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Preliminary questions

1. How is time measured in a synchronous circuit?

2. What is the functionality of a flip-flop?

3. What is a stable state? How many stable states does a flip-flop have?

4. How does a flip-flop move from one stable state to another? How fast is this
transition?
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In this chapter we introduce a memory device called a flip-flop. The definition of flip-
flops is rather elaborate and requires that the input be stable during a critical segment.
We prove that flip-flops with empty critical segments do not exist.

11.1 The clock

Synchronous circuits depend on a special signal called the clock. In practice, the clock is
generated by rectifying and amplifying a signal generated by special non-digital devices
(i.e. crystal oscillators). Since our course is about digital circuits, we use the following
abstraction to describe the clock.

Definition 11.1 A clock is a periodic logical signal that oscillates instantaneously be-
tween logical one and logical zero. There are two instantaneous transitions in every clock
period: (i) in the beginning of the clock period, the clock transitions instantaneously from
zero to one; and (ii) at some time in the interior of the clock period, the clock transitions
instantaneously from one to zero.

Figure 11.1 depicts a clock signal. We use the convention that the clock rise occurs in
the beginning of the clock period. Note that we assume that the transitions of the clock
signal are instantaneous; this is obviously impossible in practice. We show later how we
get around this unrealistic assumption.
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Figure 11.1: A clock signal.

Notation. We denote the clock signal by clk. We refer to the period of time within
a clock period during which the clock equals one as the clock pulse (see Fig. 11.1). We
denote the clock period by ϕ(clk). We denote the duration of the clock pulse by clkpw.
A clock signal clk is symmetric if clkpw = ϕ(clk)/2. A clock is said to have narrow
pulses if clkpw < ϕ(clk)/2. A clock is said to have wide pulses if clkpw > ϕ(clk)/2.
See Figure 11.2 for three examples.

Clock cycles. A clock partitions time into discrete intervals. Throughout this chapter
we denote the starting time of the ith clock periods by ti. We refer to the half-closed
interval [ti, ti+1) as clock cycle i. One could use open or closed intervals instead; our
convention avoids overlaps or gaps between clock periods.



11.1. THE CLOCK 135

logical level

0

1

time

(A)

(B)

(C)

logical level

0

1

time

logical level

0

1

time

Figure 11.2: (A) A symmetric clock (B) A clock with narrow pulses (C) A clock with
wide pulses.
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11.2 Edge-triggered Flip-Flop

In this section we define edge-triggered flip-flops.

Definition 11.2 An edge-triggered flip-flop is defined as follows.

Inputs: A digital signal D(t) and a clock clk.

Output: A digital signal Q(t).

Parameters: Four parameters are used to specify the functionality of a flip-flop:

• Setup-time denoted by tsu,

• Hold-time denoted by thold,

• Contamination-delay denoted by tcont, and

• Propagation-delay denoted by tpd.

These parameters satisfy −tsu < thold < tcont < tpd. We refer to the interval
[ti − tsu, ti + thold] as the critical segment Ci and to the interval [ti + tcont, ti + tpd]
as the instability segment Ai. See Figure 11.3 for a depiction of these parameters.

Functionality: If D(t) is stable during the critical segment Ci, then Q(t) = D(ti) during
the interval (ti + tpd, ti+1 + tcont).

Ci

clk

Ai

Figure 11.3: The critical segment Ci = [ti − tsu, ti + thold] and instability segment Ai =
[ti + tcont, ti + tpd] corresponding the clock period starting at ti.

The definition of edge-triggered flip-flops is a rather complicated, so we elaborate.

1. The assumption −tsu < thold < tcont < tpd implies that the critical segment Ci and
the instability segment Ai are disjoint.

2. If D(t) is stable during the critical segment Ci, then the value of D(t) during the
critical segment Ci is well defined and equals D(ti).

3. The flip-flop samples the input signal D(t) during the critical segment Ci. The
sampled value D(ti) is output during the interval [ti + tpd, ti+1 + tcont]. Sampling is
successful only if D(t) is stable while it is sampled. This is why we refer to C as a
critical segment.
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4. If the input D(t) is stable during the critical segments {Ci}i, then the output Q(t)
is stable in between the instability segments {Ai}i.

5. The stability of the input D(t) during the critical segments depends on the clock
period. We will later see that slowing down the clock (i.e., increasing the clock
period) helps in achieving a stable D(t) during the critical segments.

Figure 11.4 depicts a schematic of an edge-triggered flip-flop. Note the special “arrow”
that marks the clock-port. We refer to an edge-triggered flip-flop, in short, as a flip-flop.

Q

clk ff

D

Figure 11.4: A schematic of an edge-triggered flip-flop

Question 11.1 Prove that an edge-triggered flip-flop is not a combinational circuit.

11.3 Arbitration

Arbitration in the context of digital design is the problem of deciding which event occurs
first. For the sake of simplicity we focus on the event that the digital interpretation of an
analog signal becomes 1. Hence, an arbiter is supposed to determine which of two signals
reaches first the value one. We formally define arbitration as follows.

Definition 11.3 An arbiter is a circuit defined as follows.

Inputs: Non-decreasing analog signals A0(t), A1(t) defined for every t ≥ 0.

Output: An analog signal Z(t).

Functionality: Assume that A0(0) = A1(0) = 0. Define Ti, for i = 0, 1, as follows:

Ti

△

= inf{t | dig(Ai(t)) = 1}.

Let t′
△

= 10 + max{T0, T1}. The output Z(t) must satisfy, for every t ≥ t′,

dig(Z(t)) =











0 if T0 < T1 − 1

1 if T1 < T0 − 1

0 or 1 otherwise.



138 CHAPTER 11. FLIP-FLOPS

Note that if T0 or T1 equals infinity, then t′ equals infinity, and there is no requirement
on the output Z(t). The idea is that the arbiter circuit is given 10 time units starting
from max{T0, T1} to determine if T0 < T1 or T1 < T0. We refer to the case in which
|T0 − T1| ≤ 1 as a “tie”. The arbiter is not required to make a specific decision if a tie
occurs. However, even in the case of a tie, the arbiter must make some decision after 10
time units and its output Z(t) must have a logical value.

Arbiters are very important in many applications since an arbiter determines the order
between events. For example, an arbiter can determine which message arrived first in a
network switch.

We will show in this chapter that, under very reasonable assumptions, arbiters do not
exist. Moreover, we will show that a flip-flop with an empty critical segment can be used
to implement an arbiter. The lesson is that, without critical segments, flip-flops do not
exist.

11.4 Arbiters - an impossibility result

In this section we prove that arbiters do not exist.

Claim 11.1 There does not exist a circuit C that implements an arbiter.

Proof: Let C denote a circuit with inputs A0(t), A1(t) and output Z(t). Define A0(t) to
be the analog signal that rises linearly in the interval [0, 100] from 0 to Vhigh,in, and for

every t ≥ 100, A0(t) = Vhigh,in. Let x denote a parameter that defines A1(t) as follows:

A1(t) rises linearly in the interval [0, 100+x] from 0 to Vhigh,in, and for every t ≥ 100+x,

A1(t) = Vhigh,in. Let f(x) denote the function that describes the value of Z(200) (i.e.,

the value of Z(t) at time t = 200) when fed by the signals A0(t) and A1(t). We study the
function f(x) in the interval x ∈ [−2, 2]. We make the following observations:

1. f(−2) ≥ Vhigh,out. The reason is that if x = −2, then T0 = 100 and T1 = 98.

Hence A1(t) “wins”, and by time t = 200, the arbiter’s output should stabilize on
the logical value 1.

2. f(2) ≤ Vlow,out. The reason is that if x = 2, then T0 = 100 and T1 = 102. Hence

A0(t) “wins”, and dig(Z(200)) = 0.

3. f(x) is continuous in the interval [−2, 2]. This is not a trivial statement and its
formal proof is not within the scope of this course. We provide an intuitive proof
of this fact. The idea of the proof of the continuity of f(x) is that the output
Z(200) depends on the following: (i) The initial state of the device C at time t = 0.
We assume that the device C is in a stable state and that the charge is known
everywhere. (ii) The signal Ai(t) in the interval [0, 200], for i = 0, 1.

An infinitesimal change in x affects only A1(t) (i.e., the initial state of the circuit
and A0(t) are not affected by x). Moreover, the difference in energy of A1(t) cor-
responding to two very close values of x is infinitesimal. Hence, we expect the
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difference in Z(200) for two very close values of x to be also infinitesimal. If this
were not the case, then noise would cause uncontrollable changes in Z(t) and the
circuit C would not be useful anyhow.

By the Mean Value Theorem, it follows that, for every y ∈ [Vlow,out, Vhigh,out], there

exists an x ∈ [−2, 2] such that f(x) = y. In particular, choose a value y for which dig(y)
is not logical. We conclude that circuit C is not a valid arbiter since its output can be
forced to be non-logical way past the time it should be logical. 2

Claim 11.1 and its proof are very hard to grasp at first. It seems to imply some
serious flaw in our perception. Among other things, the claim implies that there does not
exist a perfect judge who can determine the winner in a 100-meters dash. This statement
remains true even in the presence of high speed cameras located at the finish line and
even if the runners run slowly. Moreover, the judge is given several hours to decide, and
if the running times of the winner and runner-up are within a second, then the judge may
decide arbitrarily! Does this mean that races are pointless since, for every judge, there
exist two runners whose running times are such that the judge still hangs after an hour?

Our predicament can be clarified by the following example depicted in Figure 11.5.
Consider a player whose goal is to throw a ball past an obstacle so that it rolls past point
P . If the ball is rolled at a speed above v′, then it will pass the obstacle and then roll
past point P . If the ball is thrown at a speed below v′ it will not pass the obstacle. The
judge is supposed to announce her decision 24 hours after the player throws the ball.
The judge’s decision must be either “passed” or “did not pass”. Seems like an easy task.
However, if the player throws the ball at speed v′, then the ball reaches the tip of the
obstacle and may remain there indefinitely long! If the ball remains on the obstacle’s tip
24 hours past the throw, then the judge cannot announce her decision.

player

ball

obstacle

P

Figure 11.5: A player attempting to roll a ball so that it passes point P .

We refer to the state of the ball when resting on the tip of the obstacle as a meta-stable
state of equilibrium. Luckily, throwing the ball so that it rests on the tip of the obstacle
is a very hard task. Suppose there is some probability distribution for the speed of
the ball when thrown. Unless this probability distribution is pathologic, the probability
of obtaining a meta-stable state is small. Moreover, the probability of meta-stability
occurring can be reduced by sharpening the tip of the obstacle or giving the arbiter more
time to decide. This ability to control the probability of the event that a decision cannot
be reached plays a crucial role in real life. In VLSI chips, millions of transistors transition
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from one state to another millions of times per second. If even one transistor is “stuck”
in a meta-stable state, then the chip might output a wrong value. By reducing the
probability of meta-stability, one can estimate that meta-stability will not happen during
the life-time of the chip (a lightening will hit the chip before meta-stability happens).

The consequence of this discussion is that Claim 11.1 does not make judges unem-
ployed just as a coin toss is not likely to end up with the coin standing on its perimeter
(but bear in mind that it could!). The moral of Claim 11.1 is that: (i) Certain tasks are
not achievable with probability 1. If we consider the random nature of noise, we should
not be surprised at all. In fact, noise could be big enough to cause the digital value of a
signal to flip from zero to one. If the noise margin is large enough, then such an event is
not likely to occur. However, there is always a positive probability that such an error will
occur. (ii) Increasing the amount of time during which the arbiter is allowed to reach a
decision (significantly) decreases the chances of meta-stability. As time progresses, even
if the ball is resting on the tip of the obstacle, it is likely to fall to one of the sides. Note,
however, that increasing the clock rate means that “decisions” must be made faster (i.e.,
within a clock period) and the chance of meta-stability increases.

Question 11.2 Does the proof of Claim 11.1 hold only if the signals Ai(t) rise “slowly”?
Prove the claim with respect to non-decreasing signals Ai(t) such that the length of the
interval during which dig(Ai(t)) is non-logical equals ε. (Figure 11.6 depicts slow and
fast signals.)

11.5 Necessity of critical segments

In this section we present a reduction from flip-flops without critical segments to arbiters.
Since arbiters do not exist, the implication of this reduction is that flip-flops without
critical segments do not exist as well.

We define a flip-flop without a critical segment as a flip-flop in which the setup-time
and hold-time satisfy tsu = thold = 0. The functionality is defined as follows: For every i,

Non-Logical Level

t

Ai(t)Ai(t)

t

(A) (B)

Non-Logical Level

ε

Figure 11.6: (A) Slowly rising signals Ai(t) used in proof of Claim 11.1. (B) Fast signals
Ai(t).
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Q(t) is logical (either zero or one) during the interval t ∈ (ti + tpd, ti+1 + tcont) regardless
of whether D(ti) is logical. If D(ti) is logical, then Q(t) = D(ti) during the interval
t ∈ (ti + tpd, ti−1 + tcont).

The definition of a flip-flop without a critical segment is similar to an arbiter. Just
as the arbiter’s decision is free if a tie occurs, the flip-flop is allowed to output zero or
one if D(ti) is not logical. However, the output of the flip-flip must be logical once the
instability segment ends.

Consider the circuit depicted in Figure 11.7 in which the flip-flop is without a critical
segment. Assume that the parameters tcont and tpd are significantly smaller than one time
unit (e.g., at most 10−9 second, where one time unit equals one second). Assume also
that the intervals during which the inputs A0(t) and A1(t) are non-logical are also very
short (e.g., 10−9 second).

Z(t)

A0(t) ff

A1(t)

Figure 11.7: An arbiter based on a flip-flop without a critical segment.

Note that the signal A0(t) is input as a clock to the flip-flop. Our requirements from
A0(t) are somewhat weaker than the requirements from a clock. Instead of periodic
instantaneous transitions from zero to one and back, A0(t) is non-decreasing. Claim 11.2
assumes only one “tick of the clock”, so we may regard A0(t) as a clock with a very
long period. On the other hand, we do not rely on A0(t) rising slowly; the claim holds
regardless of the rate of change of A0(t).

Claim 11.2 The circuit depicted in Figure 11.7 is an arbiter.

Proof: We need to show that: (i) if T1 < T0 − 1, then dig(Z(t)) = 1, for every t ≥
T0 + tpd, and (ii) if T0 < T1 − 1, then dig(Z(t)) = 0, for every t ≥ T0 + tpd. The case
T1 −1 ≤ T0 ≤ T1 +1 is solved because the flip-flop’s output Z(t) is always logical at time
T0 + tpd.

If T1 < T0 − 1, then dig(A1(T0)) = 1, and hence, dig(Z(t)) = 1, for every t ≥ T0 + tpd.
If T0 < T1 − 1, then we claim that dig(A1(T0)) = 0. The reason that since T0 < T1, it

follows that dig(A1(T0)) must be zero. Obviously, dig(A1(T0)) 6= 1. But if it is non-logical,
then the assumption on the fast transition of dig(A1(t)) from zero to one implies that
dig(A1(T0 + 10−9)) = 1, and hence, T1 ≤ T0 + 10−9. But then we have a contradiction to
the assumption that T1 > T0 + 1. Since dig(A1(T0)) = 0, it follows that dig(Z(t)) = 0,
for every t ≥ T0 + tpd, as required. 2

Claims 11.1 and 11.2 imply that a flip-flop without a critical segment does not exist.
In other words, for every flip-flop, if there is no critical segment requirement, then there
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exist input signals that can cause it to output a non-logical value outside of the instability
segment.

Corollary 11.3 There does not exist an edge-triggered flip-flop without a critical seg-
ment.

11.6 An example

Figure 11.8 depicts a circuit consisting of two identical flip-flops and a combinational
circuit C in between. A simplified timing diagram of this circuit is depicted in Figure 11.9.
Instead of drawing the clock signal, only the times ti and ti+1 are marked on the time
axis. In addition, the critical segment and instability segment are depicted for each
clock period. The digital signals D0(t), Q0(t), D1(t), Q1(t) are depicted using a simplified
timing diagram. In this diagram, intervals during which a digital signal is guaranteed
to be stable are marked by a white block. On the other hand, intervals during which a
digital signal is possibly non-logical are marked by a gray block.

In this example, we assume that the signal D0(t) is stable only during the critical
segments. As a result, the signal Q0(t) is stable in the complement of the instability
segments. The signal D1(t) is output by the combinational circuit C. The signal D1(t)
becomes instable as soon as Q0(T ) (the input of C) becomes instable. We denote the
propagation delay of C by d(C). The signal D1(t) stabilizes at most d(C) time units after
Q0(t) stabilizes. Note that we do not assume that the contamination delay of C is positive
(often combinational devices do have guarantees for positive contamination delays, but
we do not rely on it in this course). The signal D1(t) is stable during the critical segment
Ci+1, and therefore, Q1(t) is stable during the complement of the instability segments.

From a functional point of view, stability of D0(t) during the critical segments implies
that D0(ti) is logical. We denote D0(ti) by σ ∈ {0, 1}. During the interval [ti + tpd, ti+1 +
tcont] the flip-flop’s output Q0(t) equals σ. The circuit C outputs a logical value σ′ ∈ {0, 1}
which is a Boolean function of σ. The value σ′ is output by C during the interval [ti+tpd+
d(C), ti+1 + tcont]. It follows that Q1(t) equals σ′ during the interval [ti+1 + tpd, ti+2 + tcont].

clk

ff

clk

ff

combinational
circuit

C

D0(t) Q1(t)
D1(t)Q0(t)

Figure 11.8: A circuit with two identical flip-flips and a combinational circuit in between.
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Ci Ai Ci+1 Ai+1

Q1(t)

Q0(t)

d(C)

clk

D0(t)
tsu

thold

D1(t)

tpd

tcont

tpd

tcont

Figure 11.9: A simplified timing diagram of circuit depicted in Fig. 11.8. Gray areas
denote potential instability of a signal, and white areas denote guaranteed stability of a
signal.

11.6.1 Non-empty intersection of Ci and Ai

The above analysis fails if the critical segment Ci and the instability segment intersect,
namely,

Ci ∩ Ai 6= ∅.

This could happen, if thold > tcont (in contradiction to Definition 11.2).
We now explain why this can cause the circuit to fail (see Figure 11.10). The period

during which D1(t) is guaranteed to be stable is [ti + tpd + d(C), ti+1 + tcont]. However,
if tcont < thold, then D1(t) is not guaranteed to be stable during the critical segment
Ci+1. This is a violation of the assumptions we require in order to guarantee correct
functionality.

In many flip-flop implementations it so happens that thold > tcont. How are such
flip-flops used? The answer is that one needs to rely on the contamination delay of the
combinational circuit C. Let cont(C) denote the contamination delay of C. The interval
during which D1(t) is guaranteed to be stable is

[ti + tpd + d(C), ti+1 + tcont + cont(C)].

If tcont + cont(C) > thold, then the signal D1(t) is stable during the critical segment Ci+1,
and correct functionality is obtained.

In this course we simplify by adopting the more restrictive assumption that the con-
tamination delay of every combinational circuit is zero. This means that we need to be
more restrictive with respect to flip-flops and require that the critical segment and the
instability segments are disjoint. Note, however, that even if the contamination delay of
C is positive (although we assumed it is zero), then our analysis is still valid. Hence, not
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d(C)

Ci Ci+1

Ci+1

clk

D0(t)
tsu

thold

D1(t)

Q0(t)

Q1(t)

Ai
Ai+1

tcont

tpd

tcont

tpd

Figure 11.10: The simplified timing diagram in the case that Ai ∩ Ci 6= ∅.

relying on a positive contamination delay of combinational circuits does not introduce
errors even if the contamination delay is positive.

Question 11.3 Assume that we have an edge-triggered flip-flop ff in which thold > tcont.
Suppose that we have an inverter with a contamination delay cont(inv) > 0. Suggest how
to design an edge-triggered flip-flop ff

′ that satisfies thold(ff
′) < tcont(ff

′). What are the
parameters of ff

′?

11.7 Other types of memory devices

Edge triggered flip-flops are not the only memory device that exist. We briefly overview
some of these devices.

11.7.1 D-Latch

A D-latch, like an edge-triggered flip-flop, is characterized by two parameters tsu and
thold. However, the critical segment is defined with respect to the falling edge of the
clock. Let t′i denote the time of the falling edge of the clock during the ith clock cycle.
The critical segment of a D-latch is defined to be [t′i − tsu, t

′

i + thold]. In addition, the
D-latch is characterized by a combinational delay d. The functionality of a D-latch is
defined as follows.

1. During the interval [ti +d, t′i), the output Q(t) satisfies: Q(t) = D(t), provided that
D(t) is stable during the interval [t − d, t]. We say that the D-latch is transparent
during the interval [ti + d, t′i).
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2. During the interval (t′i + thold, ti+1), if D(t) is stable during the critical segment
[t′i − tsu, t

′

i + thold], then Q(t) = D(t′i). We say that the D-latch is opaque during the
interval (t′i + thold, ti+1).

D-latches are very important devices. They are cheaper than flip-flops, and in fact,
D-latches are the building blocks of flip-flops. Moreover, using D-latches wisely leads to
faster designs. However, designs based on D-latches require multiple clock phases (or at
least a clock clk and its negation clk). Although timing with multiple clock phases is
an important and interesting topic, we do not deal with it in this course.

11.7.2 Clock enabled flip-flips

We use the terminology and notation of an edge-triggered flip-flop in the definition of a
clock enabled flip-flop.

Definition 11.4 A clock enabled flip-flop is defined as follows.

Inputs: Digital signals D(t),ce(t) and a clock clk.

Output: A digital signal Q(t).

Functionality: If D(t) and ce(t) are stable during the critical segment Ci, then for
every t ∈ (ti + tpd, ti+1 + tcont)

Q(t) =

{

D(ti) if ce(ti) = 1

Q(ti) if ce(ti) = 0.

We refer to the input signal ce(t) as the clock-enable signal. Note that the input ce(t)
indicates whether the flip-flop samples the input D(t) or maintains its previous value.

Part (A) of Figure 11.11 depicts a successful implementation of a clock enabled flip-
flop. This implementation uses a mux and an edge-triggered flip-flop. Part (B) of Fig-
ure 11.11 depicts a weak implementation of a clock enabled flip-flop.

The main weakness of the design depicted in part (B) is that the output of the and-
gate is not a clock signal. For example, the output of the and-gate is allowed to fluctuate
when ce(t) is not logical. Such fluctuations (called glitches ) can cause the flip-flop to
sample the input when not needed. In addition, the transitions of the output of the and-
gate might be slow and require increasing the hold time. Moreover, in some technologies,
the flip-flop does not retain the stored bit forever. For example, consider the case in which
the stored value is retained only for 2-3 clock cycles. In such a case, if the clock-enable
signal is low for a long period then the flip-flop’s output may become non-logical.

Question 11.4 Compute the parameters of the clock-enabled flip-flop depicted in part (A)
of Figure 11.11 in terms of the parameters of the edge-triggered flip-flop and the mux.
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clk ff

mux

01

Q(t)

D(t)

ce(t)

(A)

ff

Q(t)

(B)

D(t)

clk

ce(t)
and

Figure 11.11: (A) a successful implementation of a clock enabled flip-flop. (B) A wrong
design.

11.8 Summary

In this chapter we presented memory devices called flip-flops. We consider using flip-flops
in the presence of a clock signal. The clock signal causes the flip-flop to sample the value
of the input towards the end of a clock cycle and output the sampled value during the
next clock cycle. Flip-flops play a crucial role in bounding the segments of time during
which signals may be instable.

In a sense, flip-flops and combinational circuits have opposite roles. Combinational
circuits compute interesting Boolean functions but increase uncertainty (namely, lengthen
segments of time during which signals may be instable). Flip-flops, one the other hand,
output the same value that is fed as input but they limit uncertainty.

We considered a task called arbitration. We proved that no circuit can implement an
arbiter. We then proved that a flip-flop with an empty critical segment can be used to
build an arbiter. This proves that a flip-flop must have a non-empty critical segment.


