

S
′[k]

n− k + 1

mux(n− k + 1)

T [n : k]

T
′[k]

T”[n : k] S”[n : k]

comp-adder(n− k)

n− k + 1 n− k + 1

A[n − 1 : k]

n− k

B[n− 1 : k]

n− k

T [k − 1 : 0]

T
′[k : 0]

S[k − 1 : 0]

S
′[k : 0]

comp-adder(k)

k + 1 k + 1

k k

A[k − 1 : 0]

k

B[k − 1 : 0]

k

Question:
In the example we had S ′[k] = 0 & T ′[k] = 1.
Is it possible to have S ′[k] = 1 & T ′[k] = 0?

– p.31

COMP-ADDER(n) - correctness
The proof is by induction on n.
Basis: n = 1 follows from the correctness of a
Full-Adder and a Half-Adder.
Induction Step: prove for the output S[n : 0]; the
correctness of T [n : 0] is proved in a similar fashion.
The induction hypothesis implies that

〈S′[k : 0]〉 = 〈A[k − 1 : 0]〉+ 〈B[k − 1 : 0]〉.

Note that:
S[k − 1 : 0] = S′[k − 1 : 0]

S′[k] = C[k], where C[k] is the carry-bit in position [k]
corresponding to 〈A[k − 1 : 0]〉+ 〈B[k − 1 : 0]〉.

– p.32

COMP-ADDER(n) - correctness - cont.
We apply the induction hypothesis to the upper part:

〈S′′[n : k]〉 = 〈A[n− 1 : k]〉+ 〈B[n− 1 : k]〉

〈T ′′[n : k]〉 = 〈A[n− 1 : k]〉+ 〈B[n− 1 : k]〉+ 2k.

Since

〈S′[k : 0]〉 = 〈A[k − 1 : 0]〉+ 〈B[k − 1 : 0]〉.

It follows that

〈S′′[n : k]〉+ 〈S′[k : 0]〉 = 〈A[n− 1 : 0]〉+ 〈B[n− 1 : 0]〉

– p.33

COMP-ADDER(n) - correctness - cont.
(1) 〈S′′[n : k]〉+ 〈S′[k : 0]〉 = 〈A[n− 1 : 0]〉+ 〈B[n− 1 : 0]〉

two cases: C[k] = 0 and C[k] = 1.
1. If C[k] = 0, then S ′[k] = 0. Equation (1) reduces to

〈A[n− 1 : 0]〉+ 〈B[n− 1 : 0]〉 = 〈S ′′[n : k]〉+ 〈S′[k − 1 : 0]〉

= 〈S[n : k]〉+ 〈S[k − 1 : 0]〉

= 〈S[n : 0]〉.

2. If C[k] = 1, then S ′[k] = 1. Equation (1) reduces to

〈A[n− 1 : 0]〉+ 〈B[n− 1 : 0]〉 = 〈S ′′[n : k]〉+ 2k + 〈S′[k − 1 : 0]〉

= 〈T ′′[n : k]〉+ 〈S[k − 1 : 0]〉

= 〈S[n : 0]〉.

In both cases: 〈~S〉 = 〈 ~A〉+ 〈 ~B〉. QED – p.34

COMP-ADDER(n) - Delay analysis
To simplify the analysis we assume that n = 2`.
To optimize the cost and delay, we use k = n/2.
The delay of a COMP-ADDER(n) satisfies the following
recurrence:

d(COMP-ADDER(n)) =







d(FA) if n = 1

d(COMP-ADDER(n/2))

+d(MUX) otherwise.

It follows that the delay of a COMP-ADDER(n) is

d(COMP-ADDER(n)) = ` · d(MUX) + d(FA)

= O(log n).

As in CSA(n), fanout considerations lead to Θ(log2 n)
delay.

– p.35

COMP-ADDER(n) - Cost Analysis

c(COMP-ADDER(n)) =







c(FA) if n = 1

2 · c(COMP-ADDER(n/2))

+2 · (n− k + 1) · c(MUX) otherwise.

⇒

c(n) = 2c(n/2) + Θ(n).

⇒

c(n) = Θ(n log n).

– p.36

CSA(n) vs. COMP-ADDER(n)

1 0

csa(k)

k

A[k − 1 : 0]

k

B[k − 1 : 0]

k

C[0]

S[k − 1 : 0]

C[k]

csa(n− k)

n − k + 1

csa(n− k)

n − k + 1

n − k + 1

B[n − 1 : k] A[n − 1 : k]

n − k n − k

C0[n] · S0[n − 1 : k]

B[n − 1 : k] A[n − 1 : k]

n − k n − k

C1[n] · S1[n − 1 : k]

mux(n− k + 1)

C[n] · S[n − 1 : k]

01

c(CSA(n)) ≈ Θ
(
n1.58

)

1 01 0

T
′[k] S

′[k]

n − k + 1

mux(n− k + 1)

S[n : k]

S
′[k]

n− k + 1

mux(n− k + 1)

T [n : k]

T
′[k]

T”[n : k] S”[n : k]

comp-adder(n− k)

n− k + 1 n− k + 1

A[n − 1 : k]

n− k

B[n− 1 : k]

n− k

T [k − 1 : 0]

T
′[k : 0]

S[k − 1 : 0]

S
′[k : 0]

comp-adder(k)

k + 1 k + 1

k k

A[k − 1 : 0]

k

B[k − 1 : 0]

k

c(COMP-ADDER(n)) = Θ(n log n)

Question: more functionality is cheaper?! – p.37

CSA(n) vs. COMP-ADDER(n) - cont.
Solve the recurrences:

c(CSA(n)) ≈ n1.58 ·

(

c(FA) +
3

2
· c(MUX)

)

c(COMP-ADDER(n)) ≈ n · (c(FA) + c(HA))

+ c(MUX) ·
(n

2
· log

n

2
+ n− 1

)

.

Assume c(FA) = c(HA) = c(MUX) = 1. Then,

c(CSA(n)) ≈ 2.5 · n1.58

c(COMP-ADDER(n)) ≈
n

2
· log

n

2
+ 3n− 1.

– p.38

CSA(n) vs. COMP-ADDER(n) - cont.

c(CSA(n)) ≈ 2.5 · n1.58

c(COMP-ADDER(n)) ≈
n

2
· log

n

2
+ 3n− 1.

n c(CSA(n)) c(COMP-ADDER(n))

4 22.5 15
8 67.5 35

16 202 79
32 607 175
64 1822 383

128 5467 831

– p.39

Summary
defined binary addition & RCA(n)

defined carry bits
showed some properties of addition
Conditional Sum Adder:

a divide-and-conquer design
Θ(log n) delay (fanout 7−→ Θ(log2 n))
Θ
(
n1.58

)
cost

Compound Adder
adds and also adds +1

a divide-and-conquer design
Θ(log n) delay (fanout 7−→ Θ(log2 n))
Θ (n · log n) cost

c(COMP-ADDER(n))� c(CSA(n)) !
– p.40

Chapter 9: Fast Addition: parallel
prefix computation

Computer Structure - Spring 2007
c©Dr. Guy Even

Tel-Aviv Univ.

– p.1

http://www.eng.tau.ac.il/~guy/

Preliminary questions
Is the task of computing the sum bits harder than the
task of computing the carry bits?
Consider a bit-serial adder implemented by a finite state
machine with two states. How can one “parallelize” the
computation of such a finite state machine? What about
a bit serial finite state machine that computes the OR of
sequence of bits?

– p.2

Goals
Design an adder with O(log n) delay and O(n) cost.
Learn some interesting methods along the way...

– p.3

reminder: reduction sum-bits 7−→ carry-bits
The correctness of RCA(n) implies that, for every
0 ≤ i ≤ n− 1,

S[i] = XOR(A[i], B[i], C[i]).

=⇒ constant-time linear-cost reduction:

S[n− 1 : 0] 7−→ C[n− 1 : 0]

=⇒ if Circuit computes C[n−1 : 0] with O(n) cost and O(log n)

delay, then we know how to add asymptotically optimally.

– p.4

Computing the carry bits - preliminary
Functionality of Full-Adder (ith FA in RCA(n)):

C[i + 1] =

{

0 if A[i] + B[i] + C[i] ≤ 1

1 if A[i] + B[i] + C[i] ≥ 2.

Claim:

A[i] + B[i] = 0 =⇒ C[i + 1] = 0

A[i] + B[i] = 2 =⇒ C[i + 1] = 1

A[i] + B[i] = 1 =⇒ C[i + 1] = C[i]

=⇒

if A[i] + B[i] ∈ {0, 2}, then easy to compute C[i + 1].
if A[i] + B[i] = 1, then “ripple effect” of carry.

– p.5

definition of σ[n− 1 : −1]

DEF: for i = −1, 0, . . . , n− 1

σ[i]
4

=

{

2 · C[0] if i = −1

A[i] + B[i] if i ∈ [0, n− 1].

Note that σ[i] ∈ {0, 1, 2}.

Claim: for every −1 ≤ i ≤ n− 1,

C[i + 1] = 1 ⇐⇒ ∃j ≤ i : σ[i : j] = 1i−j · 2.

– p.6

example with σ[n− 1 : −1]

σ[i]
4

=

{

2 · C[0] if i = −1

A[i] + B[i] if i ∈ [0, n− 1].

Claim: for every −1 ≤ i ≤ n− 1,

C[i + 1] = 1 ⇐⇒ ∃j ≤ i : σ[i : j] = 1i−j · 2.

Example: A[3 : 0] = 0110, B[3 : 0] = 0011, C[0] = 0.
position 4 3 2 1 0 -1

A 0 1 1 0
B 0 0 1 1
S 1 0 0 1
C 0 1 1 0 0
σ 0 1 2 1 0

– p.7

Proof: σ[i : j] = 1i−j · 2⇒ C[i + 1] = 1

By induction on i− j.
Basis i− j = 0: in this case σ[i] = 2.

If i = −1, then C[0] = 1.
If i ≥ 0, then A[i] + B[i] = 2. Hence C[i + 1] = 1.

Ind. Step: note that σ[i− 1 : j] = 1i−j−1 · 2.
Ind. Hyp. ⇒ C[i] = 1.
Since σ[i] = 1, we conclude that

A[i] + B[i]
︸ ︷︷ ︸

σ[i]=1

+C[i] = 2.

Hence, C[i + 1] = 1.

– p.8

Proof: C[i + 1] = 1⇒ ∃j ≤ i : σ[i : j] = 1i−j · 2
By induction on i.
Basis i = −1: in this case C[0] = 1, hence σ[−1] = 2. Set
j = i.
Ind. Step: Assume C[i + 1] = 1. Hence,

A[i] + B[i]
︸ ︷︷ ︸

σ[i]

+C[i] ≥ 2.

σ[i] = 0: contradiction.
σ[i] = 2: set j = i.
σ[i] = 1: ⇒ C[i] = 1.

C[i] = 1
Ind. Hyp.

=⇒ ∃j ≤ i : σ[i− 1 : j] = 1i−j−1 · 2

σ[i]=1
=⇒ ∃j ≤ i : σ[i : j] = 1i−j · 2.

– p.9

Corollary: method for computing C[i + 1]

C[i + 1] = 1 ⇐⇒ ∃j ≤ i : σ[i : j] = 1i−j · 2.

Corollary:

C[i + 1] = OR((σ[i : −1] == 1i+1 · 2),

(σ[i : 0] == 1i · 2),

(σ[i : 1] == 1i−1 · 2),

...
(σ[i : i− 1] == 1 · 2),

(σ[i] == 2)

)
– p.10

Carry-Lookahead Generator

C[i + 1] = 1 ⇐⇒ ∃j ≤ i : σ[i : j] = 1i−j · 2.

?
= 1

σ[i]

· · ·

· · ·

?
= 1

σ[j + 1]

?
= 2

σ[j]

and-tree(i − j + 1)

· · ·

σ[i : j]
?
= 1i−j

· 2

σ[i : i − 1]
?
= 1 · 2σ[i]

?
= 2 · · · σ[i : j]

?
= 1i−j

· 2

or-tree(i + 2)

· · ·

C[i + 1]

– p.11

Carry-Lookahead Generator: cost & delay
constant cost & depth comparison gates for deciding if :

σ[i] = 1

σ[i] = 2

Use a row of comparison gates for σ[i : j].
Feed outputs of comparison gates to AND-tree(i− j + 1).
Cost of test σ[i : j] = 1i−j · 2

c(AND-tree(i− j + 1)) + (i− j + 1) · c(comparison)

= Θ(i− j).

Delay of test σ[i : j] = 1i−j · 2

d(comparison) + (AND-tree(i + j + 1))

= Θ(log(i− j)).

– p.12

Carry-Lookahead Generator: cost & delay - cont.
Test if σ[i : j] = 1i−j · 2 for j = −1, 0, . . . , i.
Cost of computing C[i + 1]:

i∑

j=−1

c(testing if σ[i : j] = 1i−j · 2) =

i∑

j=−1

Θ(i− j)

= Θ(i2).

Delay of computing C[i + 1]:

max
j=−1...i

Θ(log(i− j)) = Θ(log i).

⇒ cost of computing C[n : 1]: ∑n−1
i=0 Θ(i2) = Θ(n3).

...usually applied only to short blocks (e.g. 4 bits)

– p.13

Carry-Lookahead Adder: typical description

� ��� �� �� �� 	
 �� � � � �� �

 �� � � �� � � �� � � �� � � �� ���
��� � � � �� �� � ��

�� �� � �� �� � � � �� �

� � � �� � �

��! � � � � � � �

� � � � � � � � � �

��" � �! �! ��!

� �! �! � � �! � � �# �! � � � �

��$ � �" �" �! �" �! � � �" �! � � �� �" �! � � � �

from: Introduction to Digital Systems, M.D. Ercegovac, T. Lang, and J.H. Moreno, Wiley and Sons, 1998. – p.14

Carry-Lookahead Adder: typical description

(a)

g3
p3

g2
p2

g1
p1

g0
p0

c0

c1c2c3c4

p3 p2

p1p0

G

P

CLG-4

from: Introduction to Digital Systems, M.D. Ercegovac, T. Lang, and J.H. Moreno, Wiley and Sons, 1998. – p.15

Carry-Lookahead Adder: typical description

CARRY LOOKAHEAD GENERATOR
(CLG-4)

y 0 x 0

c 4

y i x i

y 1 x 1y 2 x 2y 3 x 3

g2 g1

c 0G
P

g3 p 3 p 2 p 1 g0 p 0

p 3 p 2 p 1 p 0
c 3 c 2 c 1

z 3 z 2 z 1 z 0

(b)
from: Introduction to Digital Systems, M.D. Ercegovac, T. Lang, and J.H. Moreno, Wiley and Sons, 1998. – p.16

Two-level Carry-Lookahead Adder

2 2 2 2 2 2 2 24

z7

4

z6

4

z5

4

z4

4

z3

4

z2

4

z1

4

z0

CLA-4

x7

4

CLA-4

x6

4

CLA-4

x5

4

CLA-4

x4

4

CLA-4

x3

4

CLA-4

x2

4

CLA-4

x1

4

CLA-4

x0

4

G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 G0 P0

c4c8c12c20c24c28

c32
CLG-4 CLG-4

y7

4
y6

4
y5

4
y4

4
y3

4
y2

4
y1

4
y0

4

c4c8c12c20c24c28

c0

c16

c16

carries to CLA-4 modules

carries from CLG-4 modules

critical path

%&(')* + ,-/. 021 3465 789 :;< < =5 > ? ?@ ;A B;C ;C C B< D E 8F G�HI JLK M ; F C HI N K M O ?C D > B EQP

from: Introduction to Digital Systems, M.D. Ercegovac, T. Lang, and J.H. Moreno, Wiley and Sons, 1998. – p.17

Definition of ∗ : {0, 1, 2} × {0, 1, 2} −→ {0, 1, 2}

∗ 0 1 2

0 0 0 0

1 0 1 2

2 2 2 2

Remark: for every a ∈ {0, 1, 2}:

0 ∗ a = 0

1 ∗ a = a

2 ∗ a = 2.

Claim: (homework) ∗ is an associative function. Namely,

∀a, b, c ∈ {0, 1, 2} : (a ∗ b) ∗ c = a ∗ (b ∗ c).

Question: Is ∗ commutative? – p.18

∗-products
For j ≥ i:

π[j : i]
4

= σ[j] ∗ · · · ∗ σ[i].

Associativity of ∗ implies that for every i ≤ j < k:

π[k : i] = π[k : j + 1] ∗ π[j : i].

– p.19

A stronger claim
Claim: For every −1 ≤ i ≤ n− 1,

C[i + 1] = 1 ⇐⇒ π[i : −1] = 2.

Corollary: Can compute C[i + 1] using a ∗-tree(i + 2).
⇒

c(compute C[i + 1]) = O(i)

d(compute C[i + 1]) = O(log i).

⇒
c(compute C[n : 1]) =

n∑

i=1

O(i) = O(n2)

d(compute C[n : 1]) = O(log n).

explains carry-lookahead generator... still too expensive!
– p.20

Proof: C[i + 1] = 1⇐⇒ π[i : −1] = 2

From previous claim, it suffices to prove that

∃j ≤ i : σ[i : j] = 1i−j · 2 ⇐⇒ π[i : −1] = 2.

– p.21

Proof: σ[i : j] = 1i−j · 2⇒ π[i : −1] = 2

Assume that σ[i : j] = 1i−j · 2.
⇒

π[i : j] = 2.

If j = −1 we are done.
Otherwise,

π[i : −1] = π[i : j]
︸ ︷︷ ︸

=2

∗π[j − 1 : −1]

= 2.

– p.22

Proof: π[i : −1] = 2⇒ ∃j ≤ i : σ[i : j] = 1i−j · 2

Assume that π[i : −1] = 2.
If, for every ` ≤ i, σ[`] 6= 2, then π[i : −1] 6= 2, a
contradiction. Hence

{` ∈ [−1, i] : σ[`] = 2} 6= ∅.

Let
j

4

= max {` ∈ [−1, i] : σ[`] = 2} .

π[j : −1] = 2 (since 2 ∗ a = 2).
We claim that σ[`] = 1, for every j < ` ≤ i.

– p.23

Proof: π[i : −1] = 2⇒ ∃j ≤ i : σ[i : j] = 1i−j · 2

Let
j

4

= max {` ∈ [−1, i] : σ[`] = 2} .

We claim that σ[`] = 1, for every j < ` ≤ i.

max. of j⇒ for every j < ` ≤ i: σ[`] 6= 2.
if σ[`] = 0, for j < ` ≤ i, then π[i : `] = 0.
⇒

π[i : −1] = π[i : `] ∗ π[`− 1 : −1] = 0,

a contradiction.

since σ[i : j + 1] = 1i−j, we conclude that
σ[i : j] = 1i−j · 2, QED.

– p.24

Prefix Computation Problem

DEF: Let Σ denote a finite alphabet. Let OP : Σ2 −→ Σ
denote an associative function. A prefix computation over Σ
with respect to OP is defined as follows.
Input x[n− 1 : 0] ∈ Σn.
Output: y[n− 1 : 0] ∈ Σn defined recursively as follows:

y[0]← x[0]

y[i + 1] = OP(x[i + 1], y[i]).

Note that y[i] can be also expressed simply by

yi = OPi+1(x[i], x[i− 1], . . . , x[0]).

– p.25

Reduction: C[n : 1] 7−→ Prefix Computation Prob.

The Claim

C[i + 1] = 1 ⇐⇒ π[i : −1] = 2

implies a reduction of the problem of computing C[n : 1] to a
Prefix Computation Problem:

Σ = {0, 1, 2}

OP = ∗

input: σ[−1 : n]

output: y[i] = π[i : −1].

– p.26

Prefix Computation Problem - example
Σ = {0, 1}

OP = OR

=⇒ PPC–OR(n) used to design a Unary Priority Encoder
U-PENC(n).

– p.27

Parallel Prefix Circuit
DEF: A Parallel Prefix Circuit, PPC–OP(n), is a combinational
circuit that computes a prefix computation. Namely, given
input x[n− 1 : 0] ∈ Σn, it outputs y[n− 1 : 0] ∈ Σn, where

yi = OPi+1(x[i], x[i− 1], . . . , x[0]).

representation of values in Σ - not addressed.
assume: some fixed representation is used.
OP-gate: given representations of a, b ∈ Σ, outputs a
representation of OP(a, b).

– p.28

PPC–OP(n) - questions
Question: Design a PPC–OP(n) circuit with linear delay and
cost.

Question: Design a PPC–OP(n) circuit with logarithmic delay
and quadratic cost.

Question: Assume that a design C(n) is a PPC–OP(n). This
means that it is comprised only of OP-gates and works
correctly for every alphabet Σ and associative function
OP : Σ2 → Σ. Can you prove a lower bound on its cost and
delay?

– p.29

PPC–OP - implementation
A recursive design.
We already saw a divide-and-conquer design for
PPC–OR(n) with cost Θ(n · log n).
Aim for O(n) cost.
“odd-even” divide-and-conquer (as opposed to left/right
side divide-and-conquer).
basis n = 2: an OP-gate.
recursion step...

– p.30

PPC–OP(n) - recursion step

op-gateop-gateop-gate

op-gateop-gateop-gateop-gate

y[0]

x[0]x[1]x[2]x[3]x[n− 4]x[n − 3]x[n− 2]x[n − 1]

y[1]y[2]y[3]y[n− 4]y[n − 3]y[n− 2]y[n− 1]

x′[n/2 − 1] x′[n/2 − 2] x′[1] x′[0]

y′[n/2 − 1] y′[n/2 − 2] y′[1] y′[0]
ppc–op(n/2)

– p.31

PPC–OP(n) - correctness
By induction. Basis: holds trivially for n = 2. We now
prove the induction step.
x′[n/2− 1 : 0], y′[n/2− 1] - inputs/outputs of PPC–OP(n/2).
x′[i]← OP(x[2i + 1], x[2i]).
Induction hypothesis:

y′[i] = OPi+1(x
′[i], . . . , x′[0])

= OP2i+2(x[2i + 1], . . . , x[0]).

y[2i + 1]← y′[i]⇒ odd indexed outputs
y[1], y[3], . . . , y[n− 1] are correct.
y[2i]← OP(x[2i], y′[i− 1]) =⇒ y[2i] = OP(x[2i], y[2i− 1]).
⇒ even indexed outputs are also correct. QED

– p.32

PPC–OP(n) - delay analysis (n = 2k)

op-gateop-gateop-gate

op-gateop-gateop-gateop-gate

y[0]

x[0]x[1]x[2]x[3]x[n− 4]x[n − 3]x[n− 2]x[n − 1]

y[1]y[2]y[3]y[n− 4]y[n − 3]y[n− 2]y[n− 1]

x′[n/2 − 1] x′[n/2 − 2] x′[1] x′[0]

y′[n/2 − 1] y′[n/2 − 2] y′[1] y′[0]
ppc–op(n/2)

d(PPC–OP(n)) =

{

d(OP-gate) if n = 2

d(PPC–OP(n/2)) + 2 · d(OP-gate) otherwise.

If follows that

d(PPC–OP(n)) = (2 log n− 1) · d(OP-gate).

– p.33

PPC–OP(n) - cost analysis (n = 2k)

op-gateop-gateop-gate

op-gateop-gateop-gateop-gate

y[0]

x[0]x[1]x[2]x[3]x[n− 4]x[n − 3]x[n− 2]x[n − 1]

y[1]y[2]y[3]y[n− 4]y[n − 3]y[n− 2]y[n− 1]

x′[n/2 − 1] x′[n/2 − 2] x′[1] x′[0]

y′[n/2 − 1] y′[n/2 − 2] y′[1] y′[0]
ppc–op(n/2)

c(PPC–OP(n)) =

{

c(OP-gate) if n = 2

c(PPC–OP(n/2)) + (n− 1) · c(OP-gate) otherwise.

It follows that

c(PPC–OP(n)) =

k∑

i=2

(2i − 1) · c(OP-gate) + c(OP-gate)

= (2n− 4− (k − 1) + 1) · c(OP-gate)

= (2n− log n− 2) · c(OP-gate). – p.34

PPC–OP(n) - corollary

Corollary: If the delay and cost of an OP-gate is constant,
then

d(PPC–OP(n)) = Θ(log n)

c(PPC–OP(n)) = Θ(n).

⇒

Σ = {0, 1} & OP = OR
⇒ asymptotically optimal U-PENC(n).
Σ = {0, 1, 2} & OP = ∗
⇒ compute carry-bits C[n : 1] with O(n) cost and
O(log n) delay.

– p.35

PPC–OP(n) - fanout
Insert a buffer in every branching point of the PPC–OP(n)
design.
⇒ constant fanout.
Question: What is the maximum fanout in the PPC–OP(n)
design. Analyze the effect of inserting buffers to the
cost and delay of PPC–OP(n).

op-gateop-gateop-gate

op-gateop-gateop-gateop-gate

y[0]

x[0]x[1]x[2]x[3]x[n− 4]x[n − 3]x[n− 2]x[n − 1]

y[1]y[2]y[3]y[n− 4]y[n − 3]y[n− 2]y[n− 1]

x′[n/2 − 1] x′[n/2 − 2] x′[1] x′[0]

y′[n/2 − 1] y′[n/2 − 2] y′[1] y′[0]
ppc–op(n/2)

– p.36

putting it all together
Compute σ[n− 1 : −1]: Cost & delay are constant per σ[i].
⇒ total cost is O(n) & the total delay is O(1).

PPC– ∗ (n): Compute product π[i : −1] from σ[i : −1], for
every i ∈ [n− 1 : 0].
The cost O(n) and delay O(log n).

Extraction of C[n : 1]: Recall C[i + 1] = 1 iff π[i : −1] = 2.
Compare each π[i : −1] with 2. The result of this
comparison equals C[i + 1].
The cost and delay is constant per carry-bit C[i + 1].
Total cost of this step is O(n) and the delay is O(1).

Computation of sum-bits: The sum bits are computed by

S[i] = XOR3(A[i], B[i], C[i]).

Cost of this step is O(n) and the delay is O(1).

– p.37

Fast Addition
By combining the cost and delay of each stage we obtain
the following result.

Theorem: The adder based on parallel prefix computation
is asymptotically optimal; its cost is linear and its delay is
logarithmic.

– p.38

Summary
Presented an adder with asymptotically optimal cost
and delay.
Design based on two reductions:

reduction of the task of computing the sum-bits to
the task of computing the carry bits.
reduction of the task of computing the carry bits to a
prefix computation problem.

A prefix computation problem is the problem of
computing OPi(x[i− 1 : 0]), for 0 ≤ i ≤ n− 1, where OP is
an associative operation.
PPC–OP(n) - a linear cost logarithmic delay circuit for the
prefix computation problem.
Can use PPC–OP(n) for asymptotically optimal U-PENC(n).

– p.39

Chapter 10: Signed Addition
Computer Structure - Spring 2007

c©Dr. Guy Even

Tel-Aviv Univ.

– p.1

http://www.eng.tau.ac.il/~guy/

Preliminary questions
How are signed integers represented in a computer?
How are signed integers added and subtracted in a
computer?
Can we use the same circuitry for adding unsigned and
signed integers?

– p.2

Goals
represent negative numbers
two’s complement representation
add & subtract two’s complement numbers
identify overflow and negative result

– p.3

Signed numbers
unsigned numbers - non-negative integers
signed numbers - positive/negative numbers
Many ways to represent signed numbers

– p.4

Representation of signed numbers
The number represented in sign-magnitude
representation by A[n− 1 : 0] ∈ {0, 1}n and S ∈ {0, 1} is

(−1)S · 〈A[n− 1 : 0]〉.

The number represented in one’s complement
representation by A[n− 1 : 0] ∈ {0, 1}n is

−(2n−1 − 1) · A[n− 1] + 〈A[n− 2 : 0]〉.

The number represented in two’s complement
representation by A[n− 1 : 0] ∈ {0, 1}n is

−2n−1 · A[n− 1] + 〈A[n− 2 : 0]〉.

– p.5

Two’s complement - examples
We denote the number represented in two’s
complement representation by A[n− 1 : 0] as follows:

[A[n− 1 : 0]]
4

= −2n−1 · A[n− 1] + 〈A[n− 2 : 0]〉.

Examples:
[0n] = 0.
[0 · x[n− 2 : 0]] = 〈x[n− 2 : 0]〉.
[1 · x[n− 2 : 0]] = −2n−1 + 〈x[n− 2 : 0]〉 < 0.
⇒ MSB indicates the sign.
[1n] = −1.
[
1 · 0n−1

]
= −2n−1.

– p.6

Two’s complement - story
The most common method for representing signed
numbers is two’s complement.
Why? adding, subtracting, and multiplying signed
numbers represented in two’s complement
representation is almost as easy as performing these
computations on unsigned (binary) numbers.
We will discuss addition & subtraction.

DEF: Suppose that the string A represents the value x.
Negation means computing the string B that represents −x.
Question: Suggest circuit for negation with respect to sign-
magnitude representation and one’s complement represen-
tation.

– p.7

Two’s complement - notation
Tn - the set of signed numbers that are representable in
two’s complement representation using n-bit binary strings.

Claim:

Tn
4

=
{
−2n−1,−2n−1 + 1, . . . , 2n−1 − 1

}
.

Question: Prove the claim.
Remark: Tn is not closed under negation: −2n−1 ∈ Tn but
2n−1 6∈ Tn.

– p.8

Two’s complement - negation
Claim:

− [A[n− 1 : 0]] = [INV(A[n− 1 : 0])] + 1.

Proof: Note that INV(A[i]) = 1−A[i]. Hence,

[INV(A[n− 1 : 0])] = −2n−1 · INV(A[n− 1]) + 〈INV(A[n− 2 : 0])〉

= −2n−1 · (1−A[n− 1]) +
n−2∑

i=0

(1− A[i]) · 2i

= −2n−1 +
n−2∑

i=0

2i

︸ ︷︷ ︸

=−1

+ 2n−1 · A[n− 1]−
n−2∑

i=0

A[i] · 2i

︸ ︷︷ ︸

=−[A[n−1:0]]

= −1− [A[n− 1 : 0]] .

QED.
– p.9

A circuit for negating a two’s complement number
Claim:

− [A[n− 1 : 0]] = [INV(A[n− 1 : 0])] + 1.

inv(n)

inc(n)

A[n− 1 : 0]

B[n− 1 : 0]

n

n

n

A[n− 1 : 0]

C[n]

Question: [B[n− 1 : 0]]
?
= − [A[n− 1 : 0]]

– p.10

A circuit for negating a two’s complement number - cont.

inv(n)

inc(n)

A[n− 1 : 0]

B[n− 1 : 0]

n

n

n

A[n− 1 : 0]

C[n]

The increment circuit computes:

〈A[n− 1 : 0]〉+ 1.

However, we should compute
[
A[n− 1 : 0]

]
+ 1.

We know that

〈C[n] ·B[n− 1 : 0]〉 = 〈A[n− 1 : 0]〉+ 1.

Suppose we are “lucky” and C[n] = 0.

〈B[n− 1 : 0]〉 = 〈A[n− 1 : 0]〉+ 1.

Why should this imply that

[B[n− 1 : 0]] =
[
A[n− 1 : 0]

]
+ 1? – p.11

A circuit for negating a two’s complement number - cont.

inv(n)

inc(n)

A[n− 1 : 0]

B[n− 1 : 0]

n

n

n

A[n− 1 : 0]

C[n]

Counter example:

A[n− 1 : 0] = 1 · 0n−1.

A[n− 1 : 0] = 0 · 1n−1.

Increment yields C[n] = 0 and

B[n− 1 : 0] = 1 · 0n−1 = A[n− 1 : 0].

=⇒
[

~B
]

6= −
[

~A
]

.

Reason? binary increment is not a two’s
complement increment.
Had to err: −

[

~A
]

6∈ Tn.
– p.12

A circuit for negating a two’s complement number - cont.

inv(n)

inc(n)

A[n− 1 : 0]

B[n− 1 : 0]

n

n

n

A[n− 1 : 0]

C[n]

We will prove a theorem that will help us formulate and prove
the correctness of the negation circuit.

– p.13

Two’s complement - mod 2n property
Claim: For every A[n− 1 : 0] ∈ {0, 1}n

mod(〈 ~A〉, 2n) = mod(
[

~A
]

, 2n).

Note that

〈 ~A〉 ∈ [0, 2n − 1]
[

~A
]

∈ [−2n−1, 2n−1 − 1].

Remark: Alternative definition of two’s comple-
ment representation based on Claim. Namely, rep-
resent x ∈ [−2n−1, 2n−1 − 1] by x′ ∈ [0, 2n − 1], where
mod(x, 2n) = mod(x′, 2n).

– p.14

Claim: mod(〈 ~A〉, 2n) = mod(
[

~A
]

, 2n)

Proof:

mod(〈 ~A〉, 2n) = mod(2n−1 · A[n− 1] + 〈A[n− 2 : 0]〉, 2n)

= mod((2n−1−2n) · A[n− 1] + 〈A[n− 2 : 0]〉, 2n)

= mod(−2n−1 · A[n− 1] + 〈A[n− 2 : 0]〉, 2n)

= mod(
[

~A
]

, 2n).

2

– p.15

Two’s complement - sign extension
Claim: If A[n] = A[n− 1], then

[A[n : 0]] = [A[n− 1 : 0]] .

Proof:

[A[n : 0]] = −2n · A[n] + 〈A[n− 1 : 0]〉

= −2n · A[n] + 2n−1 · A[n− 1] + 〈A[n− 2 : 0]〉

= −2n · A[n− 1] + 2n−1 · A[n− 1] + 〈A[n− 2 : 0]〉

= −2n−1 · A[n− 1] + 〈A[n− 2 : 0]〉

= [A[n− 1 : 0]] .

QED
– p.16

Two’s complement - sign extension
Claim: If A[n] = A[n− 1], then

[A[n : 0]] = [A[n− 1 : 0]] .

Corollary:

[A[n− 1]∗ · A[n− 1 : 0]] = [A[n− 1 : 0]] .

sign-extension - duplicating the most significant bit does not
affect the value represented in two’s complement represen-
tation. This is similar to padding zeros from the left in binary
representation.

– p.17

Theorem: signed addition 7−→ binary addition
Binary addition: assume that

〈C[n] · S[n− 1 : 0]〉 = 〈A[n− 1 : 0]〉+ 〈B[n− 1 : 0]〉+ C[0].

C[n− 1] - carry-bit in position [n− 1] associated with this
binary addition.

z
4

= [A[n− 1 : 0]] + [B[n− 1 : 0]] + C[0].

=⇒

C[n− 1]− C[n] = 1 =⇒ z > 2n−1 − 1

C[n]− C[n− 1] = 1 =⇒ z < −2n−1

z ∈ Tn ⇐⇒ C[n] = C[n− 1]

z ∈ Tn =⇒ z = [S[n− 1 : 0]] .

– p.18

Theorem - proof
functionality of FAn−1 in RCA(n) =⇒

A[n− 1] + B[n− 1] + C[n− 1] = 2C[n] + S[n− 1]

⇒ A[n− 1] + B[n− 1] = 2C[n]− C[n− 1] + S[n− 1].

We now expand z as follows:

z = [A[n− 1 : 0]] + [B[n− 1 : 0]] + C[0]

= −2n−1 · (A[n− 1] + B[n− 1])

+ 〈A[n− 2 : 0]〉+ 〈B[n− 2 : 0]〉+ C[0]

= −2n−1 · (2C[n]− C[n− 1] + S[n− 1]) + 〈C[n− 1] · S[n− 2 : 0]〉

= −2n−1 · (2C[n]− C[n− 1]− C[n− 1]) + [S[n− 1] · S[n− 2 : 0]]

= −2n · (C[n]− C[n− 1]) + [S[n− 1 : 0]] .

– p.19

Theorem - proof - cont
z = −2n · (C[n]− C[n− 1]) + [S[n− 1 : 0]] .

We distinguish between three cases:
1. If C[n]− C[n− 1] = 1, then

z = −2n + [S[n− 1 : 0]]

≤ −2n + 2n−1 − 1 = −2n−1 − 1.

2. If C[n]− C[n− 1] = −1, then

z = 2n + [S[n− 1 : 0]]

≥ 2n − 2n−1 = 2n−1.

3. If C[n] = C[n− 1], then z = [S[n− 1 : 0]], and obviously
z ∈ Tn.

QED – p.20

Overflow

DEF: Let z
4

= [A[n− 1 : 0]] + [B[n− 1 : 0]] + C[0]. The signal
OVF is defined as follows:

OVF
4

=

{

1 if z 6∈ Tn

0 otherwise.

overflow - sum is either too large or too small.
better term - out-of-range - not the common term.
By Theorem

OVF = XOR(C[n− 1], C[n]).

– p.21

Detecting Overflow
The signal C[n− 1] may not be available if one uses a
“black-box” binary-adder (e.g., a library component in
which C[n− 1] is an internal signal).
In this case we detect overflow based on the following
claim.

Claim:

XOR(C[n− 1], C[n]) = XOR4(A[n− 1], B[n− 1], S[n− 1], C[n]).

Proof: Recall that

C[n− 1] = XOR3(A[n− 1], B[n− 1], S[n− 1]).

2

– p.22

Determining the sign of the sum
How do we determine the sign of the sum z?
Obviously, if z ∈ Tn, then the sign-bit S[n− 1] indicates
whether z is negative.
What happens if overflow occurs?

Question: Provide an example in which the sign of z is not
signaled correctly by S[n− 1].

We would like to be able to know whether z is negative re-
gardless of whether overflow occurs.

– p.23

Determining the sign of the sum - cont.

DEF: The signal NEG is defined as follows:

NEG
4

=

{

1 if z < 0

0 if z ≥ 0.

Theorem implies that:

NEG =







S[n− 1] if no overflow
1 if C[n]− C[n− 1] = 1

0 if C[n− 1]− C[n] = 1.

An even simpler method...

– p.24

Claim: NEG = XOR3(A[n− 1], B[n− 1], C[n]).

Proof:
The proof is based on playing the following “mental game”:

“extend” the computation to n + 1 bits.
=⇒ overflow does not occur in extended precision.
=⇒ the sum bit in position n indicates correctly the sign
of the sum z.
express this sum bit using n-bit addition signals.

– p.25

Proof: NEG = XOR3(A[n− 1], B[n− 1], C[n]) - cont.
Sign extension to n + 1 bits:

Ã[n : 0]
4

= A[n− 1] · A[n− 1 : 0]

B̃[n : 0]
4

= B[n− 1] · B[n− 1 : 0]

〈C̃[n + 1] · S̃[n : 0]〉
4

= 〈Ã[n : 0]〉+ 〈B̃[n : 0]〉+ C[0].

Since sign-extension preserves value, it follows that

z =
[

Ã[n : 0]
]

+
[

B̃[n : 0]
]

+ C[0].

– p.26

Proof: NEG = XOR3(A[n− 1], B[n− 1], C[n]) - cont.

We claim that z ∈ Tn+1. This follows from

z = [A[n− 1 : 0]] + [B[n− 1 : 0]] + C[0]

≤ 2n−1 − 1 + 2n−1 − 1 + 1

≤ 2n − 1.

Similarly z ≥ 2−n.
Since sign-extension preserves value and z ∈ Tn+1:

z
sign-ext

=
[

Ã[n : 0]
]

+
[

B̃[n : 0]
]

+ C[0]
no OVF

=
[

S̃[n : 0]
]

.

=⇒ NEG = S̃[n].

– p.27

Proof: NEG = XOR3(A[n− 1], B[n− 1], C[n]) - cont.

NEG = S̃[n]

= XOR3(Ã[n], B̃[n], C̃[n])

= XOR3(A[n− 1], B[n− 1], C[n]).

QED

– p.28

More on NEG

Question: Prove that NEG = XOR(OVF, S[n− 1]).

– p.29

A two’s-complement adder - S-ADDER(n)

DEF:
Input: A[n− 1 : 0], B[n− 1 : 0] ∈ {0, 1}n, and C[0] ∈ {0, 1}.
Output: S[n− 1 : 0] ∈ {0, 1}n and NEG, OVF ∈ {0, 1}.
Functionality: Define z as follows:

z
4

= [A[n− 1 : 0]] + [B[n− 1 : 0]] + C[0].

The functionality is defined as follows:

z ∈ Tn =⇒ [S[n− 1 : 0]] = z

z ∈ Tn ⇐⇒ OVF = 0

z < 0 ⇐⇒ NEG = 1.

Note that no carry-out C[n] is output.
– p.30

S-ADDER(n) - implementation
C[n]

xor

C[n− 1]

ovf

adder(n)

B[n− 1 : 0]A[n− 1 : 0]

S[n− 1 : 0]C[n]

C[0]

C[n]A[n− 1]

neg

B[n− 1]

xor3

a two’s complement adder is identical to a binary adder
except for the circuitry that computes the flags OVF and
NEG.
in an arithmetic logic unit (ALU), the same circuit is
used for signed addition and unsigned addition.

– p.31

S-ADDER(n) - correctness
C[n]

xor

C[n− 1]

ovf

adder(n)

B[n− 1 : 0]A[n− 1 : 0]

S[n− 1 : 0]C[n]

C[0]

C[n]A[n− 1]

neg

B[n− 1]

xor3

Question: Prove that this design is correct.

– p.32

Concatenating adders

c[0]

B[n− 1 : 0]A[n− 1 : 0]

S[n− 1 : 0]

C[n]

B[2n− 1 : n]A[2n− 1 : n]

adder(n)s-adder(n)

S[2n− 1 : n]C[2n]

ovf,neg

Question: Is this a correct S-ADDER(2n)?
Question: How about a partition k and 2n− k?

– p.33

two’s-complement adder/subtracter - ADD-SUB(n)

DEF:
Input: A[n− 1 : 0], B[n− 1 : 0] ∈ {0, 1}n, and sub ∈ {0, 1}.
Output: S[n− 1 : 0] ∈ {0, 1}n and NEG, OVF ∈ {0, 1}.
Functionality: Define z as follows:

z
4

= [A[n− 1 : 0]] + (−1)sub · [B[n− 1 : 0]] .

The functionality is defined as follows:

z ∈ Tn =⇒ [S[n− 1 : 0]] = z

z ∈ Tn ⇐⇒ OVF = 0

z < 0 ⇐⇒ NEG = 1.

sub - indicates if the operation is addition or subtraction.
no carry-in bit C[0] is input & no carry-out C[n] is output.

– p.34

ADD-SUB(n) - implementation

S[n − 1 : 0]

ovf,neg

s-adder(n)

xor(n)

B[n − 1 : 0]

sub

A[n− 1 : 0]

Question: Is this implementation correct?

– p.35

back to the negation circuit

inv(n)

inc(n)

A[n− 1 : 0]

B[n− 1 : 0]

n

n

n

A[n− 1 : 0]

C[n]

Question:
1. When is the circuit correct?
2. Suppose we wish to add a signal that

indicates whether the circuit satisfies[

~B
]

= −
[

~A
]

. How should we com-
pute this signal?

3. Does C[n] indicate whether
[

~B
]

6=

−
[

~A
]

?

– p.36

wrong implementation of ADD-SUB(n)

mux(n)

inc(n)

inv(n)

S[n − 1 : 0]

ovf,neg

s-adder(n)

A[n− 1 : 0]

10

0

B[n− 1 : 0]

sub

Question: Why is this
design wrong?

– p.37

OVF and NEG flags in high level programming

Question: High level programming languages such as C
and Java do not enable one to see the value of the OVF and
NEG signals (although these signals are computed by
adders in all microprocessors).
1. Write a short program that deduces the values of these

flags. Count how many instructiond are needed to
recover these lost flags.

2. Short segements in a low level language (Assembly)
can be integrated in C programs. Do you know how to
see the values of the OVF and NEG flags using a low level
language?

– p.38

Summary
representation of signed numbers: sign-magnitude,
one’s complement, two’s complement.
negation of two’s complement numbers.
reduction: two’s complement addition 7−→ binary
addition.
Computation of OVF and NEG flags.
two’s complement adder and adder/subtracter.
all these issues are important in: designing an ALU,
DSP programming, and even regular programming
(signed vs. unsigned int).

– p.39

	Preliminary questions
	Digital Circuits vs. Analog Devices
	More questions
	Transistors
	N-transistor & P-transistor
	
ormalsize N-transistor & P-transistor
	Example: a CMOS inverter
	
ormalsize Qualitative Analysis vs. Quantitative Analysis
	Analog signals
	Digital signals
	
ormalsize Interpreting analog signals as digital signals
	problems with definition of $dig (f(t))$
	
ormalsize Interpreting analog signals as digital signals
	
ormalsize digital interpretation of an analog signal
	
ormalsize did we solve the problems of a single threshold?
	An inverter
	Transfer functions
	Static transfer function
	Static transfer function - remarks
	
ormalsize Static transfer function - remarks
	back to the definition of an inverter
	Noise
	Bounded noise model
	
ormalsize The digital abstraction in the presence of noise
	
ormalsize Redefining the digital interpretation of analog signals
	
ormalsize Redefining the digital interpretation (cont.)
	
ormalsize Redefining the digital interpretation (cont.)
	
ormalsize Digital interpretation of input & output signals
	Noise margins
	Inverter - revisited
	Logical & stable analog signals
	Logical & stable 	extcolor {red}{digital} signals
	Summary
	Preliminary Questions
	Goals
	Boolean functions
	Gates & static transfer functions
	Extension of $dig (x)$
to vectors
	Def: combinational gate
	
ormalsize Boolean functionality of a combinational gate
	
ormalsize Boolean functionality of a combinational gate - cont.
	A consistent combinational gate
	brief roundup
	Back to the digital world
	Specification & Consistency
	Propagation delay of comb. gate
	Propagation delay - remarks
	Contamination delay
	
ormalsize Example: propagation delay and contamination delay
	Combinational circuits - building blocks
	Combinational gates
	 Wires & Nets
	Drawing nets
	Digital signals for nets
	 Directions in nets
	Simple nets
	
ormalsize Directed graph corresponding to simple nets
	
ormalsize Example of a circuit C and a directed graph $DG(C)$
	
ormalsize Are these circuits combinational circuits?
	Input gates & output gates
	
ormalsize Syntactic definition of combinational circuits
	Syntactic definition - remarks
	Back to ``bad'' examples...
	
ormalsize Combinational circuits: Syntax $Rightarrow $ Semantics
	
ormalsize Simulation theorem of combinational circuits
	
ormalsize Example - simulation of combinational circuit
	Proof of Simulation Theorem
	Proof - Induction hypothesis
	Proof - Induction basis
	Proof - Induction step
	Proof - Ind. step - cont.
	Simulation theorem - Corollaries
	
ormalsize Simulation and timing-analysis algorithm
	
ormalsize Quality measures of combinational gates
	Cost
	Propagation delay
	
ormalsize Delays of paths
	Example: gate costs and delays
	Syntax & Semantics
	Summary
	Preliminary Questions
	Goals
	Associative dyadic boolean functions
	f_n : composing $f:zo ^2
ightarrow zo $
	f_n : the associative case
	Definition of $orr $-trees
	Recursive definition of $orr $-trees
	Example: $orr $-tree$(4)$
	Cost of $orr $-trees
	Cost of $orr $-trees - Induction step
	Delay of $orr $-trees
	Example: delay of $orr $-trees
	Lower bound on depth
	Upper bound on depth
	
ormalsize Procedure for constructing ``balanced'' trees
	Are balanced $orr $-trees optimal?
	Optimality of balanced $orr $-trees
	Optimality of balanced $orr $-trees
	Restriction of a Boolean function
	Cone of a Boolean function
	Input-Output reachability
	Input-Output reachability - cont.
	Linear Cost Lower Bound Theorem
	DAG terminology
	
ormalsize Leaves and interior vertices in trees
	
ormalsize Underlying graph of $DG(C)$
	
ormalsize Proof of linear cost lower bound theorem
	Construction of T
	larger fan-in
	
ormalsize Logarithmic Delay Lower Bound Theorem
	Proof of logarithmic lower bound
	Proof: $d(v)
geq log _k |cone (v)|$
	Cont. proof: $d(v)
geq log _k |cone (v)|$
	Cont. proof: $d(v)
geq log _k |cone (v)|$
	Summary
	Preliminary questions
	Goals
	Parallel nets
	Indexing parallel nets
	Bus notation
	Bus notation
	Bus related definitions
	Indexed buses
	Bus assignment conventions
	Signals on buses
	multiple instances of the same gate
	Common input in $G(n)$
	Concatenation of binary strings
	Values represented by binary strings
	Binary representation
	Division by 2^k in binary representation
	Decoders
	$decoder (8)$
- schematic
	$decoder (n)$
- schematic
	
ormalsize Weaknesses of standard decoder descriptions
	Formal description of $decoder (n)$
	
ormalsize Formal description of $decoder (n)$
- recursive step
	Correctness proof
	induction step - cont.
	Cost analysis
	Cost analysis - cont.
	Delay analysis
	Weight of binary strings
	Encoders - Definitions
	Encoder - Defs. - cont.
	Encoders - Defs. - cont.
	Encoder - implementation
	$encoder '(n)$
	Define $encoder _n(0^{2^n})$
	$encoder '(n)$
- recursive step
	
ormalsize Correctness of $encoder '(n)$
- induction step
	
ormalsize Correctness of $encoder '(n)$
- induction step - cont.
	
ormalsize Correctness of $encoder '(n)$
- induction step - cont.
	Delay analysis of $encoder '(n)$
	Cost analysis of $encoder '(n)$
	Sanity test
	Commuting bitwise-$orr $ and $encoder _{n-1}$
	
ormalsize Proof: $orr (E_{n-1}(vec {y}_L),
E_{n-1}(vec {y}_R)) = E_{n-1}(orr (vec {y}_L, vec {y}_R))$
	$encoder '(n)
longrightarrow encoder ^*(n)$
	Correctness of $encoder ^*(n)$
	Cost analysis of $encoder ^*(n)$

	Delay analysis of $encoder ^*(n)$
	Summary
	Preliminary questions
	Goals
	Multiplexer
	Selectors
	Implementation of $muxno $
	
ormalsize $muxno $: a decoder based implementation
	
ormalsize $muxno $: a tree-like implementation
	Which design is better?
	Cyclic shift - example
	Cyclic shift - definition
	Barrel Shifter
	
ormalsize $cls (n,i)$
- {
ed C}yclic {
ed L}eft {
ed S}hift by 2^i positions
	$cls (4,1)$
	$�arrel (n)$
- a chain of $cls (n,i)$
	$�arrel (n)$
- correctness
	induction step
	Logical Shifting - motivation
	
ormalsize Bi-Directional Logical Shifter - definition
	
ormalsize Bi-Directional Logical Shifter - example
	
ormalsize Bi-Directional Logical Shifter - implementation
	
ormalsize $lbs (n,i)$
- definition
	
ormalsize $y[j]=x'[j+(-1)^{ell
}cdot s cdot 2^i]$
	
ormalsize A bit-slice of an implementation of $lbs (n,i)$
	
ormalsize A bit-slice of an implementation of $lbs (n,i)$
	Arithmetic Shifters - motivation
	
ormalsize Arithmetic right shifter - definition
	
ormalsize Arithmetic right shifter - implementation
	
ormalsize Further questions
	
ormalsize Further questions - cont.
	Summary
	Preliminary questions
	Leading One
	Unary Representation
	Parallel Prefix Computation
	Priority Encoders
	Unary priority encoder
	Binary Priority Encoder
	$upenc (n)$
- Implementation
	divide & conquer $ppc {orr }(n)$
	divide & conquer $ppc {orr }(n)$
- cont.
	divide & conquer $ppc {orr }(n)$
- cost analysis
	
ormalsize Implementation of a binary priority encoder
	reduction of $�penc (n)$
to $ppc {orr }(n)$
	cost analysis
	delay analysis
	
ormalsize $�penc (n)$:
a divide-and-conquer design for $n=2^k$
	correctness
	correctness: case $x[0:�rac n2-1]
eq 0^{n/2}$
	
ormalsize correctness: case $x[0:�rac n2-1]= 0^{n/2}$ & $x[�rac n2:n-1]
eq 0^{n/2}$
	
ormalsize correctness: case $x[0:�rac n2-1]= 0^{n/2}$ & $x[�rac n2:n-1]= 0^{n/2}$
	cost analysis
	delay analysis
	Summary - priority encoders
	Preliminary questions
	Half-decoder
	
ormalsize Try to design $halfdecoder (n)$
using known modules
	Claim 1
	Claim 2
	Comparison box $compare (vec {z},i)$
	
ormalsize Claim 3: comparison based on quotient & remainder
	Implementation: $halfdecoder (n)$
	
ormalsize Recursion step: $halfdecoder (n)$
	
ormalsize remarks
	
ormalsize example
	Correctness: $halfdecoder (n)$
	Correctness - cont.
	Cost analysis: $halfdecoder (n)$
	$halfdecoder (n)$
- lower bound on cost
	Delay analysis: $halfdecoder (n)$
	Summary - Half decoders
	Preliminary questions
	Goals
	Binary Addition
	Lower bounds
	Full Adder
	Ripple Carry Adder - $
ca (n)$
	Correctness proof
	Correctness - cont.
	Induction Step
	
	Cost & Delay Analysis
	Is $
ca (n)$
good enough?
	Carry bits
	
ormalsize remark 1: redundant & non-redundant representations
	remark 1 - cont
	remark 2: cones
	remark 3
	
ormalsize remark 4: reductions sum-bits $longleftrightarrow $ carry-bits
	Conditional Sum Adder - $csa (n)$
	Delay analysis
	Cost Analysis
	
ormalsize Cost Analysis - cont.
	Conditional Sum Adder - Discussion
	
ormalsize Conditional Sum Adder - Discussion - cont.
	Compound Adder
	Compound Adder
	$compound (n)$
- implementation
	$compound (n)$
- implementation
	
	Compound adder
	$compound (n)$
- correctness
	$compound (n)$
- correctness - cont.
	$compound (n)$
- correctness - cont.
	$compound (n)$
- Delay analysis
	$compound (n)$
- Cost Analysis
	$csa (n)$
vs. $compound (n)$
	$csa (n)$
vs. $compound (n)$ - cont.
	$csa (n)$
vs. $compound (n)$ - cont.
	Summary
	Preliminary questions
	Goals
	
ormalsize reminder: reduction sum-bits $longmapsto $ carry-bits
	Computing the carry bits - preliminary
	
ormalsize definition of $sigma [n-1:-1]$
	
ormalsize example with $sigma [n-1:-1]$
	Proof: $sigma [i:j] = 1^{i-j}cdot 2 Rightarrow C[i+1]=1$
	
ormalsize Proof: $C[i+1]=1Rightarrow exists jleq i: sigma [i:j] = 1^{i-j}cdot 2$
	
ormalsize Corollary: method for computing $C[i+1]$
	Carry-Lookahead Generator
	
ormalsize Carry-Lookahead Generator: cost & delay
	
ormalsize Carry-Lookahead Generator: cost & delay - cont.
	
ormalsize Carry-Lookahead Adder: typical description
	
ormalsize Carry-Lookahead Adder: typical description
	
ormalsize Carry-Lookahead Adder: typical description
	
ormalsize Two-level Carry-Lookahead Adder
	
ormalsize Definition of {
ed $ast : {0,1,2}	imes {0,1,2} longrightarrow {0,1,2}$}
	$ast $-products
	A stronger claim
	Proof: $C[i+1]=1 Longleftrightarrow pi [i:-1]=2$
	
ormalsize Proof: $sigma [i:j] = 1^{i-j}cdot 2 Rightarrow pi [i:-1]=2$
	
ormalsize Proof: $pi [i:-1]=2 Rightarrow exists jleq i ~:~ sigma [i:j] = 1^{i-j}cdot 2$
	
ormalsize Proof: $pi [i:-1]=2 Rightarrow exists jleq i ~:~ sigma [i:j] = 1^{i-j}cdot 2$
	Prefix Computation Problem
	
ormalsize Reduction: $C[n:1] longmapsto $ Prefix Computation Prob.
	Prefix Computation Problem - example
	Parallel Prefix Circuit
	$ppcop (n)$
- questions
	$ppcop $ - implementation
	$ppcop (n)$
- recursion step
	$ppcop (n)$
- correctness
	
ormalsize $ppcop (n)$
- delay analysis $(n=2^k$)
	
ormalsize $ppcop (n)$
- cost analysis $(n=2^k$)
	
ormalsize $ppcop (n)$
- corollary
	$ppcop (n)$
- fanout
	
ormalsize putting it all together
	Fast Addition
	Summary
	Preliminary questions
	Goals
	Signed numbers
	Representation of signed numbers
	Two's complement - examples
	Two's complement - story
	Two's complement - notation
	Two's complement - negation
	
ormalsize A circuit for negating a two's complement number
	
ormalsize A circuit for negating a two's complement number - cont.
	
ormalsize A circuit for negating a two's complement number - cont.
	
ormalsize A circuit for negating a two's complement number - cont.
	Two's complement - $mod ~2^n$ property
	Claim: $mod (�in {vec {A}}, 2^n)=
mod (wo {vec {A}}, 2^n)$
	Two's complement - sign extension
	Two's complement - sign extension
	
ormalsize Theorem: signed addition $longmapsto $ binary addition
	Theorem - proof
	Theorem - proof - cont
	Overflow
	Detecting Overflow
	Determining the sign of the sum
	
ormalsize Determining the sign of the sum - cont.
	
ormalsize Claim: $
egg = xor _3(A[n-1],B[n-1],C[n])$.
	
ormalsize Proof: $
egg = xor _3(A[n-1],B[n-1],C[n])$
- cont.
	
ormalsize Proof: $
egg = xor _3(A[n-1],B[n-1],C[n])$
- cont.
	
ormalsize Proof: $
egg = xor _3(A[n-1],B[n-1],C[n])$
- cont.
	More on $
egg $
	A two's-complement adder - $sadder (n)$
	$sadder (n)$
- implementation
	$sadder (n)$
- correctness
	Concatenating adders
	
ormalsize two's-complement adder/subtracter - $addsub (n)$
	$addsub (n)$
- implementation
	back to the negation circuit
	wrong implementation of $addsub (n)$
	
ormalsize $ovf $ and $
egg $ flags in high level programming
	Summary

