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Goals

m define synchronous circuits.

m analyze timing (start with simple case...).

m define: timing constraints.

m find out if timing constraints are feasible.

m define: minimum clock period.

m algorithm: check if timing constraints are feasible.
m algorithm: compute minimum clock period.

Preliminary Questions

m What is a synchronous circuit?

m How can we tell if the clock period is not too short? Is it
possible to compute the minimum clock period?

m Is it possible to separate between the timing analysis
and functionality in synchronous circuits?

m How can we initialize a synchronous circuit?

Striping flip-flops away

m (' - a circuit composed of combinational gates, nets,
and flip-flops with a clock net called cLk.

m C’ - a circuit obtained from C by:
1. deleting the cLk net,
2. deleting the input gate that feeds the cik net, and

3. replacing each flip-flip with an output gate (instead of
the port D) and an input gate (instead of the port Q).


http://www.eng.tau.ac.il/~guy/

Striping flip-flops away - example remarks on the definition of synchronous circuits

m cLk connected to all the clock-ports of flip-flops and only
to them.

o u Fﬁ m We already saw that a “bad example” in which cLk feeds
e o a gate:
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Definition: Synchronous Circuit remarks on the definition of synchronous circuits
A synchronous circuit is a circuit C composed of Question: What is required so that the D-port is stable
combinational gates, nets, and flip-flops that satisfies the during the critical segment in this “bad example”:
following conditions:
1. There is a net called cik that carries a clock signal.
2. The ck net is fed by an input gate.
3. The set of ports that are fed by the cL« net equals the «comb. logic g AND -p FF g

set of clock-inputs of the flip-flops. r

4. The circuit ¢’ obtained from C by stripping away
flip-flops is combinational. CLK CLK




back to the first example

Question: Is this a synchronous circuit?

Recognizing a synchronous circuit

Question: Suggest an efficient algorithm that decides if a
given circuit is synchronous.

Recall the definition:

A synchronous circuit is a circuit C composed of
combinational gates, nets, and flip-flops that satisfies the
following conditions:

1. There is a net called cik that carries a clock signal.
2. The cik net is fed by an input gate.

3. The set of ports that are fed by the cL« net equals the
set of clock-inputs of the flip-flops.

4. The circuit C’ obtained from C by stripping away
flip-flops is combinational.

Synchronous Circuits: canonic form
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A
8

our Transform a synchronous to
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Stability Interval

m stability interval of signal X - interval during which X is
stable.

m stable(X); - stability interval of X corresponding to
clock cycle i. .
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Timing analysis: the canonic form

Plan:
m Define timing constraints for /N and OUT'.
m Define timing constraints for S and NS.

m Find sufficient conditions so that timing constraints are
feasible.

m Define minimum clock period.
m Infer functionality from syntax.

Input/output timing constraints

m The input/output timing constraints formulate the timing
interface between the the circuit and the “external
world”.

m Input timing constraint - tells us when the input is
guaranteed to be stable.

m Output timing constraint - tells us when the circuit’s
output is required to be stable.

m Usually the external world is also a synchronous circuit.
= IN is an output of another synchronous circuit, and
OUT is an input of another synchronous circuit.

Input timing constraint

The timing constraint corresponding to I N is defined by two
parameters: pd(IN) > cont(IN) as follows.

Vi: [t; +Ppd(IN),tiv1 +cont(IN)] C stable(IN);.

Remarks:
m {; - denotes the starting time of the ith clock period.

m Why do we require that pd(IN) > cont(IN)?
If pd(IN) < cont(/N), then the stability intervals
stable(/N); and stable(/N),; overlap. This means that
IN is always stable, which is obviously not an
interesting case.

Output timing constraint
The timing constraint corresponding to OUT is defined by
two parameters: setup(OUT') and hold(OUT) as follows.
Vi: [tiy1 —setup(OUT),t; 1 + hold(OUT)] C stable(OUT);.

Remark: Note that that timing constraint of OUT is given
relative to the end of the ith cycle (i.e. t;1+1) .



Remarks

m Asymmetry in the terminology regarding IN and OUT'.
The parameters associated with /N are pd(/N) and
cont(/N), whereas the parameters associated with
OUT are setup(OUT) and hold(OUT).

m this is not very aesthetic if OUT is itself an input to
another synchronous circuit.

m useful to regard I N as an output of a flip-flip and OUT
as an input of a flip-flop (even if they are not).

Stability Intervals of OUT & NS

m \We associate a contamination delay cont(z) and a
propagation delay pd(z) with each combinational circuit
Z.

W If [t; + tpa, tiv1 + Leont] € Stable(S);, then the stability
intervals of the signals OUT and NS satisfy:

[ti+max{tpg, PA(IN)}+pd(N), tiy1+min{tcont, cONt(IN)}+cont(N)]
C stable(OUT);

[ti+max{tpq, pA(IN)}+pd(5), t;41+min{teont, CON(IN)}4-cont(s)]
C stable(NS);.

Timing constraint of NS

NS is stable during the critical segments. Namely,
Vi >0: Ci+1 - stable(NS)Z-.

Remark: Note that, as in the case of the output signal, the
timing constraint of V.S corresponding to clock cycle i is
relative to the end of the ith clock cycle (i.e. the critical
segment Cj41).

Remark: If NS satisfies its timing constraint for i , then S
satisfies:

[ti+1 + lpd, Liv2 + tcom} - Stable(S)Hl.

Sufficient conditions: OUT

Claim: If
[ti + lf,;,d7 tit1 + tcont} (- stable(S)i
max{tyq, PA(IN)} + pd(\) 4 setup(OUT) < tj1 — t;
min{¢cont, CONt(IN)} + cont(A) > hold(OUT),

then

[ti+1 — setup(OUT), t;+1 + hold(OUT)] C stable(OUT);.
Proof: stability interval of OUT satisfies:

[ti+max{tyq, PA(IN)}+pd(N), t;1+min{tcont, CONL(IN) }+cont(N)]
C stable(OUT);

O -



Sufficient conditions: N .S

Claim: If
max{tpg, PA(IN)} + pd(6) + tsu < tiv1 —
thold < min{tcont, cONt(IN)} + cont(d),

then the signal NS is stable during the critical segment
Ciy1.
Proof: stability interval of NS satisfies:
[ti+max{toq, PA(IN)}+pd(0), tir1+min{tcont, cONt(IN) }+cont(d)]
C stable(NS);.

O

Timing constraints for ¢ > 0

CORO: If 4 conditions hold and
[to + tpd; t1 + teont] C Stable(S)o,

then
1. timing constraints of N.S and OUT hold wrt every i > 0,
2. Vi >0 : [t; +tpg, tiy1 + teont] C stable(s);.

Proof: Induction on i.

m Basis: part (1) follows from sufficient conditions for
OUT and NS.

m Step: NS is stable during C; 1 = part (2).
m = part(1).

Simplifying the conditions

m Our goal is to simplify the conditions in the 2 Claims.
m Prefer: lower bounds on the clock period.

m = well defined functionality provided that the clock
period is large enough.

m We discuss each of the 4 conditions (2 per claim).

max{tpd, PA(IN)} + pd(X\) + setup(OUT) < tip1 — t;

m condition is a lower bound on ¢(cLk). Great.



min{tgont, CONt(IN)} + cont(A) > hold(OUT)

m condition may not hold = serious problem that can lead
to failure to meet the timing constraint of OUT...

m Hope: under reasonable circumstances, condition does
hold. Why?

Suppose IN is the output of a combinational circuit,
all the inputs of which are outputs of flip-flops.

Assume that all the flip-flops are identical.
It follows that cont(IN) > tcont-

By definition: cont(\) > 0.

= min{tcont, CONt(IN)} + cont(\) > tcont.

Suppose OUT feeds a combinational circuit that
feeds a flip-flop.

Hence hold(OUT) < thoig.
thold < teont = condition holds.

max{tpd, PA(IN)} + pd(6) + tey < tiz1 — t;

m condition is a lower bound on ¢(cLk). Great.

m As before, if cont(/N) > tcont, the condition holds!

Conclusion
Claim: Assume that cont(/N) > tcont @and hold(OUT) < theig-
If
[to + tpd, t1 + tcont] C Stable(S)o,
@(cLk) > max{tyq, pd(IN)}
+ max{pd(\) + setup(OUT), pd(d) + tsu},
then

1. timing constraints of N.S and OUT hold wrt every i > 0,
2. Vi>0 : [ti + tpd, tiv1 + tcont} - stable(S)Z-.

Under reasonable assumptions, all we need is initialization
and a sulfficiently long clock period.



Minimum clock period

DEF: The minimum clock period of a synchronous circuit C
is the shortest clock period for which the timing constraints
of the output signals and signals that feed the flip-flops are
satisfied.
We denote the minimum clock period of a synchronous
circuit by o*(C).

m Minimum clock period does not exist if timing

constraints are infeasible.

m “timing constraints are satisfied” - for every value of the
delays provided that they are in their range. (i.e. actual
propagation delay of A is in [0, pd(A)].)

m if assumptions hold, then in canonic form
p(cLk) > max{tpg, pd(IN)}
+ max{pd(}\) + setup(OUT), pd(0) + tsy}.

Initialization

We require that

m after power-up, flip-flop output may be non-logical (and
even meta-stable).

m solution: introduce a reset signal.

m boot-strapping problem: How is a reset signal
generated?

m no solution to this problem within the digital abstraction
(meta-stability). All we can try to do is reduce the
probability of such an event.

m reset controller - a special circuit that generates a reset
signal.

Discussion

m The timing analysis of synchronous circuits in canonic
form is overly pessimistic.

m The problem is that each of the combinational circuits A
and ¢ is regarded as a “gate” with a propagation delay.

m In practice it may be the case, for example, that the
accumulated delay from the input I N to the output OUT
is significantly different than the accumulated delay from
S to the output OUT. The situation is even somewhat
more complicated in the case of multi-bit signals.

Synchronous Circuit: canonic form with reset
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Remark: NS may not be logical during reset.
Implementation of mux must output initial-state if reset = 1.
Implementation based on drivers has this property, while
implementation based on combinational gates may not
have this property.



Functionality of Synchronous Circuits: canonic form

m X; - dig(X) during stable(X);.
m Assumptions:

CONt(IN) > teont

hold(OUT) < tho

[to + tpd: t1 + teont] € Stable(S)o,

@(cLk) > max{tyq, pd(/N)}
+ max{pd(\) + setup(OUT), pd(d) + tsu}.

CORO: Assumptions = Vi > 0:

NS; = 6(IN;, S;)
OUT; = M(IN;, S;)
Sit1 = NS;.

Definition of FSM: remarks

m Other terms for a finite state machine are a finite
automaton with outputs, transducer, and Mealy
Machine.

m Moore Machine - an FSM in which the output function
A Q — Al

Finite State Machines

Corollary states that synchronous circuits implement finite
state machines.

DEF: A finite state machine (FSM) is a 6-tuple
A=1(Q,3,A, 0, q), where

m () is a set of states.

m Y is the alphabet of the input.

m A is the alphabet of the output.

mj:(Q x X — QIisatransition function.

m):Q x X — Qis an output function.

m g € () is an initial state.

What does an FSM do?

m abstract machine that operates as follows.
® input sequence {z;};", 1 of symbols over alphabet X.
® output sequence {y;};"~ of symbols over alphabet A.

m sequence of states {¢;};",. The state ¢; is defined
recursively:

Git1 = 0(qi, ;)

m The output y; is defined as follows:

yi = Mg, 7).



State Diagrams

FSMs are often depicted using state diagrams.
DEF: The state diagram corresponding to an FSM A is a
directed graph G = (V, E) with edge labels (z,y) € ¥ x A.

The vertex set V equals the state set S. The edge set ' is
defined by

E={(¢,6(q,z)): g€ Qandz e X}

An edge (¢, 4(q,x)) is labeled (z, \(q, x)).

State Diagram: example

A state diagram of an FSM that outputs y if the weight of
the input so far is divisible by 4, and » otherwise.
(0.9) (0.n)

(0,m) (0,m)

Timing analysis: the general case

m Deal with a synchronous circuit that is not in canonic
form.

m Algorithm that computes the minimum clock period
©*(C). (if timing constraints are feasible.)

m Algorithm that decides whether the timing constraints
are feasible (i.e. conditions used by this algorithm are
less restrictive than the conditions used in previous
claims).

Recap

m We started with a syntactic definition of a synchronous
circuit.

m We then attached timing constraints to the inputs and
outputs of synchronous circuit.

m For a given synchronous circuit C' with input/output
timing constraints, we differentiate between two cases:

timing constraints are infeasible = cannot guarantee
well defined functionality of C. For example, if the
timing constraints are not met, then inputs of
flip-flops might not be stable during the critical
segments, and then the flip-flop output is not
guaranteed to be even logical.
timing constraints are feasible = functionality is well
defined provided that the clock period satisfies

p(cLk) > *(cLk).



Functionality

m Assume that the timing constraints are feasible.

m Introduce a trivial timing model called the zero delay
model.

m In this model, time is discrete and in each clock cycle,
the circuit is reduced to a combinational circuit.

m Advantage: decouple timing issues from functionality
and enables simple logical simulations.

The zero delay model - cont

m Similarly,
(ti + pd(IN),tit1 + cont(IN)) C stable(IN);.
Hence,
(ti, tj.t,_ﬂ (- stable(]N)l-.

m Following Corollary (synchronous circuit implements an
FSM), we conclude that, for every signal X, X; is well
defined.

The zero delay model

m In the zero delay model we assume that all the
parameters of all the components are zero or
infinitesimal (i.e. Ve > 0: tsy = —¢, thold = tcont = lpd = €,
pd(IN) = cont(IN) = hold(OUT) = ¢, setup(OUT) = —¢
and d(G) = tcont(G) = 0, for every combinational gate
G). Under this unrealistic assumption, the timing
constraints are feasible.

m Must pay attention to endpoints of intervals of stability:
Output of flip-flip satisfies:

(ti + tpd, ti+1 + tcont) C Stable(Q);.

Hence,
(L‘j,., ti+1} - stable(Q)Z—.

Simulation of a synchronous circuit
Simulation during cycles i = 0,...,n — 1 in the zero
propagation model proceeds as follows:
assume: flip-flops are initialized ( S, - initial values of FFs).

1. Construct comb. circuit C’ that corresponds to C.
2. Fori=0ton—1do:
(@) Simulate ¢’ with input values S; and IN;.
(o) For every output OUTY, let y denote the value that is
fed to y. We set OUT/ = y.
(c) For every D-port NS7 of a flip-flop, let 4 denote the
value that is fed to the flip-flop. We set NSf =y.
(d) For every Q-port S7 of a flip-flop, define SZH — NS?,
where NS’ denotes the signal that feeds the D-port
of the flip-flop.



Summary

m define synchronous circuits.

m canonic form of synchronous circuits:
definition of timing constraints.

formulation of sufficient conditions for satisfying the
timing constraints.

simplify sufficient conditions by relying on the
assumption that the input originates from a flip-flop
and the output is eventually fed to a flip-flop.

define the minimum clock period.
initialization.
synchronous circuits implement FSMs.

Summary -cont.

m functionality:
zero delay model.
simulation.
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