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Preliminary Questions

What is a synchronous circuit?

How can we tell if the clock period is not too short? Is it
possible to compute the minimum clock period?

Is it possible to separate between the timing analysis
and functionality in synchronous circuits?

How can we initialize a synchronous circuit?
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Goals

define synchronous circuits.

analyze timing (start with simple case...).

define: timing constraints.

find out if timing constraints are feasible.

define: minimum clock period.

algorithm: check if timing constraints are feasible.

algorithm: compute minimum clock period.
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Striping flip-flops away

C - a circuit composed of combinational gates, nets,
and flip-flops with a clock net called CLK.

C ′ - a circuit obtained from C by:
1. deleting the CLK net,
2. deleting the input gate that feeds the CLK net, and
3. replacing each flip-flip with an output gate (instead of

the port D) and an input gate (instead of the port Q).
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Striping flip-flops away - example

clk

ff

and3

clk

ff

or

and3

or
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Definition: Synchronous Circuit

A synchronous circuit is a circuit C composed of
combinational gates, nets, and flip-flops that satisfies the
following conditions:

1. There is a net called CLK that carries a clock signal.

2. The CLK net is fed by an input gate.

3. The set of ports that are fed by the CLK net equals the
set of clock-inputs of the flip-flops.

4. The circuit C ′ obtained from C by stripping away
flip-flops is combinational.
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remarks on the definition of synchronous circuits

CLK connected to all the clock-ports of flip-flops and only
to them.

We already saw that a “bad example” in which CLK feeds
a gate:

clk

ce(t)
and ff

Q(t)

D(t)
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remarks on the definition of synchronous circuits

Question: What is required so that the D-port is stable
during the critical segment in this “bad example”:

comb. logic ffD Q

clkclk

and
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back to the first example

clk

ff

and3

clk

ff

or

and3

or

Question: Is this a synchronous circuit?
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Recognizing a synchronous circuit

Question: Suggest an efficient algorithm that decides if a
given circuit is synchronous.

Recall the definition:
A synchronous circuit is a circuit C composed of
combinational gates, nets, and flip-flops that satisfies the
following conditions:

1. There is a net called CLK that carries a clock signal.

2. The CLK net is fed by an input gate.

3. The set of ports that are fed by the CLK net equals the
set of clock-inputs of the flip-flops.

4. The circuit C ′ obtained from C by stripping away
flip-flops is combinational.
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Synchronous Circuits: canonic form

comb. circuit
λ

comb. circuit
δ

Q D

clk

IN

OUT

S NS

Transform a synchronous to
canonic form:

gather the flip-flops into
one group.

duplicate the combina-
tional circuits to separate
between output and next-
state.
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Stability Interval

stability interval of signal X - interval during which X is
stable.

stable(X)i - stability interval of X corresponding to
clock cycle i.

clk

D0(t)

D1(t)

Q0(t)

Q1(t)

ti ti+1

stable(D0)i−1 stable(D0)i

stable(Q0)i

stable(D1)i

stable(Q1)i
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Timing analysis: the canonic form

Plan:

Define timing constraints for IN and OUT .

Define timing constraints for S and NS.

Find sufficient conditions so that timing constraints are
feasible.

Define minimum clock period.

Infer functionality from syntax.
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Input/output timing constraints

The input/output timing constraints formulate the timing
interface between the the circuit and the “external
world”.

Input timing constraint - tells us when the input is
guaranteed to be stable.

Output timing constraint - tells us when the circuit’s
output is required to be stable.

Usually the external world is also a synchronous circuit.
⇒ IN is an output of another synchronous circuit, and
OUT is an input of another synchronous circuit.
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Input timing constraint

The timing constraint corresponding to IN is defined by two
parameters: pd(IN) > cont(IN) as follows.

∀i : [ti + pd(IN), ti+1 + cont(IN)] ⊆ stable(IN)i.

Remarks:

ti - denotes the starting time of the ith clock period.

Why do we require that pd(IN) > cont(IN)?
If pd(IN) ≤ cont(IN), then the stability intervals
stable(IN)i and stable(IN)i+1 overlap. This means that
IN is always stable, which is obviously not an
interesting case.
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Output timing constraint

The timing constraint corresponding to OUT is defined by
two parameters: setup(OUT ) and hold(OUT ) as follows.

∀i : [ti+1 − setup(OUT ), ti+1 + hold(OUT )] ⊆ stable(OUT )i.

Remark: Note that that timing constraint of OUT is given
relative to the end of the ith cycle (i.e. ti+1) .
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Remarks

Asymmetry in the terminology regarding IN and OUT .
The parameters associated with IN are pd(IN) and
cont(IN), whereas the parameters associated with
OUT are setup(OUT ) and hold(OUT ).

this is not very aesthetic if OUT is itself an input to
another synchronous circuit.

useful to regard IN as an output of a flip-flip and OUT

as an input of a flip-flop (even if they are not).
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Timing constraint of NS

NS is stable during the critical segments. Namely,

∀i ≥ 0 : Ci+1 ⊆ stable(NS)i.

Remark: Note that, as in the case of the output signal, the
timing constraint of NS corresponding to clock cycle i is
relative to the end of the ith clock cycle (i.e. the critical
segment Ci+1).

Remark: If NS satisfies its timing constraint for i , then S

satisfies:

[ti+1 + tpd, ti+2 + tcont] ⊆ stable(S)i+1.
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Stability Intervals of OUT & NS

We associate a contamination delay cont(x) and a
propagation delay pd(x) with each combinational circuit
x.

If [ti + tpd, ti+1 + tcont] ⊆ stable(S)i, then the stability
intervals of the signals OUT and NS satisfy:

[ti+max{tpd, pd(IN)}+pd(λ), ti+1+min{tcont, cont(IN)}+cont(λ)]

⊆ stable(OUT )i

[ti+max{tpd, pd(IN)}+pd(δ), ti+1+min{tcont, cont(IN)}+cont(δ)]

⊆ stable(NS)i.
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Sufficient conditions: OUT

Claim: If

[ti + tpd, ti+1 + tcont] ⊆ stable(S)i

max{tpd, pd(IN)}+ pd(λ) + setup(OUT ) ≤ ti+1 − ti

min{tcont, cont(IN)}+ cont(λ) ≥ hold(OUT ),

then

[ti+1 − setup(OUT ), ti+1 + hold(OUT )] ⊆ stable(OUT )i.

Proof: stability interval of OUT satisfies:

[ti+max{tpd, pd(IN)}+pd(λ), ti+1+min{tcont, cont(IN)}+cont(λ)]

⊆ stable(OUT )i

2 – p.20



Sufficient conditions: NS

Claim: If

[ti + tpd, ti+1 + tcont] ⊆ stable(S)i

max{tpd, pd(IN)}+ pd(δ) + tsu ≤ ti+1 − ti

thold ≤ min{tcont, cont(IN)}+ cont(δ),

then the signal NS is stable during the critical segment
Ci+1.
Proof: stability interval of NS satisfies:

[ti+max{tpd, pd(IN)}+pd(δ), ti+1+min{tcont, cont(IN)}+cont(δ)]

⊆ stable(NS)i.

2
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Timing constraints for i ≥ 0

CORO: If 4 conditions hold and

[t0 + tpd, t1 + tcont] ⊆ stable(S)0,

then

1. timing constraints of NS and OUT hold wrt every i ≥ 0,

2. ∀i ≥ 0 : [ti + tpd, ti+1 + tcont] ⊆ stable(S)i.

Proof: Induction on i.

Basis: part (1) follows from sufficient conditions for
OUT and NS.

Step: NS is stable during Ci+1 ⇒ part (2).

⇒ part(1).

2
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Simplifying the conditions

Our goal is to simplify the conditions in the 2 Claims.

Prefer: lower bounds on the clock period.

⇒ well defined functionality provided that the clock
period is large enough.

We discuss each of the 4 conditions (2 per claim).
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max{tpd, pd(IN)} + pd(λ) + setup(OUT ) ≤ ti+1 − ti

condition is a lower bound on ϕ(CLK). Great.
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min{tcont, cont(IN)}+ cont(λ) ≥ hold(OUT )

condition may not hold⇒ serious problem that can lead
to failure to meet the timing constraint of OUT ...

Hope: under reasonable circumstances, condition does
hold. Why?

Suppose IN is the output of a combinational circuit,
all the inputs of which are outputs of flip-flops.
Assume that all the flip-flops are identical.
It follows that cont(IN) ≥ tcont.
By definition: cont(λ) ≥ 0.
⇒ min{tcont, cont(IN)}+ cont(λ) ≥ tcont.
Suppose OUT feeds a combinational circuit that
feeds a flip-flop.
Hence hold(OUT ) ≤ thold.
thold < tcont ⇒ condition holds.
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max{tpd, pd(IN)} + pd(δ) + tsu ≤ ti+1 − ti

condition is a lower bound on ϕ(CLK). Great.
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thold ≤ min{tcont, cont(IN)} + cont(δ)

As before, if cont(IN) ≥ tcont, the condition holds!
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Conclusion
Claim: Assume that cont(IN) ≥ tcont and hold(OUT ) ≤ thold.
If

[t0 + tpd, t1 + tcont] ⊆ stable(S)0,

ϕ(CLK) ≥ max{tpd, pd(IN)}

+ max{pd(λ) + setup(OUT ), pd(δ) + tsu},

then

1. timing constraints of NS and OUT hold wrt every i ≥ 0,

2. ∀i ≥ 0 : [ti + tpd, ti+1 + tcont] ⊆ stable(S)i.

Under reasonable assumptions, all we need is initialization
and a sufficiently long clock period.
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Minimum clock period
DEF: The minimum clock period of a synchronous circuit C

is the shortest clock period for which the timing constraints
of the output signals and signals that feed the flip-flops are
satisfied.
We denote the minimum clock period of a synchronous
circuit by ϕ∗(C).

Minimum clock period does not exist if timing
constraints are infeasible.

“timing constraints are satisfied” - for every value of the
delays provided that they are in their range. (i.e. actual
propagation delay of λ is in [0, pd(λ)].)

if assumptions hold, then in canonic form

ϕ(CLK) ≥ max{tpd, pd(IN)}

+ max{pd(λ) + setup(OUT ), pd(δ) + tsu}.

– p.29

Discussion

The timing analysis of synchronous circuits in canonic
form is overly pessimistic.

The problem is that each of the combinational circuits λ

and δ is regarded as a “gate” with a propagation delay.

In practice it may be the case, for example, that the
accumulated delay from the input IN to the output OUT

is significantly different than the accumulated delay from
S to the output OUT . The situation is even somewhat
more complicated in the case of multi-bit signals.
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Initialization

We require that

[t0 + tpd, t1 + tcont] ⊆ stable(S)0.

after power-up, flip-flop output may be non-logical (and
even meta-stable).

solution: introduce a reset signal.

boot-strapping problem: How is a reset signal
generated?

no solution to this problem within the digital abstraction
(meta-stability). All we can try to do is reduce the
probability of such an event.

reset controller - a special circuit that generates a reset
signal.
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Synchronous Circuit: canonic form with reset

comb. circuit
λ

comb. circuit
δ

Q D

clk

IN

OUT

S

NS

initial state

resetmux

0 1

Remark: NS may not be logical during reset.
Implementation of MUX must output initial-state if reset = 1.
Implementation based on drivers has this property, while
implementation based on combinational gates may not
have this property.
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Functionality of Synchronous Circuits: canonic form
Xi - dig(X) during stable(X)i.

Assumptions:

cont(IN) ≥ tcont

hold(OUT ) ≤ thold

[t0 + tpd, t1 + tcont] ⊆ stable(S)0,

ϕ(CLK) ≥ max{tpd, pd(IN)}

+ max{pd(λ) + setup(OUT ), pd(δ) + tsu}.

CORO: Assumptions⇒ ∀i ≥ 0:

NSi = δ(INi, Si)

OUTi = λ(INi, Si)

Si+1 = NSi.
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Finite State Machines

Corollary states that synchronous circuits implement finite
state machines.

DEF: A finite state machine (FSM) is a 6-tuple
A = 〈Q,Σ,∆, δ, λ, q0〉, where

Q is a set of states.

Σ is the alphabet of the input.

∆ is the alphabet of the output.

δ : Q× Σ→ Q is a transition function.

λ : Q× Σ→ Q is an output function.

q0 ∈ Q is an initial state.
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Definition of FSM: remarks

Other terms for a finite state machine are a finite
automaton with outputs, transducer, and Mealy
Machine.

Moore Machine - an FSM in which the output function
λ : Q→ ∆.
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What does an FSM do?

abstract machine that operates as follows.

input sequence {xi}
n−1

i=0
of symbols over alphabet Σ.

output sequence {yi}
n−1

i=0
of symbols over alphabet ∆.

sequence of states {qi}
n
i=0

. The state qi is defined
recursively:

qi+1

△

= δ(qi, xi)

The output yi is defined as follows:

yi
△

= λ(qi, xi).
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State Diagrams

FSMs are often depicted using state diagrams.

DEF: The state diagram corresponding to an FSM A is a
directed graph G = (V,E) with edge labels (x, y) ∈ Σ×∆.
The vertex set V equals the state set S. The edge set E is
defined by

E
△

= {(q, δ(q, x)) : q ∈ Q and x ∈ Σ}.

An edge (q, δ(q, x)) is labeled (x, λ(q, x)).
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State Diagram: example

A state diagram of an FSM that outputs y if the weight of
the input so far is divisible by 4, and n otherwise.

(0, y) (0, n)

(0, n)(0, n)

(1, y)
(1, n)

(1, n)

(1, n)

q0

q3 q2

q1
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Timing analysis: the general case

Deal with a synchronous circuit that is not in canonic
form.

Algorithm that computes the minimum clock period
ϕ∗(C). (if timing constraints are feasible.)

Algorithm that decides whether the timing constraints
are feasible (i.e. conditions used by this algorithm are
less restrictive than the conditions used in previous
claims).
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Recap
We started with a syntactic definition of a synchronous
circuit.

We then attached timing constraints to the inputs and
outputs of synchronous circuit.

For a given synchronous circuit C with input/output
timing constraints, we differentiate between two cases:

timing constraints are infeasible⇒ cannot guarantee
well defined functionality of C. For example, if the
timing constraints are not met, then inputs of
flip-flops might not be stable during the critical
segments, and then the flip-flop output is not
guaranteed to be even logical.
timing constraints are feasible⇒ functionality is well
defined provided that the clock period satisfies
ϕ(CLK) ≥ ϕ∗(CLK).
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Functionality

Assume that the timing constraints are feasible.

Introduce a trivial timing model called the zero delay
model.

In this model, time is discrete and in each clock cycle,
the circuit is reduced to a combinational circuit.

Advantage: decouple timing issues from functionality
and enables simple logical simulations.
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The zero delay model

In the zero delay model we assume that all the
parameters of all the components are zero or
infinitesimal (i.e. ∀ε > 0: tsu = −ε, thold = tcont = tpd = ε,
pd(IN) = cont(IN) = hold(OUT ) = ε, setup(OUT ) = −ε

and d(G) = tcont(G) = 0, for every combinational gate
G). Under this unrealistic assumption, the timing
constraints are feasible.

Must pay attention to endpoints of intervals of stability:
Output of flip-flip satisfies:

(ti + tpd, ti+1 + tcont) ⊆ stable(Q)i.

Hence,
(ti, ti+1] ⊆ stable(Q)i.
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The zero delay model - cont

Similarly,

(ti + pd(IN), ti+1 + cont(IN)) ⊆ stable(IN)i.

Hence,
(ti, ti+1] ⊆ stable(IN)i.

Following Corollary (synchronous circuit implements an
FSM), we conclude that, for every signal X, Xi is well
defined.
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Simulation of a synchronous circuit
Simulation during cycles i = 0, . . . , n− 1 in the zero
propagation model proceeds as follows:
assume: flip-flops are initialized ( ~S0 - initial values of FFs).

1. Construct comb. circuit C ′ that corresponds to C.

2. For i = 0 to n− 1 do:
(a) Simulate C ′ with input values ~Si and ~IN i.
(b) For every output OUT j, let y denote the value that is

fed to y. We set OUT
j
i = y.

(c) For every D-port NSj of a flip-flop, let y denote the
value that is fed to the flip-flop. We set NS

j
i = y.

(d) For every Q-port Sj of a flip-flop, define S
j
i+1
← NS

j
i ,

where NSj denotes the signal that feeds the D-port
of the flip-flop.
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Summary

define synchronous circuits.

canonic form of synchronous circuits:
definition of timing constraints.
formulation of sufficient conditions for satisfying the
timing constraints.
simplify sufficient conditions by relying on the
assumption that the input originates from a flip-flop
and the output is eventually fed to a flip-flop.
define the minimum clock period.
initialization.
synchronous circuits implement FSMs.
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Summary -cont.

functionality:
zero delay model.
simulation.

– p.46
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