מבנה מחשבים

תרגול מספר 6

DECODER(n)

- Input: A string $\{0,1\}^n$.
- **Output**: A string $\{0,1\}^{2^n}$.
- Functionality: For every string s, returns 1 in the bit which is the decimal representation of s.

Question 4.2

Question 4.2 Prove that DECODER(n) is asymptotically optimal with respect to cost and delay. Namely, prove that, for every decoder G of input length n, the following hold:

 $c(G) \ge \Omega(2^n)$ $d(G) \ge \Omega(\log n).$

We assume constant in-degree of every non-trivial gate with constant cost and constant delay. Trivial gates (input gates and output gates) have zero cost and zero delay.

Question 4.2 (solution)

There are $\Omega(2^n)$ outputs which are outputs of different nontrivial basic gates.

To prove this we have to show that the outputs are

- not constant
- not equal to the inputs
- · not equal to another outputs

Question 4.2 (solution cont.)

- There is exactly one input string for which bit i equals 1.
 → no output is constant.
- If y[j]=x[i] then the circuit is wrong, since half of the 2ⁿ input instances x[i]=1 but y[j]=1 true only for a single input instance.
 - \rightarrow no output equals to any input.
- Using the same argument every output is 1 for some input and all the other outputs are 0 for that input.
- \rightarrow no equal outputs.

Since there are at least 2^n different gates in every decoder its cost $\ge \Omega(2^n)$.

Question 4.2 (solution cont.)

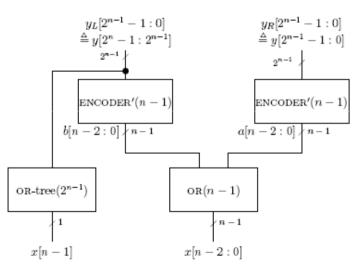
To prove the lower bound of the delay we use the cone of y[0].

y[0] depends on n-bits hence the delay $\geq \Omega(\log(n))$

ENCODER(n)

- **Input**: A string {0,1}^{2ⁿ}.
- **Output**: A string $\{0,1\}^n$.
- **Functionality**: For every string s with weight 1, returns the binary representation of s.

ENCODER'(n)



Question 4.3

Question 4.3 This question deals with the cost and delay of ENCODER'(n).

- 1. Prove that $c(\text{ENCODER}'(n)) = \Theta(n \cdot 2^n)$.
- 2. Prove that $d(\text{ENCODER}'(n)) = \Theta(n)$.
- 3. Can you suggest a separate circuit for every output bit x[i] with cost $O(2^n)$ and delay O(n)? If so then what advantage does the ENCODER'(n) design have over the trivial design in which every output bit is computed by a separate circuit?

Question 4.3(solution)

Let's n be a number of outputs and N=2ⁿ be number of inputs. We write the recurrence equations in the terms of N. 1. Let's calculate the cost $c(N)=c(ENCODER'(n=log_2N))$ c(N=2)=0. $c(N>2)=2c(ENCODER'(n-1))+c(OR-TREE(2^{n-1}))+c(OR(n-1)))$ $c(N)=2c(N/2)+(N/2-1)+(log_2N)=2c(N/2)+\Theta(N).$ Applying Master theorem we have $c(N)=\Theta(NlogN)=\Theta(n2^n)$ 2. Let's calculate the delay $d(N)=d(ENCODER'(n=log_2N))$

$$\begin{split} &d(N=2)=0,\\ &d(N>2)=max\{d(ENCODER'(n-1)+d(OR),d(OR-TREE(N/2)\}=\\ &d(N)=max\{d(N/2)+tpd(OR),\Theta(\log(N))\}\\ &The solution for this recurrence is d(N)=\Theta(\log N)=\Theta(n). \end{split}$$

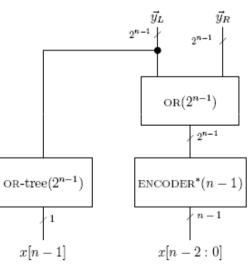
Definition:

A Boolean function $f:\{0,1\}^n \Longrightarrow \{0,1\}$ is monotone if $x \ge y \Rightarrow f(x) \ge f(y)$ (where $x \ge y$ means : for every $i x_i \ge y_i$).

Claim:

f:{0,1}ⁿ ⇒{0,1} is monotone iff f can be implemented by a combinational circuit that contains only AND-gates and ORgates.

ENCODER*(n)



Question 4.7

Question 4.7 The designs ENCODER'(n) and ENCODER^{*}(n) lack inverters, and hence are monotone circuits. Is the Boolean function ENCODER^{*} a monotone Boolean function? Suppose that G is an encoder and is a monotone combinational circuit. Suppose that the input y of G has two ones (namely, wt(y) = 2). Can you immediately deduce which outputs of G must equal one?

It is a trivially monotone function since for every two valid inputs x and y the following is false: $x \ge y$ and $y \ge x$.

Let y be Bitwise-OR of two valid inputs y1 and y2. Since we are talking about a monotone function for input y we will get an output $z \ge w$ where w is a Bitwise-OR of w1=f(y1) and w2=f(y2).

MULTIPLEXER

Input: D[n-1:0] and S[k-1:0] where $k = \lceil \log_2 n \rceil$.

Output: $Y \in \{0, 1\}$.

Functionality:

 $Y = D[\langle \vec{S} \rangle].$

MULTIPLEXER decoder based implementation D[n-1:0] S[k-1:0]kDECODER(k) 2^k 2^k

 $AND(2^k)$

 $OR-tree(2^k)$

 2^k

MULTIPLEXER decoder based implementation

1. Prove the correctness of the design.

We should prove that $Y=D[<\underline{S}>]$ $Y = OR(AND(D[0], DECODER[0]), ..., AND(D[n-1], DECODER[n-1])) \underset{DECODER[i]=1 \iff <S \implies i}{=} OR(AND(D[0], 0), ..., AND(D[<\vec{S}>], 1), ..., AND(D[n-1], 0)) \underset{AND(x, 0)=0, AND(x, 1)=x}{=} OR(0, 0, ...0, D[<\vec{S}>], 0, ...0) \underset{OR(0, v)=x}{=} D[<\vec{S}>]$

Figure 5.1: An (n:1)-MUX based on a decoder $(n = 2^k)$.

MULTIPLEXER decoder based implementation

2. Analyze the cost and delay of the design.

$$\begin{split} c(MUX) &- c(DECODER(\log n)) + n \cdot c(AND) + c(OR - TREE) - \\ \Theta(n) &+ n \cdot \Theta(1) + \Theta(n) = \Theta(n) \\ d(MUX) &= d(DECODER(\log n)) + d(AND) + d(OR - TREE) = \\ \Theta(\log \log n) + \Theta(1) + \Theta(\log n) = \Theta(\log n) \end{split}$$

MULTIPLEXER decoder based implementation

3. Prove that the cost and delay of the design are asymptotically optimal.

<u>Cost</u>: the circuit has $n + \log(n)$ inputs which all have an influence on the output. Therefore the |cone(Y)| = n + log(n). From every input there is a path to the output, hence every input connected to a gate. Since a gate's in-degree is constant we get a lower bound the number of gates: $\Omega(n + \log n) = \Omega(n)$

<u>Delay:</u> Again, due to *Cone* considerations $Delay = \Omega(\log | Cone |) = \Omega(\log(n + \log n)) = \Omega(\log n)$

Our design meets the following lower bounds and therefore it is asymptotically optimal.