
Introduction to Digital Computers
Lecture Notes

by

Guy Even

Dept. of Electrical Engineering - Systems, Tel-Aviv University.

Spring 2002

ii

Copyright 2002 by Guy Even
Send comments to: guy@eng.tau.ac.il

Printed on June 23, 2002

Contents

1 The digital abstraction 1
1.1 From analog signals to digital signals . 1
1.2 Transfer functions of gates . 3
1.3 The bounded-noise model . 5
1.4 The need for changing the digital abstraction in presence of noise 5

1.4.1 Redefining the digital interpretation of analog signals 6
1.5 Stable signals . 8
1.6 Summary . 8

2 Foundations of combinational circuits 9
2.1 Boolean functions . 9
2.2 Gates as implementations of Boolean functions 9
2.3 Building blocks . 10
2.4 Combinational circuits . 12
2.5 Cost and propagation delay . 16
2.6 Summary . 17

3 Combinational modules 19
3.1 Notation . 19
3.2 Representation and values . 21
3.3 Trees of associative Boolean gates . 21

3.3.1 Associative Boolean functions . 22
3.3.2 or-trees . 23
3.3.3 Cost and delay analysis . 24
3.3.4 Lower bounds . 24

3.4 Half-Decoders . 29
3.4.1 Implementation . 30
3.4.2 Correctness . 30
3.4.3 Cost and delay analysis . 32
3.4.4 Lower bounds . 32

3.5 An asymptotically optimal half-decoder design 34
3.5.1 Comparison . 34
3.5.2 Implementation . 35
3.5.3 Correctness . 37

iii

iv CONTENTS

3.5.4 Cost and delay analysis . 38
3.6 Decoders . 39

3.6.1 Implementation . 39
3.6.2 Correctness . 39
3.6.3 Cost and delay analysis . 40

3.7 Encoders . 41
3.7.1 Implementation . 41
3.7.2 Cost and delay analysis . 43

3.8 Multiplexers . 44
3.8.1 Implementation . 45

3.9 Cyclic Shifters . 46
3.9.1 Implementation . 47

3.10 Priority Encoders . 49
3.10.1 Implementation . 49

4 Addition 51
4.1 What is a binary adder? . 51
4.2 Ripple-carry adders . 52

4.2.1 Correctness proof . 52
4.2.2 Delay and cost analysis . 53

5 Introduction to Interrupts 55
5.1 Computational models . 55
5.2 The operating system . 56

5.2.1 Gaps between models . 56
5.2.2 Processes . 57
5.2.3 Process context . 58
5.2.4 Context switching . 58

5.3 Interrupts . 59
5.3.1 List of common interrupts . 59
5.3.2 Characteristics of interrupts . 61

5.4 Handling interrupts . 61
5.5 Main problems . 61

6 DLX with interrupt handling 63
6.1 List of interrupts and their properties . 63
6.2 Signaling an occurrence of an interrupt . 64
6.3 Hardware and Software Support . 65
6.4 Interrupt Handling . 69

7 Correctness of The DLX Interrupt Handling Mechanism 75
7.1 Terminology . 75
7.2 Specification of the interrupt handling mechanism 78
7.3 Correctness Proof . 79

7.3.1 response time . 79

CONTENTS v

7.3.2 priority . 82
7.3.3 finite space . 83
7.3.4 preciseness . 83
7.3.5 termination . 83
7.3.6 Completeness . 84

7.4 Power-up . 84

vi CONTENTS

Chapter 1

The digital abstraction

Digital circuits, implemented by electronic devices, operate in the real world. What is the
connection between input and output voltages of devices and the binary (i.e. zero-one)
interpretation of these voltages?

In this chapter we present a model called the digital abstraction. This model enables
one to interpret voltage values as binary values. The advantages of the digital model cannot
be overstated; this model enables one to focus on the digital behavior of a circuit, to ignore
analog and transient phenomena, and to easily combine circuits together. The digital model
together with a simple set of design rules (used to guarantee the validity of the digital
abstraction) enable logic designers to design complex digital circuits consisting of millions of
gates.

1.1 From analog signals to digital signals

An analog signal is a real function f : R→ R that describes the voltage of a given point in a
circuit as a function of the time. We ignore the resistance and capacities of wires. Moreover,
we assume that signals propagate through wires immediately. Under these assumptions it
follows that the voltage along a wire is identical at all times. Since a signal describes the
voltage, we also assume that a signal is a continuous function.

A digital signal is a function g : R → {0, 1, non-logical}. The value of a digital signal
describes the logical value carried along a wire as a function of time. To be precise there are
two logical values: zero and one. The non-logical value simply means that that the signal is
neither zero or one.

How does one interpret an analog signal as a digital signal? The simplest interpretation
is to set a threshold V ′. Given an analog signal f(t), the digital signal dig(f(t)) can be
defined as follows.

dig(f(t))
4
=

{

0 if f(t) < V ′

1 if f(t) > V ′
(1.1)

According to this definition, a digital interpretation of an analog signal is always 0 or 1, and
the digital interpretation is never non-logical.

1

2 CHAPTER 1. THE DIGITAL ABSTRACTION

There are several problems with the definition in Equation 1.1. One problem is with this
definition is that all the components should comply with exactly the same threshold V ′. In
reality, devices are not completely identical; the actual thresholds of different devices vary
according to a tolerance specified by the manufacturer. This means that instead of a fixed
threshold, we should consider a range of thresholds.

Another problem with the definition in Equation 1.1 is perturbations of f(t) around
the threshold t. Such perturbations can be caused by noise or oscillations of f(t) before it
stabilizes. We will elaborate more on noise later, and now explain why oscillations can occur.
Consider a spring connected to the ceiling with a weight w hanging from it. We expect the
spring to reach a length ` that is proportional the the weight w. Assume that all we wish
to know is whether the length ` is greater than a threshold `t. Sounds simple! But what if
` is rather close to `t? In practice, the length only tends to the length ` as time progresses;
the actual length of the spring oscillates around ` with a diminishing amplitude. Hence, the
length of the spring fluctuates below and above `t several times before we can decide. This
effect may force us to wait for a long time before we can decide if ` < `t. If we return to the
definition of dig(f(t)), it may well happen that f(t) oscillates around the threshold V ′. This
renders the digital interpretation useless.

Returning to the example of weighing weights, assume that we have two types of objects:
light and heavy. The weight of a light (heavy) object is at most (at least) w0 (w1). The
bigger the gap w1 − w0, the easier it becomes to determine if an object is light or heavy
(especially in the presence of noise or oscillations).

Now we have two reasons to introduce two threshold values instead of one (tolerance of
threshold values and the desire to have a gap between values interpreted as logical zero and
logical one). We denote these threshold by Vlow and Vhigh, and require that Vlow < Vhigh.

An interpretation of an analog signal is depicted in Figure 1.1. Consider an analog signal
f(t). The digital signal dig(f(t)) is defined as follows.

dig(f(t))
4
=

0 if f(t) < Vlow
1 if f(t) > Vhigh
non-logical otherwise.

(1.2)

We often refer to the logical value of an analog signal f . This is simply a shorthand way
of referring to the value of the digital signal dig(f).

It is important to note that fluctuations of f(t) are still possible around the threshold
values. However, if the two thresholds that are sufficiently far away from each other, fluc-
tuations of dig(f(t)) are not between 0 and 1, but between a non-logical value and a logical
value (i.e. 0 or 1). A fluctuation between a logical value and a non-logical value is much
more favorable than a fluctuation between 0 and 1 since a non-logical value is an indication
that a “decision” has not been reached yet.

Assume that we design an inverter so that its output tends to a voltage that is bounded
away from the thresholds Vlow and Vhigh. Let us return to the example of the spring with

weight w hanging from it. Additional fluctuations in the length of the spring might be caused
by wind. This means that we need to consider additional effects so that our model will be
useful. In the case of the digital abstraction, we need to take noise into account. Before we

1.2. TRANSFER FUNCTIONS OF GATES 3

Vhigh

logical zero

f(t)

Vlow

logical one

t

Figure 1.1: A digital interpretation of an analog signal in the zero-noise model.

consider the effect of noise, we formulate the static functionality of a gate, namely, the limit
values of its output.

Question 1 Try to define an inverter.

1.2 Transfer functions of gates

The voltage at an output of a gate depends on the voltages of the inputs of the gate. This
dependence is called the transfer function (or the voltage-transfer characteristic - VTC).
Consider, for example an inverter with an input x and an output y. The value of the signal
y(t) at time t is a function of the signal x in the interval (−∞, t].

Transfer functions are solved by modeling gates with partial differential equations, a
rather complicated task. A good approximation of transfer functions is obtain by solving
differential equations, still a complicated task that can be computed quickly only for a few
transistors. So how are chips that contain millions of chips designed?

The way this very intricate problem is handled is by restricting designs. In particular,
only a small set of building blocks is used. The building blocks are analyzed intensively,
their properties are summarized, and designers rely on these properties for their designs.

One of the most important steps in characterizing the behavior of a gate is computing
its static transfer function. Returning to the example of the inverter, a “proper” inverter
has one equilibrium point for each input value. Namely, if the input x(t) is stable for a
sufficiently long period of time and equals x0, then the output y(t) stabilizes on a value y0

that is a function of x0. (If this were not the case, then we need to distinguish between
two cases: (a) Stability is not reached: this case occurs, for example, with devices called
oscillators. Note that such devices consume energy even when the input is stable. We point
out that in CMOS (a VLSI technology) it is easy to design circuits that do not consume

4 CHAPTER 1. THE DIGITAL ABSTRACTION

energy if the input is logical. (b) Stability is reached: in this case if there is more than one
stable output value, it means that the device has more than one equilibrium point. Such a
device can be used to store information about the “history”. Again, it is easy to avoid such
devices in CMOS technology, and even though such devices are highly useful, they are not
“good” candidates as gates.) We formalize the definition of a static transfer function of a
gate G with one input x and one output y in the following definition.

Definition 1 Consider a device G with one input x and one output y. The device G is a
gate if its functionality is specified by a a function f : R → R as follows: there exists a
∆ > 0, such that, for every x0 and every t0, if x(t) = x0 for every t ∈ [t0 − ∆, t0], then
y(t0) = f(x0).

Such a function f(x) is called the static transfer function of G.

At this point we should point the following remarks:

1. Since circuits operate over a bounded range of voltages, static transfer functions are
usually only defined over bounded domains and ranges (say [0, 5] volts).

2. To make the definition useful, one should allow perturbations of x(t) during the interval
[t0−∆, t0]. Static transfer functions model physical devices, and hence, are continuous.
This implies that, for every ε > 0, there exists an δ > 0, such that |x(t) − x0| ≤ δ
implies |f(x(t)) − f(x0)| ≤ ε. Therefore, the definition of a static transfer function
does allow perturbations, if we also allow perturbations of the output y(t).

3. We should also allow the output y(t) to perturb. A reasonable modification is to require
uniform convergence of y(t) to f(x0). Namely, for every ε > 0, there exist an δ > 0
and a ∆ > 0, such that

∀t ∈ [t1, t2] : |x(t)− x0| ≤ δ ⇒ ∀t ∈ [t1 +∆, t2] : |y(t)− f(x0)| ≤ ε.

4. Uniform convergence means that ∆ does not depend on x0 (although it may depend
on ε). Typically, we are interested on the vlaues of ∆ only for logical values of x(t) (i.e.
x(t) ≤ Vlow and x(t) ≥ Vhigh). Once the value of ε is fixed, this constant ∆ is called

the propagation delay of the gate G and is one of the most important characteristic of
a gate.

Question 2 Extend Definition 1 to gates with x inputs and y outputs.

Finally, we can now define an inverter in the zero-noise model. Observe that according to
this definition a device is an inverter if its static transfer function satisfies a certain property.

Definition 2 (inverter in zero-noise model) A gate G with a single input x and a single
output y is an inverter if its static transfer function f(z) satisfies the following the following
two conditions:

1. If z < Vlow, then f(z) > Vhigh.

2. If z > Vhigh, then f(z) < Vlow.

1.3. THE BOUNDED-NOISE MODEL 5

The implication of this definition is that if the logical value of the input x is zero (one)
during an interval [t1, t2] of length at least ∆, then the logical value of the output y is one
(zero) during the interval [t1 +∆, t2].

How should we define other gates such a nand-gates, xor-gates, etc.? As in the definition
of an inverter, the definition of a nand-gate is simply a property of its static transfer function.

Question 3 Define a nand-gate.

We are now ready to strengthen the digital abstraction so that it will be useful also in the
presence of bounded noise.

1.3 The bounded-noise model

Consider a wire from point A to point B. Let A(t) (B(t)) denote the analog signal measured
at point A (B). We would like to assume that wires have zero resistance, zero capacitance,
and that signals propagate through a wire with zero delay. This assumption means that the
signals A(t) and B(t) should be equal at all times. Unfortunately, this is not the case; the
reason for this discrepancy is noise.

There are many sources of noise, the main source is heat that causes electrons to move
randomly. These random movements do not cancel out perfectly, and random currents are
created. These random currents create perturbations in the voltage of a wire. The different
between the signals B(t) and A(t) is a noise signal.

Consider, for example, the setting of additive noise: A is an output of an inverter and
B is an input of another inverter. We consider the signal A(t) to be a reference signal. The
signal B(t) is the sum A(t) + nB(t), where nB(t) is the noise signal.

The bounded-noise model assumes that the noise signal along every wire has a bounded
absolute value. We will use a slightly simplified model in which there is a constant ε > 0
such that the absolute value of all noise signals is bounded by ε. We refer to this model
as the uniform bounded noise model. The justification for assuming that noise is bounded
is probabilistic. Noise is a random variable whose distribution has rapidly diminishing tail.
This means that if the bound is sufficiently large, then the probability of the noise exceeding
this bound during the lifetime of a circuit is negligibly small.

1.4 The need for changing the digital abstraction in

presence of noise

Consider two inverters, where the output of one gate feeds the input of the second gate.
Figure 1.2 depicts such a circuit that consists of two inverters.

Assume that the input x has a value that satisfies: (a) x > Vhigh, so the logical value of

x is one, and (b) y = Vlow− ε, for a very small ε > 0. This might not be possible with every
inverter, but Definition 2 does not rule out such an inverter (Consider a transfer function
with f(Vhigh) = Vlow, and x slightly higher than Vhigh). Since the logical value of y is zero,

it follows that the second inverter, if not faulty, should output a value z that is greater than

6 CHAPTER 1. THE DIGITAL ABSTRACTION

Vhigh. In other words, we expect the logical value of z to be 1. At this point we consider

the effect of noise.

Let us denote the noise added to the wire y by ny. This means that the input of the
second inverter equals y(t) + ny(t). Now if ny(t) > ε, then the second inverter is fed a
non-logical value! This means that we can no longer deduce that the logical value of z is
one. We conclude that we must use a more resilient model; in particular, the functionality
of circuits should not be effected by noise. Of course, we can only hope to be able to cope
with bounded noise, namely noise whose absolute value does not exceed a certain value ε.

z
y

x

Figure 1.2: Two inverters connected in series.

1.4.1 Redefining the digital interpretation of analog signals

The way we deal with noise is that we interpret input signals and output signals differently.
An input signal is a signal measured at an input of a gate. Similarly, an output signal is a
signal measured at an output of a gate. Instead of two thresholds, Vlow and Vhigh, we define

the following four thresholds:

• Vlow,in - an upper bound on a voltage of an input signal interpreted as a logical zero.

• Vlow,out - an upper bound on a voltage of an output signal interpreted as a logical
zero.

• Vhigh,in - a lower bound on a voltage of an input signal interpreted as a logical one.

• Vhigh,out - a lower bound on a voltage of an output signal interpreted as a logical one.

These four thresholds satisfy the following equation:

Vlow,out < Vlow,in < Vhigh,in < Vhigh,out. (1.3)

Figure 1.3 depicts these four thresholds. Note that the interpretation of input signals is less
strict than the interpretation of output signals. The actual values of these four thresholds
depend on the transfer functions of the devices.

The differences Vlow,in − Vlow,out and Vhigh,out − Vhigh,in are called noise margins.

Our goal is to show that noise whose absolute value is less than the noise margin will not
change the logical value of an output signal. Indeed, if the absolute value of the noise n(t) is
bounded by the noise margins, then an output signal fout(t) that is below Vlow,in will result

with an input signal fin(t) = fout(t) + n(t) that does not exceed Vlow,out.

1.4. THE NEED FOR CHANGING THE DIGITAL ABSTRACTION IN PRESENCE OF NOISE7

Vhigh,out

Vlow,out

logical zero - output

Vhigh,in

Vlow,in

logical zero - input

logical one - output

logical one - input

t

f(t)

Figure 1.3: A digital interpretation of an input and output signals.

Consider an input signal fin(t). The digital signal dig(fin(t)) is defined as follows.

dig(fin(t))
4
=

0 if fin(t) < Vlow,in
1 if fin(t) > Vhigh,in
non-logical otherwise.

(1.4)

Consider an output signal fout(t). The digital signal dig(fout(t)) is defined analogously.

dig(fout(t))
4
=

0 if fout(t) < Vlow,out
1 if fout(t) > Vhigh,out
non-logical otherwise.

(1.5)

Observe that sufficiently large noise margins imply that noise will not chain the logical values
of signals.

We can now fix the definition of an inverter so that bounded noise added to outputs,
does not effect logical interpretation of signals.

Definition 3 (inverter in the bounded-noise model) A gate G with a single input x
and a single output y is an inverter if its static transfer function f(z) satisfies the following
the following two conditions:

1. If z < Vlow,in, then f(z) > Vhigh,out.

2. If z > Vhigh,in, then f(z) < Vlow,out.

Question 4 Define a nand-gate in the bounded-noise model.

8 CHAPTER 1. THE DIGITAL ABSTRACTION

Question 5 Consider the function f(x) = 1−x over the interval [0, 1]. Suppose that f(x) is
a the transfer function of a device C. Can you define threshold values Vlow,out < Vlow,in <

Vhigh,in < Vhigh,out so that C is an inverter according to Definition 3?

Question 6 Consider a function f : [0, 1]→ [0, 1]. Suppose that f(x) is monotone decreas-
ing and that the derivative f ′(x) of f(x) satisfies the following condition: f ′(x) is continuous,
f ′(x) is strictly decreasing in the interval [0, α] and strictly increasing in the interval (α, 1].
Moreover, f ′(α) < −1. Can you define threshold values Vlow,out < Vlow,in < Vhigh,in <

Vhigh,out so that C is an inverter according to Definition 3?

Question 7 Try to characterize transfer functions g(x) that correspond to inverters. Namely,
if Cg is a device, the transfer function of which equals g(x), then one can define threshold
values so that Definition 3 is satisfied.

1.5 Stable signals

In this section we define terminology that will be used later. To simplify notation we define
these terms in the zero-noise model. We leave it to the curious reader to extend the definitions
and notation below to the bounded-noise model.

An analog signal f(t) is said to be logical at time t if dig(f(t)) ∈ {0, 1}. An analog
signal f(t) is said to be stable during the interval [t1, t2] if f(t) is logical for every t ∈ [t1, t2].
Continuity of f(t) and the fact that Vlow < Vhigh imply the following claim.

Claim 1 If an analog signal f(t) is stable during the interval [t1, t2] then one of the following
holds:

1. dig(f(t)) = 0, for every t ∈ [t1, t2], or

2. dig(f(t)) = 1, for every t ∈ [t1, t2].

From this point we will deal with digital signals and use the same terminology. Namely,
a digital signal x(t) is logical at time t if x(t) ∈ {0, 1}. A digital signal is stable during an
interval [t1, t2] if x(t) is logical for every t ∈ [t1, t2].

1.6 Summary

In this chapter transfer functions of gates were defined. Static transfer functions describe
the output voltages of gates when the inputs are stable for a sufficiently long interval. The
amount of time that input signals must be stable to guarantee stability of the output of a
gate is called the propagation delay.

In the digital abstraction, analog signals are interpreted either as zero, one, or non-
logical. We started with the zero-noise model in which there is no noise, and defined the
digital abstraction in this model. We gave an example of a circuit in which even small
amounts of noise corrupt the functionality of the circuit. We then defined the bounded-noise
model. We re-defined the digital abstraction under the bounded-noise model.

Chapter 2

Foundations of combinational circuits

In this chapter we define and study combinational circuits. Our goal is to prove two theorems:
(A) Every Boolean function can be implemented by a combinational circuit, and (B) Every
combinational circuit implements a Boolean function.

2.1 Boolean functions

Let {0, 1}n denote the set of n-bit strings. A Boolean function is defined as follows.

Definition 4 A function f : {0, 1}n → {0, 1}k is called a Boolean function.

2.2 Gates as implementations of Boolean functions

A gate is a device that has inputs and outputs. The inputs and outputs of a gate are often
referred to as terminals, ports, or even pins. The relation between the logical values of the
outputs and the logical values of the inputs is specified by a Boolean function. It takes some
time till the logical values of the outputs of a gate properly reflect the value of the Boolean
function. We say that a gate is consistent if this relation holds. To simplify notation, we
consider a gate G with 2 inputs, denoted by x1, x2, and a single output, denoted by y. We
denote the digital signal at terminal x1 by x1(t). The same notation is used for the other
terminals. Consistency is defined formally as follows:

Definition 5 A gate G is consistent with a Boolean function f at time t if the input values
are digital at time t, and

y(t) = f(x1(t), x2(t)).

The propagation delay is the amount of time that elapses till a gate becomes consistent. The
following definition defines when a gate implements a Boolean function with propagation
delay tpd.

Definition 6 A gate G implements a Boolean function f : {0, 1}2 → {0, 1} with propagation
delay tpd if the following holds.

9

10 CHAPTER 2. FOUNDATIONS OF COMBINATIONAL CIRCUITS

For every σ1, σ2 ∈ {0, 1}, if xi(t) = σi, for i = 1, 2, during the interval [t1, t2], then

y(t) = f(σ1, σ2),

for every t ∈ [t1 + tpd, t2].

The following remarks should be well understood before we continue:

1. The above definition can be stated in a more compact form. Namely, a gate G imple-
ments a Boolean function f : {0, 1}n → {0, 1} with propagation delay tpd if stability
of the inputs of G in the interval [t1, t2] implies that the gate G is consistent with f in
the interval [t1 + tpd, t2].

2. If t2 < t1 + tpd, then the statement in the above definition is empty. It follows that the
inputs of a gate must be stable for at least a period of tpd, otherwise, the gate need
not reach consistency.

3. Assume that the gate G is consistent at time t2, and that at least one input is not
stable in the interval (t2, t3). We do not assume that the output of G remains stable
after t2. The contamination delay of a gate is the amount of time that the output of
a consistent gate remains stable after its inputs stop being stable. Throughout this
course we will make the most “pessimistic” assumption. Namely, we will assume that
the contamination delay is zero.

4. If a gate G implements a Boolean function f : {0, 1}n → {0, 1} with propagation delay
tpd, then G also implements a Boolean function f : {0, 1}n → {0, 1} with propagation
delay t′, for every t′ ≥ tpd. It follows that it is legitimate to use upper bounds on the
actual propagation delay. Pessimistic assumptions should not render a circuit incorrect.

2.3 Building blocks

The building blocks of combinational circuits are gates and wires. In fact, we will need to
consider nets which are generalizations of wires.

Gates. A gate, as seen in Definition 6 is a device that implements a Boolean function.
The fan-in of a gate G is the number of inputs terminals of G (i.e. the number of bits in the
domain of the Boolean function that specifies the functionality of G). The basic gates that
we will be using as building blocks for combinational circuits have a constant fan-in (i.e. at
most 2−3 input ports). The basic gates that we consider are: inverter (not-gate), or-gate,
nor-gate, and-gate, nand-gate, xor-gate, nxor-gate, multiplexer (mux).

The input ports of a gate G are denoted by the set {in(G)i}
n
i=1, where n denotes the

fan-in of G. The output ports of a gate G are denoted by the set {out(G)i}
k
i=1, where k

denotes the number of output ports of G.

2.3. BUILDING BLOCKS 11

Wires and nets. A wire is a connection between two terminals (e.g. an output of a gate
with an input of a gate). In the zero-noise model the signals at both ends of a wire are
identical.

Very often we need to connect several terminals (i.e. inputs and outputs of gates) to-
gether. We could, of course, use any set of edges (i.e. wires) that connects these terminals
together. Instead of specifying how the terminals are physically connected together, we use
nets. A net is a subset terminals that are connected by wires. In the digital abstraction we
assume that the signals all over a net are identical (why?). The fan-out of a net N is the
number of terminals that are connected by N .

The issue of drawing nets is a bit confusing. Figure 2.1 depicts three different drawings of
the same net. All three nets contain an output terminal of an inverter and 4 input terminals
of inverters. However, the nets are drawn differently. Recall that the definition of a net is
simply a subset of terminals. We may draw a net in any way that we find convenient or
aesthetic. The interpretation of the drawing is that terminals that are connected by lines or
curves constitute a net.

Figure 2.1: Three equivalent nets.

Consider a net N . We would like to define the digital signal N(t) for the whole net. The
problem is that due to noise (and other reasons) the analog signals at different terminals of
the net might not equal each other. This might cause the digital interpretations of analog
signals at at different terminals of the net to be different, too. We solve this problem by
defining N(t) to logical only if there is a consensus among all the digital interpretations of
analog signals at different terminals of the net. Namely, N(t) is zero (one) if the digital
values of all the analog signals along the net are zero (one). If there is no consensus, then
N(t) is non-logical. Recall that, in the bounded-noise model, different thresholds are used
to interpret the digital values of the analog signals measured in input and output terminals.

We say that a net N feeds an input terminal t if the input terminal t in N . We say that
a net N is fed by an output terminal t if t is in N . Figure 2.2 depicts a an output terminal
that feeds a net and an input terminal that is fed by a net. The notion of feeding and
being fed implies a direction according to which information “flows”; namely, information is
“supplied” by output terminals and is “consumed” by input terminals. From an electronic
point of view, output terminals are connected via resistors either the the ground or the the
power. Input terminals are connected only to capacitors.

The following definition captures the type of nets we would like to use. We call these
nets simple.

Definition 7 A net N is simple if (a) N is fed by exactly one output terminal, and (b) N
feeds at least one input terminal.

12 CHAPTER 2. FOUNDATIONS OF COMBINATIONAL CIRCUITS

a net fed by terminal t’

t
t’

a net that feeds terminal t

Figure 2.2: A terminal that is fed by a net and a terminal that feeds a net.

A simple net N that is fed by the output terminal t and feeds the input terminals {ti}i∈I ,
can be modeled by wires {wi}i∈I . Each wire wi connects t and ti. In fact, since information
flows in one direction, we may regard each wire wi as a directed edge t→ ti.

It follows that a circuit, all the nets of which are simple, may be modeled by a directed
graph. The vertices of the graph are the gates and the directed edges are the wires. We
denote the directed graph that models a circuit C, all the nets of which are simple, by
DG(C).

2.4 Combinational circuits

Question 8 Consider the circuits depicted in Figure 2.3. Can you explain why these are
not valid combinational circuits?

Figure 2.3: Two examples of non-combinational circuits.

Before we define combinational circuits it is helpful to define two types of special gates:
an input gate and an output gate. The purpose of these gates is to avoid endpoints in
nets that seem to be not connected (for example, all the nets in the circuit on the right in
Figure 2.3 have endpoints that are not connected to a gate).

Definition 8 (input and output gates) An input gate is a gate with zero inputs and a
single input. An output gate is a gate with one input input and zero outputs.

Figure 2.4 depicts an input gate and an output gate. Inputs from the “external world” are
fed to a circuit via input gates. Similarly, outputs to the “external world” are fed by the
circuit via output gates.

2.4. COMBINATIONAL CIRCUITS 13

Output GateInput Gate

Figure 2.4: An input gate and an output gate

A circuit may contain many inverters, nand-gates, etc. Hence, in the definition below,
the set of gates G set is actually a multi-set (i.e. a set of repetitions). We associate with
every gate G ∈ G the number of inputs, the number of outputs, and the Boolean functions
that specifies its functionality.

We are now ready to present a syntactic definition of combinational circuits.

Definition 9 (syntactic definition of combinational circuits) A combinational circuit
is a pair C = 〈G,N〉 that satisfies the following conditions:

1. G is a set of gates.

2. N is a set nets over terminals of gates in G.

3. Every terminal t of a gate G ∈ G belongs to exactly one net N ∈ N .

4. Every net N ∈ N is simple.

5. The directed graph DG(C) is acyclic.

Question 9 Which conditions in the syntactic definition of combinational circuits are vio-
lated by the circuits depicted in Figure 2.3?

We list below a few properties that explain why the syntactic definition of combinational
circuits is so important. In particular, these properties show that the syntactic definition of
combinational circuits implies well defined semantics.

1. Completeness: for every Boolean function f , there exists a combinational circuit that
implements f . We leave the proof of this property as an exercise for the reader.

2. Soundness: every combinational circuit implements a Boolean function. Note that
it is NP-Complete to compute the Boolean function that is implemented by a given
combinational circuit.

3. Simulation: given the digital values of the inputs of a combinational circuit, one can
simulate the circuit in linear time. Namely, one can compute the digital values of the
outputs of the circuit that are output by the circuit once the circuit becomes consistent.

4. Delay analysis: given the propagation delays of all the gates in a combinational circuit,
one can compute in linear time the propagation delay of the circuit.

14 CHAPTER 2. FOUNDATIONS OF COMBINATIONAL CIRCUITS

The last three properties are proved in the following theorem by showing that in a
combinational circuit every net implements a Boolean function of the inputs.

Theorem 2 (Simulation theorem of combinational circuits) Let C = 〈G,N〉 denote
a combinational circuit that contains k input gates. Let {xi}

k
i=1 denote the output terminals

of the input gates in C. Assume that the digital signals {xi(t)}
k
i=1 are stable during the

interval [t1, t2]. Then, for every net N ∈ N there exist:

1. a Boolean function fN : {0, 1}k → {0, 1}, and

2. a propagation delay tpd(N)

such that

N(t) = fN(x1(t), x2(t), . . . , xk(t)),

for every t ∈ [t1 + tpd(N), t2].

We can simplify the statement of Theorem 2 by considering each net N ∈ N as an output of
a combinational circuit with k inputs. The theorem then states that every net implements
a Boolean function with an appropriate propagation delay.

We use ~(x)(t) to denote the vector x1(t), . . . , xk(t).

Proof: Let n denote the number of gates in G and m the number of nets in N . The
directed graph DG(C) is acyclic. It follows that we can topologically sort the vertices of
DG(C). Let v1, v2, . . . , vn denote the set of gates G according to the topological order. (This
means that if there is a directed path from vi to vj in DG(C), then i < j.)

Let Ni denote the subset of nets in N that are fed by gate vi. Note that if vi is an output
gate, then Ni is empty. Let e1, e2, . . . , em denote an ordering of the nets in N such that nets
in Ni precedes nets in Ni+1, for every i < n. In other words, we first list the nets fed by gate
v1, followed by a list of the nets fed by gate v2, etc.

Having defined a linear order on the gates and on the nets, we are now ready to prove
the theorem by induction on m (the number of nets).

Induction hypothesis: For every i ≤ m′ there exist:

1. a Boolean function fei
: {0, 1}k → {0, 1}, and

2. a propagation delay tpd(ei)

such that the network ei implements the Boolean function fei
with propagation delay tpd(ei).

Induction Basis: Consider m′ = 1. The net e1 is fed by the gate v1. Since the gate v1

is not fed by any net, it follows that v1 is an input gate. Let xi denote the output terminal
of v1. It follows that the digital signal along e1 always equals the digital signal xi(t). Hence
we define fe1 to be simply the projection on the ith component, namely fe1(σ1, . . . , σk) = σi.
The propagation delay tpd(e1) is zero. The induction basis follows.

2.4. COMBINATIONAL CIRCUITS 15

Induction Step: Assume that the induction hypothesis holds for m′ < m. We wish to
prove that it also holds for m′ + 1. Consider the net em′+1. Let vi denote the gate that
feeds the net em′+1. To simplify notation, assume that the gate vi has two terminals that are
fed by the nets ej and ek, respectively. The ordering of the nets guarantees that j, k ≤ m′.
By the induction hypothesis, the net ej (ek) implements a Boolean function fej

(fek
) with

propagation delay tpd(ej) (tpd(ek)). This implies that both inputs to gate vi are stable during
the interval

[t1 +max{tpd(ej), tpd(ek)}, t2].

Gate vi implements a Boolean function fvi
with propagation delay tpd(vi). It follows that

the output of gate vi equals

fvi
(fej

(~x(t)), fek
(~x(t)))

during the interval

[t1 +max{tpd(ej), tpd(ek)}+ tpd(vi), t2].

We define fem′+1
to be the Boolean function obtained by the composition of Boolean functions

fem′+1
(~σ) = fvi

(fej
(~σ), fek

(~σ)). We define tpd(em′+1) to be max{tpd(ej), tpd(ek)}+ tpd(vi), and
the induction step follows. 2

The digital abstraction allows us to assume that signals of every net in a combinational
circuit is logical (if the time that elapses since the inputs become stable is at least the
propagation delay). This justifies the convention of identifying a net with the digital value
of the net.

The proof of Theorem 2 leads to two related algorithms. One algorithm simulates a
combinational circuit, namely, given a combinational circuit and a Boolean assignment to
the inputs ~x, the algorithm can compute the digital signal of every net after a sufficient
amount of time elapses. The second algorithm computes the propagation delay of each net.
Of particular interest are the nets that fed the output gates of the combinational circuit.
Hence, we may regard a combinational circuit as a “macro-gate”. All instance of the same
combinational circuit implement the same Boolean function and have the same propagation
delay.

The algorithms are very easy. For convenience we describe them as one joint algorithm.
First, the directed graph DG(C) is constructed (this takes linear time). Then the gates are
sorted in topological order (this also takes linear time). This order also induced an order on
the nets. Now a sequence of relaxation steps take place for nets e1, e2, . . . , em. In a relaxation
step the propagation delay of a net ei two computations take place:

1. The Boolean value of ei is set to

fvj
(~Ivj

),

where vj is the gate that feeds the net ei and ~Ivj
is the binary vector that describes

the values of the nets that feed gate vj.

2. The propagation delay of the gate that feeds ei is set to

tpd(ei)← tpd(vj) + max{tpd(e
′)}

{e′ feeds vj}
.

16 CHAPTER 2. FOUNDATIONS OF COMBINATIONAL CIRCUITS

The total amount of time spend in the relaxation steps in linear, and hence the running time
of this algorithm is linear.

Question 10 Prove that the total amount of time spend in the relaxation steps in linear.
Note that it is not true that each relaxation step can be done in constant time if the fan-in
of the gates is not constant.

2.5 Cost and propagation delay

In this section we define the cost and propagation delay of a combinational circuit.
We associate a cost with every combinational circuit. We denote the cost of a gate G by

c(G).

Definition 10 The cost of a combinational circuit C = 〈G,N〉 is defined by

c(C)
4
=
∑

G∈G

c(G.

The following definition defined the propagation delay of a combinational circuit.

Definition 11 The propagation delay of a combinational circuit C = 〈G,N〉 is defined by

tpd(C)
4
= max

N∈N
tpd(N).

We often refer to the propagation delay of a combinational circuit as its depth or simply its
delay.

Definition 12 A sequence of gates p = {v0, v1, . . . , vk} from G is a path in a combinational
circuit C = 〈G,N〉 if p is a path in the directed graph DG(C).

The propagation delay of a path p is defined as

tpd(p) =
∑

v∈p

tpd(v).

The proof of the following claim follows directly from the proof of Theorem 2.

Claim 3 The propagation delay of a combinational circuit C = 〈G,N〉 equals

tpd(C) = max
paths p

tpd(p)

Paths, the delay of which equals the propagation delay of the circuit, are called critical paths.

Question 11 1. Describe a combinational circuit with n gates that has at least 2n/2 paths.
Can you describe a circuit with 2n different paths?

2. In Claim 3 the propagation delay of a combinational circuit is defined to be the maxi-
mum delay of a path in the circuit. The number of paths can be exponential in n. How
can we compute the propagation delay of a combinational circuit in linear time?

Müller and Paul compiled the following costs and delays of gates. These figures were
obtained by considering ASIC libraries of two technologies and normalizing them with respect
to the cost and delay of an inverter. They referred to these figures as Motorola and Venus.
Table 2.1 summarizes the normalized costs and delays in these technologies.

2.6. SUMMARY 17

Gate Motorola Venus
cost delay cost delay

inv 1 1 1 1
and,or 2 2 2 1
nand, nor 2 1 2 1
xor, nxor 4 2 6 2
mux 3 2 3 2

Table 2.1: Costs and delays of gates

2.6 Summary

Combinational circuits were formally defined in this chapter. We started by considering
the basic building blocks: gates and wires. Gates are simply implementations of Boolean
functions. The digital abstraction enables a simple definition of what it means to implement
a Boolean function f . Given a propagation delay tpd and stable inputs whose digital value
is ~x, the digital values of the outputs of a gate equal f(~x) after tpd time elapses.

Wires are used to connect terminals together. Bunches of wires are used to connect
multiple terminals to each other and are called nets. Simple nets are nets in which the
direction in which information flows is well defined; from output terminals of gates to input
terminals of gates.

The formal definition of combinational circuits turns out to be most useful. It is a syn-
tactic definition that only depends on the topology of the circuit, namely, how the terminals
of the gates are connected. One can check in linear time whether a given circuit is indeed a
combinatorial circuit. Even though the definition ignores functionality, one can compute in
linear time the digital signals of every net in the circuit. Moreover, one can also compute in
linear time the propagation delay of every net.

Two quality measures are defined for every combinational circuit: cost and propagation
delay. The cost of a combinational circuit is the sum of the costs of the gates in the circuit.
The propagation delay of a combinational is the maximum delay of a path in the circuit.

18 CHAPTER 2. FOUNDATIONS OF COMBINATIONAL CIRCUITS

Chapter 3

Combinational modules

A combinational module is a combinational circuit that is usually part of a bigger circuit.
We describe in this chapter modules that are often used in designing complex circuit such
as micro-processors.

3.1 Notation

A binary string a0a1 · · · an−1 is denoted by a[0 : n − 1]. Indexes are often important, so we
denote the string an−1an−2 · · · a1 by a[n − 1 : 0]. In VLSI-CAD tools such multiple signals
are called buses. Indexing of buses in such tools is often a cause of great confusion. For
example, assume that one side of a bus is called a[0 : 3] and the other side is called b[3 : 0].
Does that mean that a[0] = b[0] or does it mean that a[0] = b[3]? Our convention will
be that “reversing” does not take place unless stated explicitly. However, will often write
a[0 : 3] = b[4 : 7], meaning that a[0] = b[4], a[1] = b[5] etc. Such a re-assignment of indexes
often called hardwired shifting.

We often use the shorthand ~a for a binary string a[n− 1 : 0], provided of course that the
indexes of the string a[n− 1 : 0] are obvious from the context.

Consider a gate G with two input terminals a and b and one output terminal z. The
combinational circuit G(n) is simply n instances of the gate G, as depicted in part (A) of
Figure 3.1. The ith instance of gate G in G(n) is denoted by Gi. The two input terminals of
Gi are denoted by ai and bi. The output terminal of Gi is denoted by zi. We use shorthand
when drawing the schematics of G(n) as depicted in part (B) of Figure 3.1. The short
segment drawn across a wire indicates that the line represents multiple wires. The number
of wires is written next to the short segment.

We often wish to feed all the second input terminals of gates in G(n) with the same
signal. Figure 3.2 denotes a circuit G(n) in which the value b is fed to the second input
terminal of all the gates.

Note that the fanout of the net that carries the signal b in Figure 3.2 is linear. In practice,
a large fanout increases the capacity of a net and causes an increase in the delay of the circuit.
We usually ignore this phenomena in this course.

The binary string obtained by concatenating the strings a and b is denoted by a · b. The
binary string obtained by i concatenations of the string a is denoted by ai.

19

20 CHAPTER 3. COMBINATIONAL MODULES

G0

a0 b0

z0

n n

n

G1

a1 b1

z1

Gn−1

an−1 bn−1

zn−1

(A) (B)

G(n)

z[0 : n− 1]

a[0 : n− 1] b[0 : n− 1]

Figure 3.1: Vector notation: multiple instances of the same gate.

n

n

G1

a1

z1

Gn−1

an−1

zn−1

(A) (B)

G(n)

z[0 : n− 1]

a[0 : n− 1]b

1

b

G0

a0

z0

Figure 3.2: Vector notation: b feeds all the gates.

3.2. REPRESENTATION AND VALUES 21

Example 1 • If a = 01 and b = 10, then a · b = 0110.

• If a = 1 and i = 5, then ai = 11111.

3.2 Representation and values

There are many ways to represent the same value. In binary representation the number
6 is represented by the binary string 101. The unary representation of the number 6 is
111111. Formal definitions of functionality (i.e. specification) become cumbersome without
introducing a simple notation to relate a binary string with the value it represents.

The following definition defines what number is represented by a binary string.

Definition 13 The binary value represented by a binary string a[n − 1 : 0] is denoted by
〈a[n− 1 : 0]〉. It is defined as follows

〈a[n− 1 : 0]〉
4
=

n−1
∑

i=0

ai.

One may regard 〈·〉 as a function from binary strings not including the empty string (i.e.
{0, 1}+) to natural numbers (i.e. N). The inverse function is the binary representation
function.

Definition 14 Binary representation is a function bin : N → {0, 1}+ that is the inverse
function of 〈·〉. Namely, for every n ≥ 1 and every a[n− 1 : 0] ∈ {0, 1}n,

bin(〈a[n− 1 : 0]〉) = a[n− 1 : 0].

Definition 15 A binary string x[n − 1 : 0] represents a number in unary representation if
~x = 0∗ ·1∗. Namely, the string x consists of a block of zeros followed by a block of zeros. The
weight of a binary string x[n− 1 : 0] is the number of ones in it. We denote the weight of ~x
by wt(~x). Formally,

wt(~x) =
∑

i=1,...,n

x[i].

The value represented by a binary string x[n−1 : 0] in unary representation is wt(~x), provided
that ~x represents a number in unary representation.

Remark 1 A binary string such as 01001011 does not represent a number in unary repre-
sentation. Only a string that is obtained by concatenating an all-zeros string with an all-ones
string represents a number in unary representation.

3.3 Trees of associative Boolean gates

In this section we deal with combinational circuits with topologies that are trees and consist
of instances of the same gate, where the gate implements an associative Boolean function.
We first discuss extensions of associative Boolean functions.

22 CHAPTER 3. COMBINATIONAL MODULES

3.3.1 Associative Boolean functions

Definition 16 A Boolean function f : {0, 1}2 → {0, 1} is associative if

f(f(σ1, σ2), σ3) = f(σ1, f(σ2, σ3)),

for every σ1, σ2, σ3 ∈ {0, 1}.

Question 12 List all the associative Boolean functions f : {0, 1}2 → {0, 1}.

A Boolean function defined over the domain {0, 1}2 is often denoted by a diadic operator,
say ¯. Namely, f(σ1, σ2) is denoted by σ1 ¯ σ2. An associativity of a Boolean function ¯ is
then formulated by

(σ1 ¯ σ2)¯ σ3 = σ1 ¯ (σ2 ¯ σ3)

for every σ1, σ2, σ3 ∈ {0, 1}. This implies that one may omit parenthesis from expressions
involving an associative Boolean function and simply write σ1 ¯ σ2 ¯ σ3.

We now build Boolean functions defined over {0, 1}n from Boolean functions defined over
{0, 1}2.

Definition 17 The function fn : {0, 1}n → {0, 1}, for n ≥ 2 is defined by induction as
follows.

1. If n = 2 then f2 ≡ f (the sign ≡ is used instead of equality to emphasize equality of
functions).

2. If n > 2, then fn is defined based on fn−1 as follows:

fn(x1, x2, . . . xn)
4
= f(fn−1(x1, . . . , xn−1), xn).

If f(x1, x2) is an associative Boolean function, then one could define fn in many equivalent
ways, as summarized in the following claim.

Claim 4 If f : {0, 1}2 → {0, 1} is an associative Boolean function, then

fn(x1, x2, . . . xn) = f(fk(x1, . . . , xk), fn−k(xk+1, . . . , xn)),

for every k ∈ [2, n− 2].

Question 13 Show that the set of functions fn(x1, . . . , xn) that are induced by associative
Boolean functions f : {0, 1}2 → {0, 1} is

{constant, x1, xn,and,or,xor,nxor} .

The implication of Question 13 is that there are only four non-trivial functions fn (which?).
In the rest of this section we will only consider the Boolean function or. The discussion for
the other three non-trivial functions is analogous.

3.3. TREES OF ASSOCIATIVE BOOLEAN GATES 23

3.3.2 or-trees

An or-tree is a combinational circuit defined as follows:

Input: x[n− 1 : 0].

Output: y ∈ {0, 1}

Functionality: y = x[0] ∨ x[1] · · · ∨ x[n− 1]. (where a ∨ b denotes or(a, b)).

Claim 4 provides a “recipe” for implementing an or-tree using or-gates. Consider a
rooted binary tree with n leaves. The inputs are fed via the leaves, an or-gate is positioned
in every node of the tree, and the output is obtained at the root. Figure 3.3 depicts two
or-trees for n = 4.

or

or

x[3]

y

x[2]

or

or

or

x[0] x[1] x[2] x[3]

or

x[0] x[1]

y

Figure 3.3: Two implementations of an or-tree with n = 4 inputs.

Question 14 Design a zero-tester defined as follows.

Input: x[n− 1 : 0].

Output: y

Functionality:

y = 1 iff x[n− 1 : 0] = 0n.

1. Suggest a design based on an or-tree.

2. Suggest a design based on an and-tree.

3. What do you think about a design based on a tree of nor-gates?

24 CHAPTER 3. COMBINATIONAL MODULES

3.3.3 Cost and delay analysis

You may have noticed that both or-trees in depicted in Figure 3.3 contain 3 or-gates.
However, their delay is different. The following claim summarizes the the fact that all or-
trees have the same cost.

Claim 5 The cost of every or-tree with the topology of a rooted binary tree is (n−1) ·c(or).

Proof: The number of interior nodes of a binary tree equals the number of leaves minus
one. 2

The following question shows that the delay of an or-tree can be dlog2 ne · d(or), it a
balanced tree is used.

Question 15 This question deals with different ways to construct balanced trees. The goal
is to achieve log2n depth.

1. Prove that if Tn is a rooted binary tree with n leaves, then the depth of Tn is at least
dlog2 ne.

2. Assume that n is a power of 2. Prove that the depth of a complete binary tree with n
leaves is log2 n.

3. Prove that for every n > 2 there exist a pair of positive integers a, b such that (1)
a+ b+ = n, and (2) max{dlog2 ae, dlog2 be} ≤ dlog2 ne − 1.

4. Consider the following recursive algorithm for constructing a binary tree with n ≥ 2
leaves.

(a) The case that n ≤ 2 is trivial (two leaves connected to a root).

(b) If n > 2, then let a, b be any pair of positive integers such that (i) n = a+ b and
(ii) max{dlog2 ae, dlog2 be} ≤ dlog2 ne − 1. (Such a pair exists by the previous
item.)

(c) Compute trees Ta and Tb. Connect their roots to a new root to obtain Tn.

Prove that the depth of Tn is at most dlog2 ne.

3.3.4 Lower bounds

In this section we deal with the following questions: What is the best choice of a topology
for a combinational circuit that implements an or-tree? Why is a tree the best topology?
Perhaps one could do better if another implementation is used? (Say, using other gates and
using the inputs to feed more than one gate.) Why is a tree the best topology?

We attach two measures to every design: cost and delay. In this section we prove lower
bounds on the cost and delay of every circuit that implements an or-tree. We will be able
to prove lower bounds for circuits that implement or-trees that will imply the optimality of
using balanced trees.

3.3. TREES OF ASSOCIATIVE BOOLEAN GATES 25

Definition 18 Let f : {0, 1}n → {0, 1} denote a Boolean function. Let σ ∈ {0, 1}.
The Boolean function g : {0, 1}n−1 → defined by

g(x0, . . . , xn−2) = f(x0, . . . , xi−1, σ, xi, . . . , xn−2)

is called the restriction of f with xi = σ. We denote it by f¹xi=σ.

Definition 19 A boolean function f : {0, 1}n → {0, 1} depends on its ith input if

f¹xi=0 6= f¹xi=1.

The set of input indexes that a Boolean function f depends on is called the cone.
The cone of f is denoted by cone(f).
A Boolean function f : {0, 1}n → {0, 1}m is a vector of m Boolean functions
fi : {0, 1}

n → {0, 1}, where

f(~x) = (f1(~x), . . . , fm(~x)).

Example 2 Consider the following Boolean function:

f(~x) =

{

0 if
∑

i x[i] < 3

1 otherwise.

Suppose that one reveals the input bits one by one. As soon as 3 ones are revealed,
one can determine the value of f(~x). Nevertheless, the function f(~x) depends on
all its inputs!

The following trivial claim deals with the case that cone(f) = ∅.

Claim 6 cone(f) = ∅ ⇐⇒ f is a constant Boolean function.

Frame 1: More on Boolean functions.

Before we proceed, we need a few more definitions regarding Boolean functions. These
definitions appear in Frame 1.

The following claim is trivial.

Claim 7 The Boolean function orn depends on all its inputs, namely

cone(orn) = n.

The following claim shows that if a combinational circuit C implements a Boolean function
f then there must be a path in DG(C) from every input in cone(f) to the output of f .

Claim 8 Let C = 〈G,N〉 denote a combinational circuit that implements a Boolean function
f : {0, 1}n → {0, 1}. Let gi ∈ G denote an input gate of the ith input. If i ∈ cone(f), then
there is a path in DG(C) from gi to the output gate of C.

26 CHAPTER 3. COMBINATIONAL MODULES

Proof: If DC(C) lacks a path from the input gate gi that feeds an input i ∈ cone(f) to
the output y of C, then C cannot implement the Boolean function f . Consider an input
vector x ∈ {0, 1}n−1 for which f¹xi=0(x) 6= f¹xi=1(x). Let x′ (x′′) denote the extension of x
to n bits by inserting a 0 (1) in the ith coordinate. The proof of the Simulation Theorem of
combinational circuits (Theorem 2) implies that C outputs the same value when given the
input strings x′ and x′′, and hence C does not implement f , a contradiction. 2

The following claim shows that every circuit, that implements an or-tree in which the
fan-in of every gate is bounded by two, must contain at least n − 1 gates. Hence, an
implementation based on a tree of or-gates is optimal up to constant factors. Note that it
is very easy to prove a lower bound of n/2. The reason is that every input must be fed to a
non-trivial gate, and each gate can be fed by at most two inputs.

Theorem 9 (Linear Cost Lower Bound Theorem) Let C denote a combinatorial cir-
cuit that implements a Boolean function f . Then

c(C) ≥ |cone(f)| − 1.

Proof: Let n = |cone(f)|. Without loss of generality, we may assume that C has n input
gates. Moreover, we may assume that there is a path from every input gate to the output
gate. This assumption is justified by the following reduction: Let v denote the output gate.
Mark all the gates u such that there is a path from u to v. Remove all the gates that are
not marked, and leave only the nets that are connected only to marked nodes. We leave it
as an exercise to show that the resulting sub-circuit C ′ also implements the function f . It
suffices to prove that c(C ′) ≥ n− 1. To simplify notation, we assume that C = C ′.

Sort the the gates of C in topological order (as in the proof of the Simulation Theorem of
combinational circuits 2). Let v1, v2 . . . , vs denote the gates of C sorted in topological order.
We may assume that the n input gates appear first in this order, and that the output gate
appears last. Namely, v1, . . . , vn are all the input gates and vs is the output gate.

Define cuti to be a set of nets defined as follows. A net that contains a port both in
the prefix {v1, . . . , vi−1} and in the suffix {vi, vi+1, . . . , vs} is said to belong to cuti. Let ni
denote the number of nets that belong to cuti. We say that a net is cut first (last) in cuti if
it does not belong to a cut cutj for j < i (j > i). Note that n1 = 0 since the prefix is empty,
and ns = 0 because the suffix is empty.

It follows from the definition of ni+1 that it satisfies the following equation

ni+1 = ni − |{nets cut last in cuti}|+ |{nets cut first in cuti+1}|.

This implies that

ni+1 ≥

{

ni + 1 if vi is an input gate or a constant

ni − 1 otherwise

If vi is that an input gate or a constant gate, then its in-degree is zero. It follows that a net
cannot be cut last in cuti. However, the net that is fed by vi is cut first in cuti+1. Hence
ni+1 = ni + 1.

3.3. TREES OF ASSOCIATIVE BOOLEAN GATES 27

If vi is an output gate, then it is possible that at most one net “ends” at vi hence a
decrease of at most one in the cut size. Finally, if vi is a “real” gate, then since its fan-in is
at most two, it follows that at most two nets can be cut last in cuti. However, the net that
is fed by vi is cut first in cuti+1. Hence a net decrease of at most one in the cut size.

By summing, it follows that

ns ≥ n0 + n− 1− |{vi | vi is a non-trivial gate}|

The reason that n input gates contribute n to ns. The output gate vs causes a decrease of
1, and every non-trivial gate causes a decrease of at most 1. Since n0 = ns = 0, it follows
that the number of non-trivial gates is at least n − 1. The cost of every non-trivial gate is
at least 1, and the theorem follows. 2

The following corollary proves that every implementation of orn requires n−1 non-trivial
gates, hence using trees is optimal with respect to cost (up to constant factors).

Corollary 10 Let Cn denote a combinatorial circuit that implements an or-tree with input
length n. Then

c(Cn) ≥ n− 1.

Proof: Follows directly from Claim 7 and Theorem 9. 2

Question 16 State and prove a generalization of Theorem 9 for the case that the fan-in of
every gate is bounded by a constant c.

We now turn to proving a lower bound on the delay of a combinational circuit that
implements orn. Again, we will use a general technique. Again, we will rely on all gates in
the design having a constant fan-in (e.g. the number of inputs of every gate in the design is
at most 2).

The following theorem shows a lower bound on the delay of combinational circuits that
is logarithmic in the size of the cone.

Theorem 11 (Logarithmic Delay Lower Bound Theorem) Let C = 〈G,N〉 denote a
combinational circuit that implements a non-constant Boolean function f{0, 1}n → {0, 1}.
If the fan-in of every gate in G is at most c, then the delay of C is at least logc |cone(f)|.

Proof: The proof deals only with the graph DG(C) and shows that there must be a path
with at least logc |cone(f)| interior vertices in DG(C). Note that input/output gates and
constants have zero delay, so we have to be careful not to count them. However, zero delay
vertices can appear only as end-points of a path; this is why we count interior vertices along
paths.

Claim 8 implies there must be a path in DG(C) from every input xi ∈ cone(f) to the
output y of C. We show that every directed acyclic graph (DAG) with k inputs (i.e. nodes
with in-degree zero and out-degree one), one output (i.e. node with in-degree one and out-
degree zero), and an in-degree bounded by c, must have a path containing at least logc k
interior vertices. This is a standard argument in trees, and is easily extendible to graphs.
Here we prove it for a DAG.

28 CHAPTER 3. COMBINATIONAL MODULES

Observe that if a DAG has exactly one output, then the output is reachable from every
input. Simply, pick a maximal path that starts in an input; it can only stop at the output
vertex.

The involves strengthen the claim on DAGs it in a manner similar to the strengthening
that we used in the proof of the Simulation Theorem of combinational circuits (Theorem 2).
We attach to every edge e in the DAG a subset of inputs cone(e) which is the set of input
vertices from which the edge e is reachable. Let d(e) denote the maximum number of interior
vertices along a path from input vertex in cone(e) to e. We now prove that, for every edge
e, d(e) ≥ logc |cone(e)|.

We sort the vertices of the DAG in topological order. Let e1, e2, . . . denote the edges
sorted in an order induced by the topological ordering of the vertices. We the claim on
DAGs by induction on the index of an edge. The induction hypothesis is trivial since e1

must emanate from an input vertex, hence cone(e1) = 1, in which case the claim is trivial
since log 1 = 0. We now proceed to prove the induction step. Consider edge ei. To simplify
indexes, assume that ei emanates from a vertex v, where {ei−c, . . . , ei−1} is the set of edges
that enter v. (Exercise: modify the proof so that it holds also if the number of edges that
enter v is strictly less than c.) By definition

cone(ei) =
c
⋃

j=1

cone(ei−j).

Hence

|cone(ei)| ≤
c
∑

j=1

|cone(ei−j)|. (3.1)

Consider the following expansion:

d(e) = 1 + max
j=1...c

{d(ei−j)}

≥ 1 + max
j=1...c

{logc |cone(ei−j)|}

≥ 1 + logc

∑c
j=1 |cone(ei−j)|

c

≥ 1 + logc
cone(ei)

c
= logc |cone(ei)|.

The first line follows by the definition of d(e). The second line follows by the induction

hypothesis. The third line follows by maxj=1...c{log ai} = log (maxj=1...c{ai}) ≥ log
∑c

j=1 ai

c
.

The fourth line follows from Equation 3.1. This concludes the proof of the claim on DAGs,
and the theorem follows. 2

The following corollary proves a lower bound on the delay of combinational circuits that
implement orn.

Corollary 12 Let Cn denote a combinational circuit that implements orn. Let c denote the
maximum fan-in of a gate in Cn. Then

d(Cn) ≥ dlogc ne .

3.4. HALF-DECODERS 29

Proof: The corollary follows directly from Claim 7 and Theorem 11. 2

Question 17 The proof of the Theorem 11 dealt with the longest path from an input vertex
to an output vertex. In the proof, we strengthened this statement by considering edges instead
of output vertices. In this question we further strengthen the conditions at the expense of a
slightly weaker lower bound. We consider the longest shortest path from a set of vertices U
to a given vertex r (i.e. maxu∈U dist(u, r)).

Prove the following statement. Let U ⊆ V denote a subset of vertices of a directed graph
G = (V,E), and let r ∈ V . There exists a vertex u ∈ U such that dist(u, r) ≥ Ω(logc |U |),
where c denotes the maximum degree of G. (dist(u, r) denotes the length of the shortest path
from u to r.)

3.4 Half-Decoders

In this section we deal with the design and analysis of a half-decoder. Apart from its
application in implementing a logical right shifter, half-decoders serve as an example of
unary representation.

A half-decoder with input length n is a combinational circuit defined as follows:

Input: x[n− 1 : 0].

Output: y[2n − 1 : 0]

Functionality: The output string y consists of a block of zeros followed by a block of ones.
The length of the block of ones equals 〈x[n− 1 : 0]〉. Formally,

y[2n − 1 : 0] = 02n−〈x[n−1:0]〉 · 1〈x[n−1:0]〉.

The following simple claim describes an equivalent definition of the functionality of a half-
decoder.

Claim 13

y[i] = 1⇐⇒ 〈~x〉 ≥ i+ 1.

We denote a half-decoder with input length n by h-dec(n). Figure 3.4 depicts the
schematics we use to depict a half-decoder. Note that the n does not denote n instances of
a circuit as in Figure 3.1; instead, n denotes the length of the input of the decoder.

Example 3 Consider a half-decoder h-dec(3). On input x = 101, the output y equals
00011111.

Remark 2 Observe that y[2n − 1] = 0, for every input string. One could omit the bit
y[2n − 1] from the definition of a half-decoder. We left it in to make the description of the
design slightly simpler.

30 CHAPTER 3. COMBINATIONAL MODULES

n

h-dec(n)

2n

x[n− 1 : 0]

y[2n − 1 : 0]

Figure 3.4: Schematic notation of h-dec(n).

3.4.1 Implementation

We design an h-dec(n) using recursion. We start by designing an h-dec(n) with n = 1.
We then proceed by designing an h-dec(n) based on “smaller” half-decoders.

An h-dec(1) is simply 2 wires where: y[0] ← x[0] and y[1] ← 0. Note the use of a
constant value 0 is this design. We will assume that a designer can always connect a 1 or a
0 to an input terminal, if needed.

Figure 3.5 depicts a recursive implementation of an h-dec(n). All the inputs, except for
the most-significant bit x[n−1], are fed to an h-dec(n−1). The output of this half-decoder
is denoted by z[2n−1 − 1 : 0]. The lower half of the output is obtained or-ing the bits of ~z
with x[n−1]. The upper half of the output is obtained by and-ing the bits of ~z with x[n−1].

h-dec(n− 1)

2n−1

2n−12n−1

2n−11

1 1

x[n− 2 : 0]

n− 1

x[n− 1]

z[2n−1 − 1 : 0]

y[2n−1 − 1 : 0]y[2n − 1 : 2n−1]

and(2n−1) or(2n−1)

Figure 3.5: A recursive implementation of h-dec(n).

3.4.2 Correctness

Claim 14 The design depicted in Figure 3.5 is a correct implementation of a half-decoder.

3.4. HALF-DECODERS 31

Proof: The proof is by induction on n. The induction basis, for n = 1, follows simply by
considering the two possible values of x[0].

We introduce the following notation:

~y = y[2n − 1 : 0] ~yR = y[2n−1 − 1 : 0] ~yL = y[2n − 1 : 2n−1]

~x = x[n− 1 : 0] ~x′ = x[n− 2 : 0] ~z = z[2n−1 − 1 : 0]

Note that ~yL (~yR) corresponds to the left (right) half of ~y.

The induction hypothesis is that the module marked as h-dec(n − 1) in Figure 3.5 is
correct. This means that

~z = 02n−1−〈~x′〉 · 1〈~x
′〉.

We wish to prove that

~y = 02n−〈~x〉 · 1〈~x〉. (3.2)

We consider two cases: (1) x[n− 1] = 0, and (2) x[n− 1] = 1.

1. x[n − 1] = 0: Since and(A, 0) = 0 and or(A, 0) = A, it follows that ~yL = 02n−1

and
~yR = ~z. Therefore,

~y = ~yL · ~yR

= 02n−1

· ~z

= 02n−1

· 02n−1−〈~x′〉 · 1〈~x
′〉

= 02n−〈~x′〉 · 1〈~x
′〉

= 02n−〈~x〉 · 1〈~x〉.

The third line follows from the induction hypothesis. The fourth line follows by group-
ing together the block of zeros (i.e. the concatenation operation over strings is asso-
ciative). The fifth line follows from 〈~x〉 = 〈~x′〉 since x[n− 1] = 0.

2. x[n − 1] = 1: Since and(A, 1) = A and or(A, 1) = 1, it follows that ~yL = ~z and
~yR = 12n−1

. Therefore,

~y = ~yL · ~yR

= ~z · 12n−1

= 02n−1−〈~x′〉 · 1〈~x
′〉 · 12n−1

= 02n−〈~x〉 · 1〈~x〉.

The third line follows from the induction hypothesis. The fourth line follows by group-
ing together the block of zeros and applying 〈~x〉 = 〈~x′〉+ 2n−1 since x[n− 1] = 1.

We showed that in both cases Equation 3.2 holds, and hence the claim follows. 2

32 CHAPTER 3. COMBINATIONAL MODULES

3.4.3 Cost and delay analysis

The cost of h-dec(n) satisfies the following recurrence equation:

c(h-dec(n)) =

{

0 if n=1

c(h-dec(n− 1)) + 2n−1 · (c(and) + c(or)) otherwise.

It follows that

c(h-dec(n)) = (c(and) + c(or)) · (2n−1 + 2n−2 + · · ·+ 2)

= (c(and) + c(or)) · (2n − 2)

= Θ(2n).

The delay of h-dec(n) satisfies the following recurrence equation:

d(h-dec(n)) =

{

0 if n=1

d(h-dec(n− 1)) + max{d(and), d(or)} otherwise.

It follows that

d(h-dec(n)) = (n− 2) ·max{d(and), d(or)}

= Θ(n).

3.4.4 Lower bounds

Is the design of a half-decoder suggested in Section 3.4.1 a good design? What makes a
design good? We attach two measures to every design: cost and delay. In this section we
prove lower bounds on the cost and delay of every circuit that implements a half-decoder.
At this point, let us focus on the asymptotic cost and delay since the constants are rather
small (e.g. the constant in the cost analysis is c(and) + c(or)).

The following claim proves that the cost of every half-decoder design must be Ω(2n).
Claim 15 is a rather strong statement because it is not limited to a single design but to every
possible design one could come up with. In fact, the claim also resolves our question about
the optimality of the cost of the half-decoder design suggested in Section 3.4.1. It shows
that the presented design is in fact of minimum cost (up to constant factors).

Claim 15 Let Hn denote a combinational circuit that implements a half-decoder with input
length n. Then

c(Hn) ≥ 2n − 2.

Proof: The proof uses the following argument. Suppose we could prove the following
statements:

1. y[i] is not constant, for every i ∈ {0, . . . , 2n − 2]|. Namely there exists an input for
which y[i] = 0, and there exists an input for which y[i] = 1.

3.4. HALF-DECODERS 33

2. y[i] 6= y[j], for every i 6= j. Namely, there exists an input for which y[i] 6= y[j]. This
implies that the nets that feed the output gates must be distinct (we regard two nets
that are fed by the same output port of the same gate as identical). Let Ni denote the
net that feeds the output gate y[i].

3. y[i] 6= x[j], for every i ∈ {0, . . . , 2n − 2} and every j ∈ {0, . . . , (n − 1)}. This means
that the nets Ni cannot be fed by input gates (whose cost is zero).

It follows that every output y[i] (except for i = 2n − 1) must be fed by a non-trivial gate
(namely not a constant and not an input gate). Moreover, the gates that feed the nets
{Ni}

2n−2
i=1 must be distinct. It follows that the circuit must contain at least 2n− 1 non-trivial

gates. The cost of every gate is at least 1, and so the claim follows.
Statement (1) follows simply by considering the all-ones and all-zeros input strings.
We leave it as an exercise to show that, for every i 6= j, there exists an input ~x such that

the corresponding output satisfies y[i] 6= y[j]. It follows that Statement (2) holds.
Unfortunately, Statement (3) is not quite true! We leave it to the reader to prove that

y[2n−1 − 1] = x[n − 1]. Luckily, this is the only “counter-example”, and we prove it below.
(The curious reader should now understand why the statement of the claim is that the cost
is at least 2n − 2 and not 2n − 1.)

Our goal is to show that, for every i (except i = 2n − 1 and i = 2n−1 − 1), y[i] does
not simply equal one of the input bits. We now show that, for every output y[i] (except
i = 2n − 1 and i = 2n−1 − 1) and every j ∈ {0, . . . , (n− 1)}, there exist two input strings ~x′

and ~x′′ such that

1. x′[j] = x′′[j], and

2. Let ~y′ (~y′′) denote output string corresponding to ~x′ (~x′′). Then y′[i] 6= y′′[i].

The implication is that a circuit in which y[i] is fed directly by x[j] is not a correct half-
decoder (it would err with the input string ~x′ or with the input string ~x′′).

Given i ∈ {0, . . . 2n− 2}− {2n−1}, let x0[n− 1 : 0] = bin(i) and x1[n− 1 : 0] = bin(i+1).
By Claim 13 it follows that when fed by ~x0 (~x1), the output y[i] equals 0 (1). We consider
now the following three cases:

1. There exists an index k 6= j such that x0[k] = 0. In this case “flipping” the kth bit
of ~x0 (from 0 to 1) causes y[i] to flip to 1. Namely, Let x′0[n − 1 : 0] be defined by

x′0[`] = x0[`] if ` 6= k, and x′0[k] = 1. Since 〈 ~x0〉 ≥ i + 1, the input string ~x′0 produces

an output for which y[i] = 1. Hence the binary strings ~x0 and ~x′0 are exactly what we
are looking for to prove Statement (3).

2. There exists an index k 6= j such that x1[k] = 1. In this case “flipping” the kth bit of
~x1 (from 1 to 0) causes y[i] to flip to 1. Again, we have found two strings as desired.

3. If neither case (1) or case (2) hold, then ~x0 = 1n−(j+1) · 0 · 1j and ~x1 = 0n−(j+1) · 1 · 0j

(why?). By definition, we also know that 〈 ~x0〉+1 = 〈 ~x1〉. Hence, j = n− 1 (why?). It
follows that this case can occur only if i+ 1 = 2n−1, which we already ruled out.

34 CHAPTER 3. COMBINATIONAL MODULES

We showed that Statement (3) holds for all nets, except N2n−1−1, and the claim follows. 2

We proved a lower bound on cost of a half-decoder that matches (up to constant factors)
the cost of the design suggested in Section 3.4.1. This implies that the design in Section 3.4.1
is optimal! One cannot come up with a cheaper design.

We now turn to proving a lower bound on the delay of a half-decoder. We again rely on
the Logarithmic Delay Lower Bound Theorem (Theorem 11).

The following corollary proves a lower bound on the delay of half-decoders.

Corollary 16 Let Hn denote a combinational circuit that implements a half-decoder with
input length n. Let c denote the maximum fan-in of a gate in Hn. Then

d(Hn) ≥ dlogc ne .

Proof: In light of Theorem 11, all we need to show is that one of the outputs y[i] of the
half-decoder implements a Boolean function fi that satisfies cone(fi) = n. We leave it to the
reader to verify that y[0] depends on all the input bits, hence, the corollary follows. 2

3.5 An asymptotically optimal half-decoder design

In this section we present a half-decoder design with minimum cost and delay (up to constant
factors).

3.5.1 Comparison

Claim 13 implies that in order to determine whether y[i] = 1, we need to tell whether 〈~x〉 > i.
We therefore discuss how one can conduct such a comparison efficiently.

Note that it is easy to compare the unary value represented by a binary string z[2n − 1]
with a fixed number i ∈ [2n − 1 : 0]. (By easy we mean that it requires constant cost and
delay.)

Claim 17 Let wt(~z) denote the value represented by ~z in unary representation. For i > 0:

wt(~z) < i⇐⇒ z[i− 1] = 0

wt(~z) > i⇐⇒ z[i] = 1

wt(~z) = i⇐⇒ z[i] = 0 and z[i− 1] = 1.

Question 18 Present a combinational circuit of constant cost and delay that is given a
binary string z[2n − 1 : 0] that represents a number in unary representation and compares it
with a fixed i. The circuit has three outputs, denoted by >,<, and =, where exactly one of
them should equal 1. (The outputs may behave arbitrarily if ~z does not represent a number
in unary representation.)

Consider a partitioning of a string x[n − 1 : 0] according to a parameter k into two
sub-strings of length k and n− k. Namely

xR[k − 1 : 0] = x[k − 1 : 0] and xL[n− k − 1 : 0] = x[n− 1 : k].

3.5. AN ASYMPTOTICALLY OPTIMAL HALF-DECODER DESIGN 35

Binary representation implies that

〈~x〉 = 2k · 〈~xL〉+ 〈~xR〉.

Namely the quotient when dividing 〈~x〉 by 2k is 〈~xL〉, and the remainder is 〈~xR〉.
Consider an index i, and divide it by 2k to obtain i = 2k · q+r, where r ∈ {0, . . . , 2k−1}.

(The quotient of this division is q, and r is simply the remainder.) Division by 2k can be
interpreted as partitioning the numbers into blocks, where each block consists of numbers
with the same quotient. This division divides the range [2n − 1 : 0] into 2n−k blocks, each
block is of length 2k. The quotient q can be viewed as an index of the block that i belongs
to. The remainder r can be viewed as the offset of i within its block.

The following claim shows how one could compare i and 〈~x〉 given q, r, 〈 ~xL〉, and 〈 ~xR〉.

Claim 18 One can compare i and 〈~x〉 as follows:

1. If 〈~xL〉 > q, then 〈~x〉 > i.

2. If 〈~xL〉 < q, then 〈~x〉 < i.

3. If 〈~xL〉 = q, then the relation between i and 〈~x〉 is identical to the relation between r
and 〈~xR〉 (e.g. 〈~xR〉 < r implies 〈~x〉 < i).

The interpretation of the above claim in terms of “blocks” and “offsets” is the following.
The number 〈~x〉 is a number in the range [2n − 1 : 0]. The index of the block this number
belongs to is 〈 ~xL〉. The offset of this number within its block is 〈 ~xR〉. Hence, comparison of
〈~x〉 and i can be done in two steps: compare the block indexes, if they are different, then
the number with the higher block index is bigger. If the block indexes are identical, then
the offset value determines which number is bigger.

In the next section we present a half-decoder design which is based on computing binary
strings that represent 〈 ~xL〉 and 〈 ~xR〉 in unary representation. Claim 18 in conjunction with
Question 18 are then used to compute each of the outputs y[i] with constant delay and cost.

3.5.2 Implementation

In this section we present an optimal implementation of a half-decoder. We denote this
design by h-dec∗(n). As in Section 3.4.1 our design is recursive. The design for n = 1 is
identical to h-dec(1).

Figure 3.5 depicts a recursive implementation of an h-dec∗(n). Note that the design
uses an additional parameter k ∈ [n − 1 : 0], so formally the design depends on k as well.
We omit k since a reasonable choice for the value of this parameter is k = dn−1

2
e (this will

become clearer when we analyze the delay). The input string x[n− 1 : 0] is divided into two
strings xL[n−k−1 : 0] = x[n−1 : k] and xR[k−1 : 0] = x[k−1 : 0]. These strings are fed to
a half-decoders h-dec∗(n− k) and h-dec∗(k). We denote the outputs of the half-decoders
by zL[2

n−k − 1 : 0] and zR[2
k − 1 : 0], respectively. The string zR[2

k − 1 : 0] is shifted by one
position to the left to obtain the string z ′R[2

k − 1 : 0]. This shifting pads in a 1 and discards
zR[2

k − 1] (hence z′R[0] = 1 and z′R[j + 1] = zR[j]).

36 CHAPTER 3. COMBINATIONAL MODULES

The indexes of the output ~y is partitioned into blocks {Bq}
2n−k

q=0 as follows:

Bq
4
=

{

[2k − 2 : 0] if q = 0

[q · 2k + 2k − 2 : q · 2k − 1] if q > 0.

Note that the length of block B0 is 2k − 2. To unify notation we may define y[−1] = 1, and
then redefine B0 = [2k − 2 : −1]. Note also that [2n − 1] does not belong to any block; this
is no cause of trouble since y[2n − 1] is always 0 (so one should connect y[2n − 1] to zero
directly). We now discuss how the values of y[i] for indexes i that belong to block Bq are
computed. Note that i belongs to block Bq iff i+ 1 = q · 2k + r, where r ∈ [0 : 2k − 1].

Compare 〈~zL〉 and q. Let the result of the comparison be denoted by a symbol γq ∈ {<
,=, >}, where γq =< means that wt(~zL) < q. (We ignore at this point the issue of how
the symbol γ is actually represented by a binary string.) Now γq controls a “multiplexer”
muxq(2

k) with three data inputs marked by in>, in=, in>. Given a control signal γq, the
output of muxq equals the signal that is fed via the input inγq

. Finally, the signals connected

to the 3 data inputs of muxq(2
k) are: 0 is fed to in<, 1 is fed to in>, and ~z′R is fed to in=.

This computation applied for every block Bq. Hence there are 2
n−k different instances of the

comparator and muxq(2
k). Each comparator is fed only by two bits of ~zL (which explains

the junction depicted by a filled circle).

h-dec∗(n − k)

2n−k

muxq(2
k)

h-dec∗(k)

2k

2

γq ∈ {<,=, >}

2k

q ∈ [2n−k − 1 : 0]

for every

q ∈ [2n−k − 1 : 0]

for every

2k

1 1

x[n − 1 : k]

n− k

x[k − 1 : 0]

k

y[q · 2n−k + 2k − 2 : q · 2n−k − 1]

in=in> in<

1 0

zL[q : (q − 1)]

zR[2k − 1 : 0]zL[2n−k − 1 : 0]

Shift Left

z′R[2k − 1 : 0]

(pad=1)

wt(~zL) T q?

Figure 3.6: A recursive implementation of h-dec∗(n).

Example 4 Let n = 4 and k = 2. The output y[15 : 0] is partitioned into 4 blocks: y[14 :
11], y[10 : 7], y[6 : 3], y[2 : 0].

3.5. AN ASYMPTOTICALLY OPTIMAL HALF-DECODER DESIGN 37

Consider i = 6. Since i + 1 = 1 · 4 + 3, when divided by 4 the quotient is 1 and the
remainder is 3. By Claim 13, y[6] = 1 iff 〈~x〉 > 6. By Claim 18, 〈~x〉 > 6 iff (〈~xL〉 > 1) or
(〈~xL〉 = 1 and 〈~xR〉 ≥ 3). It follows that if γ1 equals >, then y[6] = 1. If γ1 equals =, then
y[6] = zR[2]. Finally, if γ1 equals <, then y[6] = 0.

Remark 3 The design depicted in Figure 3.5 is a special case of the the design depicted
in Figure 3.6, when k = n − 1. In this case there are just two blocks. The comparator is
degenerated to x[n − 1] (e.g. indicating “less than” for the right block). The multiplexer is
degenerated to an or-gate or to an and-gate.

The following question shows that a shift by one position to the left incurs zero cost and
zero delay.

Question 19 Show how to implement the “Shift Left” box depicted in Figure 3.6 with zero
cost and zero delay.

Question 20 Suggest a combinational circuit that computes y[i] from zL[q], zL[q − 1] and
zR[r − 1].

3.5.3 Correctness

Claim 19 The design depicted in Figure 3.6 is a correct implementation of a half-decoder.

Proof: The proof is by induction on n. The induction basis is identical to that in the proof
of Claim 14. Before we proceed to the induction step we observe two properties:

1. i ∈ Bq iff i + 1 = q · 2k + r, for r ∈ [0 : 2k − 1]. In fact, we defined the blocks exactly
so that this property holds.

2. If γq equals “=”, then y[i] = z′R[mod((i + 1), 2k)]. The reason is that muxq connects
~z′R to block Bq of the output. By definition, Bq = [q · 2k + (2k − 2) : q · 2k − 1] and

the indexes of ~z′R are [2k − 1 : 0]. This means that y[q · 2k + j − 1] = zR[j], which is
exactly what is claimed.

We now prove the induction step. By Claim 13 it suffices to show that y[i] = 1 iff
〈~x〉 ≥ i+ 1, for every i ∈ [2n − 1 : 0]. Fix an index i and let i+ 1 = q · 2k + r. By Property
(1), i ∈ Bq. By Claim 18,

y[i] = 1⇐⇒ (〈~xL〉 > q) or ((〈~xL〉 = q) and (〈~xR〉 ≥ r)). (3.3)

We now consider three cases:

1. 〈~xL〉 > q. In this case γq =
′′>′′, hence the multiplexer muxq sets y[i] = 1, as required

by Eq. 3.3.

2. 〈~xL〉 < q. In this case γq =
′′<′′, hence the multiplexer muxq sets y[i] = 0, as required

by Eq. 3.3.

38 CHAPTER 3. COMBINATIONAL MODULES

3. 〈~xL〉 = q. In this case γq =
′′=′′, hence By Property (2), y[i] = z ′R[mod((i+1), 2k)]. We

distinguish now between two sub-cases:

(a) r = 0. z′R[r] = 1, and hence y[i] = 1. This agrees with Eq. 3.3 since 〈~xR〉 is always
non-negative.

(b) r > 0. In this case z′R[r] = zR[r − 1]. The induction hypothesis implies that
zR[r − 1] = 1 iff 〈~xL〉 ≥ r. Hence in this sub-case y[i] = 1 iff 〈~xL〉 ≥ r, which
agrees with Eq. 3.3.

The above case analysis covered all the possible cases for the right-hand side of Eq. 3.3.
Hence both directions of the equation are proved, and the claim follows.

2

3.5.4 Cost and delay analysis

The cost of h-dec∗(n) satisfies the following recurrence equation:

c(h-dec∗(n)) =

0 if n=1

c(h-dec∗(k)) + c(h-dec∗(n− k)) otherwise.

+2n−k ·
(

c(compare) + 2k · c(3:1-mux)
)

The cost of a 3:1-mux is constant. From Question 18, it follows that the cost of each
comparator is also constant. It follows that

c(h-dec∗(n)) = c(h-dec∗(k)) + c(h-dec∗(n− k)) + Θ(2n)

This recurrence is minimized when k and n− k are as equal as possible. If k = dn−1
2
e, then

the recurrence degenerates to

c(h-dec∗(n)) = 2 · c(h-dec∗(n/2)) + Θ(2n) (3.4)

In the following question the reader is required to show the solution to this recurrence.

Question 21 Show that the solution to the recurrence in Eq. 3.4 is c(h-dec∗(n)) = Θ(2n).

It follows that the asymptotic cost of h-dec∗(n) is optimal.
The delay of h-dec∗(n) satisfies the following recurrence equation:

d(h-dec∗(n)) =

0 if n=1

max{d(h-dec∗(k)), d(h-dec∗(n− k)) + d(compare)} otherwise.

+d(3:1-mux)

Again the delay of a comparator is constant as well as a delay of a 3:1-mux. Set k = d n−1
2
e,

then the recurrence degenerates to

d(h-dec∗(n)) = d(h-dec∗(n/2)) + Θ(1)

= Θ(log n).

It follows that the delay of h-dec∗(n) is optimal, as promised.

3.6. DECODERS 39

3.6 Decoders

A decoder with input length n is a combinational circuit defined as follows:

Input: x[n− 1 : 0].

Output: y[2n − 1 : 0]

Functionality:
y[i] = 1⇐⇒ 〈~x〉 = i.

Note that exactly one bit of the output ~y is set to one. Such a representation of a number
is often termed one-hot encoding or 1-out-of-k encoding.

We denote a decoder of length n by decoder(n).

Example 5 Consider a decoder decoder(3). On input x = 101, the output y equals
00100000.

3.6.1 Implementation

We design a decoder(n) using recursion. We start by designing a decoder(n) with n = 1.
We then proceed by designing a decoder(n) based on “smaller”decoders. The circuit
decoder(1) is simply one inverter where: y[0]← inv(x[0]) and y[1]← x[0].

Figure 3.7 depicts a recursive implementation of an decoder(n). As in the definition of
h-dec∗(n), the design uses an additional parameter k ∈ [n − 1 : 0], so formally the design
depends on k as well. We omit k since, as in the h-dec∗(n) design, a reasonable choice for
the value of this parameter is k = dn−1

2
e. The input string x[n − 1 : 0] is divided into two

strings xL[n− k − 1 : 0] = x[n− 1 : k] and xR[k − 1 : 0] = x[k − 1 : 0]. These strings are fed
to decoders decoder(n − k) and decoder(k). We denote the outputs of the decoders by
Q[2n−k − 1 : 0] and R[2k − 1 : 0], respectively. Consider an index i ∈ [2n− 1]. Divide i by 2k

to obtain
i = 2k · q + r,

where r ∈ [2k−1 : 0] is the remainder and q is the quotient. The output bit y[i] is computed
by an and-gate andi that is fed by Q[q] and R[r].

3.6.2 Correctness

Claim 20 The design depicted in Figure 3.7 is a correct implementation of a decoder.

Proof: The proof is by induction on n. The induction basis is trivial. We proceed directly
to the induction step. We need to show that y[i] = 1 iff 〈~x〉 = i, for every i ∈ [2n − 1 : 0].
Fix an index i and let i = q · 2k + r, where r ∈ [2k − 1 : 0]. By Claim 18,

〈~x〉 = i⇐⇒ (〈~xL〉 = q) and (〈~xL〉 = r). (3.5)

The induction basis applied to decoder(k) (decoder(n − k)) implies that R[j] = 1 iff
〈~xR〉 = j (Q[j] = 1 iff 〈~xL〉 = j). Since y[i] = and(Q[q], R[r]), it follows that y[i] = 1 iff
〈~x〉 = 1, and the claim follows. 2

40 CHAPTER 3. COMBINATIONAL MODULES

Decoder(n− k) Decoder(k)

x[k − 1 : 0]x[n− 1 : k]

Q[2n−k − 1 : 0] R[2k − 1 : 0]

andi

(i ∈ {0, 1, . . . , 2n − 1})

Q[bi/2n−kc] R[i mod 2k]

y[i]

Figure 3.7: A recursive implementation of decoder(n).

3.6.3 Cost and delay analysis

The cost of decoder(n) satisfies the following recurrence equation:

c(h-dec∗(n)) =

{

c(inv) if n=1

c(decoder(k)) + c(decoder(n− k)) + 2n · c(and) otherwise.

It follows that

c(h-dec∗(n)) = c(h-dec∗(k)) + c(h-dec∗(n− k)) + Θ(2n)

As in the analysis of the cost of h-dec∗(n), the cost is minimized when k and n− k are as
equal as possible. If k = dn−1

2
e, then c(decoder(n)) = Θ(2n).

The delay of h-dec∗(n) satisfies the following recurrence equation:

d(h-dec∗(n)) =

{

d(inv) if n=1

max{d(h-dec∗(k)), d(h-dec∗(n− k))}+ d(and) otherwise.

Set k = dn−1
2
e, and it follows that d(decoder(n)) = Θ(log n).

Question 22 Prove that decoder(n) is asymptotically optimal with respect to cost and
delay.

3.7. ENCODERS 41

3.7 Encoders

An encoder implements the inverse Boolean function of a decoder. Note however, that the
Boolean function, decodern, implemented by a decoder is not surjective. In fact, the range
of decodern is the set of binary vectors in which exactly one bit equals 1. It follows that an
encoder implements a partial Boolean function (i.e. a function that is not defined for every
binary string).

An encoder with input length 2n and output length n is a combinational circuit defined
as follows:

Input: y[2n − 1 : 0], with wt(~y = 1) (i.e. exactly one bit equals 1 in ~y).

Output: x[n− 1 : 0]

Functionality: If wt(~y) = 1, let i denote the index such that y[i] = 1. In this case ~x should
satisfy 〈~x〉 = i. If wt(~y) 6= 1, then the output ~x is arbitrary. Formally:

wt(~y) = 1 =⇒ y[〈~x〉] = 1.

Note that the functionality is not uniquely defined for all inputs ~y. However, if ~y is out-
put by a decoder, then wt(~y) = 1, and hence an encoder implements the inverse function
of a decoder. We denote an encoder with with input length 2n and output length n by
encoder(n).

Example 6 Consider an encoder encoder(3). On input 00100000, the output equals 101.

3.7.1 Implementation

In this section we present a step by step implementation of an encoder. We start with a
rather costly design, and show how it can be transformed to an optimal one.

As in the design of a decoder, out design is recursive. The design for n = 1, is simply
y[0]← x[1]. We proceed with the design for n > 1.

Figure 3.8 depicts an implementation of encoder(n). Our design methodology is “divide-
and-conquer” (which, if fact, we already employed in the designs h-dec∗(n) and decoder(n)).
We partition the input ~y into two equals strings

yL[2
n−1 − 1 : 0] = y[2n − 1 : 2n−1] yR[2

n−1 − 1 : 0] = y[2n−1 − 1 : 0].

Each half is fed to an encoder(n − 1). Let a[n − 2 : 0] (b[n − 2 : 0]) denote the output of
the encoder(n− 1) circuit that is fed by ~yL (~yR).

An important problem with the design at this stage is that if ~y is a “legal” input (namely,
wt(~y) = 1), one of inputs ~yL or ~yR is not. This renders our approach useless. To fix this
problem we extend the functionality of an encoder so that

wt(~y) = 0 =⇒ wt(~x) = 0.

Namely, an all-zeros output is computed when the input is all-zeros.
Having fixed the problem caused by inputs that are all zeros, we proceed with the “con-

quer” step. We distinguish between three cases, depending on which half contains the bit
that is lit in ~y, if any.

42 CHAPTER 3. COMBINATIONAL MODULES

n− 1 n− 1

or(n− 1)

n− 1

x[n− 2 : 0]

2n−1

1

y[2n − 1 : 2n−1] y[2n−1 − 1 : 0]

2n−1

a[n− 2 : 0]b[n− 2 : 0]

or-tree(2n−1)

encoder(n− 1) encoder(n− 1)

x[n− 1]

Figure 3.8: A recursive implementation of encoder(n).

1. If wt(~yL) = 0 and wt(~yR) = 1, then the induction hypothesis implies that ~b = 0n−1 and
yR[〈~a〉] = 1. It follows that y[〈~a〉] = 1, hence the desired output is ~x = 0 · ~a.

2. If wt(~yL) = 1 and wt(~yR) = 0, then the induction hypothesis implies that yL[〈~b〉] = 1

and ~a = 0n−1. It follows that y[2n−1 + 〈~b〉] = 1, hence the desired output is ~x = 1 ·~b.

3. If wt(〈~y〉) = 0, then the induction hypothesis implies that ~a = ~b = 0n−1. The desired
output is ~x = 0n.

We can unite the last three cases simply by setting the output ~x as follows:

x[n− 1] = or2n−1(~yL)

x[n− 2 : 0] = or(~a,~b),

where or(~a,~b) denotes bit-wise or-ing, namely, the binary vector ~z whose i bit satisfies
z[i] = or(a[i], b[i]). The reason that this unification is correct is that in all three cases one of

the vectors ~a, ~b is an all zeros vector. We conclude that the design encoder(n) is correct.

Claim 21 The circuit encoder(n) depicted in Figure 3.8 is a correct implementation of
an encoder with input length 2n.

The problem with this design is its cost as summarized in the following question.

Question 23 This question deals with the cost and delay of encoder(n).

1. Prove that c(encoder(n)) = Θ(n · 2n).

2. Prove that d(encoder(n)) = Θ(n).

3.7. ENCODERS 43

3. Can you suggest a separate circuit for every output bit x[i] with cost O(2n) and delay
O(n)? If so then what advantage does the encoder(n) design have over the trivial
design in which every output bit is computed by a separate circuit?

Question 23 suggests that apart from fan-out considerations, the encoder(n) design is
a costly design. Can we do better? The following claim serves as a basis for reducing the
cost of an encoder.

Claim 22 Let encodern denote the Boolean function defined over binary strings of length
2n whose weight is at most 1. If wt(y[2n − 1 : 0]) ≤ 1, then

encodern−1(or(~yL, ~yR)) = or(encodern−1(~yL),encodern−1(~yR)).

Proof: The proof in case ~y = 02n

is trivial. We prove the case that wt(~yL) = 0 and
wt(~yR) = 1 (the proof of other case is analogous). Assume that yR[i] = 1. Hence,

encodern−1(or(~yL, ~yR)) = encodern−1(or(02n−1

, ~yR))

= encodern−1(~yR)).

However,

or(encodern−1(~yL),encodern−1(~yR)) = or(encodern−1(0
2n−1

),encodern−1(~yR))

= or(0n−1,encodern−1(~yR))

= encodern−1(~yR),

and the claim follows. 2

Figure 3.9 depicts the design encoder∗(n) obtained from encoder(n) after commuting
the or and the encoder(n− 1) operations. The correctness follows from the correctness of
encoder(n) and Claim 22.

Question 24 The designs encoder(n) and encoder∗(n) lack inverters, and hence are
monotone circuits. However, the Boolean function corresponding to an encoder is not mono-
tone. Can you resolve this contradiction?

3.7.2 Cost and delay analysis

The cost of encoder∗(n) satisfies the following recurrence equation:

c(encoder∗(n)) =

{

0 if n=1

c(encoder∗(n− 1)) + 2n · c(or) otherwise.

This recurrence equation is similar to that of the half-decoder h-dec(n), hence

c(encoder∗(n)) = (2 · 2n − 2) · c(or)) = Θ(2n).

44 CHAPTER 3. COMBINATIONAL MODULES

2n−1

n− 1

encoder(n− 1)

1

or-tree(2n−1)

x[n− 1]

2n−1

or(2n−1)

2n−1

x[n− 2 : 0]

~yL ~yR

Figure 3.9: A recursive implementation of encoder∗(n).

The delay of encoder∗(n) satisfies the following recurrence equation:

d(encoder∗(n)) =

{

0 if n=1

max{d(or-tree(2n−1), d(encoder∗(n− 1) + d(or)} otherwise.

Since d(or-tree(2n−1) = (n− 1) · d(or), it follows that

d(encoder∗(n) = Θ(n).

Again the delay of a comparator is constant as well as a delay of a 3:1-mux. Set k = d n−1
2
e,

then the recurrence degenerates to

d(h-dec∗(n)) = d(h-dec∗(n/2)) + Θ(1)

= Θ(log n).

It follows that the delay of h-dec∗(n) is optimal, as promised.
The following question deals with lower bounds for an encoder.

Question 25 Proof the cost and delay of encoder∗(n) are asymptotically optimal.

3.8 Multiplexers

An (n:1)-mux is a combinational circuit defined as follows:

Input: D[n− 1 : 0] and S[k − 1 : 0] where k = dlog2 ne.

Output: Y ∈ {0, 1}.

3.8. MULTIPLEXERS 45

Functionality:
Y = D[〈~S〉].

The input ~S encodes the index of the input bit that should be output. To simplify the
discussion, we will assume in this section that n is a power of 2, namely, n = 2k.

Example 7 Let n = 4, D[3 : 0] = 0100, and S[1 : 0] = 11. The output Y should be 1.

3.8.1 Implementation

We describe two implementations of (n:1)-mux. The first implementation is based on trans-

lating the number 〈~S〉 to 1-out-of-n representation (using a decoder). The second implemen-
tation is basically a tree.

Figure 3.10 depicts an implementation of a (n:1)-mux based on a decoder. The input

S[k−1 : 0] is fed to a decoder(k). The decoder outputs a 1-out-of-n representation of 〈~S〉.
Bitwise-and is applied to the output of the decoder and the input D[n− 1 : 0]. The output
of the bitwise-and is then fed to an or-tree to produce Y .

k

2k2k

2k

1

decoder(k)

S[k − 1 : 0]D[n− 1 : 0]

Y

and(2k)

or-tree(2k)

Figure 3.10: An (n:1)-mux based on a decoder (n = 2k).

Question 26 The following question deals with the implementation of (n:1)-mux suggested
in Figure 3.10.

1. Prove the correctness of the design.

2. Analyze the cost and delay of the design.

3. Prove that the cost and delay of the design are asymptotically optimal.

46 CHAPTER 3. COMBINATIONAL MODULES

A second implementation of (n:1)-mux is a recursive tree-like implementation. The design

for n = 2 is simply a mux. The design for n = 2k is depicted in Figure 3.11. The input ~D is
divided into two parts of equal length. Each part is fed to an (n

2
: 1)-mux controlled by the

signal S[k − 2 : 0]. The outputs of the (n
2
: 1)-muxs are YL and YR. Finally a mux selects

between YL and YR according to the value of S[k − 1].

S[k − 1]

(n
2
: 1)-mux

n/2

1

S[k − 2 : 0]

D[n
2
− 1 : 0]

(n
2
: 1)-mux

n/2

1

S[k − 2 : 0]

D[n− 1 : n
2
]

1

mux

Y

YL YR

1 0

Figure 3.11: A recursive implementation of (n:1)-mux (n = 2k).

Question 27 Answer the same questions asked in Question 26 but this time with respect to
the implementation of the (n:1)-mux suggested in Figure 3.11.

Both implementations suggested in this section are asymptotically optimal with respect
to cost and delay. Which design is better? Our model is not refined enough to answer this
question sharply. A cost and delay analysis based on the cost and delay of gates listed in
Table 2.1 suggests that the tree-like implementation is cheaper and faster.

Question 28 Compute the cost and delay of both implementations of (n:1)-mux based on
the data in Table 2.1.

3.9 Cyclic Shifters

A cyclic left shift by i positions of a binary string a[n− 1 : 0] is the string b[n− 1 : 0] where
b[j] = a[mod(i+ j, n)].

Example 8 Let a[3 : 0] = 0010. A cyclic left shift by one position of ~a is the string 0100.
A cyclic left shift by 3 positions of ~a is the string 0001.

A barrel-shifter(n) is a combinational circuit defined as follows:

Input: x[n− 1 : 0] and sa[k − 1 : 0] where k = dlog2 ne.

Output: y[n− 1 : 0].

3.9. CYCLIC SHIFTERS 47

Functionality: ~y is a cyclic left shift of ~x by 〈 ~sa〉 positions. Formally,

y[j] = x[mod(j + 〈 ~sa〉, n)],

for every j ∈ [n− 1 : 0].

To simplify the discussion, we will assume in this section that n is a power of 2, namely,
n = 2k.

3.9.1 Implementation

We break the task of cyclic left shifting by ~sa positions into separate tasks of shifting by
powers of two. We define this sub-task formally as follows.

A cls(n, i) is a combinational circuit that implements a cyclic left shift by zero or 2i

positions defined as follows:

Input: x[n− 1 : 0] and s ∈ {0, 1}.

Output: y[n− 1 : 0].

Functionality:
y[j] = x[mod(j + s · 2i, n)],

for every j ∈ [n− 1 : 0].

A cls(n, i) is quite simple to implement since y[j] is either x[j] or x[mod(j + 2i, n)]. So
all one needs is a mux to select between the two depending on the value of s. It follows
that the delay of cls(n, i) is the delay of a mux, and the cost is n times the cost of a
mux. Figure 3.12 depicts an implementation of a cls(4, 1). It is self-evident that the main
complication with the design of cls(n.i) is routing (i.e. drawing the wires).

1

s
1 0

mux

y[2]

1

s
1 0

mux

y[1]

s

1

y[3]

1

s
1 0

mux

y[0]

1 0

mux

x[0]x[1]x[2]x[3]

Figure 3.12: A row of multiplexers implement a cls(4, 1).

Having designed a cls(n, i) we are all set for implementing a barrel-shifter(n). Fig-
ure 3.13 depicts an implementation of a barrel-shifter(n). The implementation is based
on k levels of cls(n, i), for i ∈ [k − 1 : 0], where the ith level is controlled by sa[i].

48 CHAPTER 3. COMBINATIONAL MODULES

cls(n.0)sa[0]

cls(n.1)sa[1]

cls(n.k − 1)sa[k − 1]

x[n− 1 : 0]

y[n− 1 : 0]

Figure 3.13: A barrel-shifter(n) built of k levels of cls(n, i) (n = 2k).

3.10. PRIORITY ENCODERS 49

Question 29 This question deals with the design of the barrel-shifter(n) depicted in
Figure 3.13.

1. Prove the correctness of the design.

2. Analyze the cost and delay of the design.

3. Prove the asymptotic optimality of the delay of the design.

4. Prove a lower bound on the cost of a combinational circuit that implements a cyclic
shifter.

3.10 Priority Encoders

The leading one in a binary string that is not all zeros is the left most bit that equals 1.
A priority encoder is a combinational circuit that computes the index of the leading one.
Formally, penc(n) is a combinational circuit defined as follows.

Input: x[n− 1 : 0].

Output: y[k − 1 : 0], where k = dlog2 ne.

Functionality:

〈~y〉 = max{i | x[i] = 0},

where we use the notation that the maximum over an empty set is zero.

To simplify the discussion, we will assume in this section that n is a power of 2, namely,
n = 2k.

Example 9 Given input ~x = 010111, a penc(6) outputs y[2 : 0] = 100, since x[4] is the
leading one in ~x.

3.10.1 Implementation

We apply divide-and-conquer in the recursive design of a priority encoder. A penc(1) is a
trivial circuit since y[0] = 0 (recall that 〈~y〉 = 0 if ~x = 0n). A recursive design of penc(n)
for n > 1 that is a power of 2 is depicted in Figure 3.14.

Question 30 This question deals with the design of the priority encoder penc(n) depicted
in Figure 3.14.

1. Prove the correctness of the design.

2. Analyze the cost and delay of the design.

3. Prove the asymptotic optimality of the delay of the design.

50 CHAPTER 3. COMBINATIONAL MODULES

k − 1

penc(n
2
) penc(n

2
)

k − 1

n/2 n/2

or-tree(n
2
)

1

mux(k − 1)

y[k − 2 : 0]

yR[k − 2 : 0]

x[n− 1 : n
2
] x[n

2
− 1 : 0]

yL[k − 2 : 0]k − 1

1 0

y[k − 1]

Figure 3.14: A recursive implementation of penc(n).

4. Prove a lower bound on the cost of a combinational circuit that implements a priority
encoder.

The cost of penc(n) depicted in Figure 3.14 is Θ(n log n). Can we reduce the cost to
Θ(n)? The following question deals with this issue (a somewhat more “systematic” linear
cost design can be obtained by parallel prefix computation).

Question 31 Modify the penc(n) design depicted in Figure 3.14 so that the cost is Θ(n).
(Hint: use a single “global” or-tree(n). The internal signals of the or-tree are fed to the
recursive instances penc(n

2
).)

Chapter 4

Addition

Wolfgang Paul suggested that I ask students (before teaching how adders are designed) to
try to define what a binary adder is. When I pose this question in class I often get answers
like: “sure, it is a circuit that adds numbers!”. When I insist that I am after a formal
answer, I can eventually get an answer that has some reasonable ingredients, but is never
quite there. Lack of ability to formally specify what a circuit should does hit back when one
tries to design somewhat more complicated circuits. Without formal specification there is
never confidence or evidence that modular design methodology can be successful; separately,
modules function properly, but when “glued” together, strange things happen.

Perhaps one of the least understood topics is how subtraction is done via addition. No
wonder, except for books of Wolfgang Paul and his co-authors, no formal specification or
proof is provided as to what an adder is, and how it can be used to perform subtraction in
two’s complement representation.

4.1 What is a binary adder?

A binary adder adder(n) is a combinational circuit defined as follows.

Input: A[n− 1 : 0], B[n− 1 : 0], and C[0].

Output: S[n− 1 : 0] and C[n].

Functionality:

〈~S〉+ 2n · C[n] = 〈 ~A〉+ 〈 ~B〉+ C[0] (4.1)

The inputs ~A and ~B are the binary representations of the addends. The input C[0] is often

called the carry-in bit. The output ~S is the binary representation of the sum, and the output
C[n] is often called the carry-out bit.

Question 32 Verify that the functionality of adder(n) is well defined. Show that the set

of numbers that can be represented by sums ~A+ ~B +C[0] equals the set of numbers that can

be represented by sums ~S + C[n].

51

52 CHAPTER 4. ADDITION

There are many ways to implement an adder(n). In this chapter we present a few
adder(n) designs.

Question 33 Prove lower bounds on the cost and delay of combinational circuits that im-
plement an adder(n).

4.2 Ripple-carry adders

Ripple-carry adders are adders that are built of a chain of full-adders. We denote a ripple-
carry adder that implements an adder(n) by rca(n). A full-adder is a combinational circuit
defined as follows.

Definition 20 (Full-Adder) A full-adder is a combinational circuit with 3 inputs x, y, z ∈
{0, 1} and 2 outputs s[1 : 0] that satisfies:

〈s[1 : 0]〉 = x+ y + z.

The output s[0] of a full-adder is often called the sum output, and The output s[1] of a
full-adder is often called the carry-out output. We denote a full-adder by fa.

A ripple-carry adder, rca(n), built of a chain of full-adders is depicted in Figure 4.1.
The carry-out output of the ith full is denoted by c[i + 1]. One can readily notice that an
rca(n) adds numbers in the same fashion that we a taught to add in elementary school.

sc
fa

S[0]

A[0]B[0]

sc
fa

A[1]B[1]

C[2] S[1]C[k − 2]

sc
fa

sc
fa

S[k − 2]C[k − 1]S[k − 1]C[k] C[1]

A[k − 2]B[k − 2]A[k − 1]B[k − 1]

C[0]

Figure 4.1: A ripple-carry adder rca(n).

4.2.1 Correctness proof

To facilitate proving the correctness of an rca(n) we first present an equivalent recursive
definition. An rca(1) is simply a full adder. A recursive description of rca(n), for n ≥ 1,
is depicted in Figure 4.2. The following claim deals with the correctness of rca(n).

Claim 23 rca(n) is a correct implementation of adder(n).

4.2. RIPPLE-CARRY ADDERS 53

S[n− 2 : 0]

n-1n-1

n-1

sc
fa

S[n− 1]C[n]

C[0]
rca(n− 1)

A[n− 1]B[n− 1]

C[n− 1]

A[n− 2 : 0]B[n− 2 : 0]

Figure 4.2: A recursive description of rca(n).

Proof: The proof is by induction on n. The induction basis, for n = 1, follows directly
from the definition of a full-adder. The induction step is proved as follows.

The induction hypothesis, for n− 1, is

〈A[n− 2 : 0]〉+ 〈B[n− 2 : 0]〉+ C[0] = 2n−1 · C[n− 1] + 〈S[n− 2 : 0]〉. (4.2)

The definition of a full-adder states that

A[n− 1] +B[n− 1] + C[n− 1] = 2 · C[n] + S[n− 1]. (4.3)

Multiply Equation 4.3 by 2n−1. Note that 2n−1 · A[n − 1] + 〈A[n− 2 : 0]〉 = 〈A[n− 1 : 0]〉.
By adding with Equation 4.2 we obtain:

2n−1 ·C[n−1]+〈A[n− 1 : 0]〉+〈B[n− 1 : 0]〉+C[0] = 2n ·C[n]+2n−1 ·C[n−1]+〈S[n− 1 : 0]〉.

Cancel out 2n−1 · C[n− 1], and the claim follows. 2

4.2.2 Delay and cost analysis

The cost of an rca(n) satisfies:

c(rca(n)) = n · c(fa) = Θ(n).

The delay of an rca(n) satisfies

d(rca(n)) = n · d(fa) = Θ(n).

The answer to Question 33 implies that the cost of rca(n) is optimal, but its delay is
exponentially far away from the optimum delay. The clock rates in modern microprocessors
correspond to the delay of 15-20 gates. Most microprocessors easily add 32-bit numbers
within one clock cycle. Obviously, adders in such microprocessors are not ripple-carry adders.
In the rest of the chapter we present faster adder(n) designs.

TO BE COMPLETED

54 CHAPTER 4. ADDITION

Chapter 5

Introduction to Interrupts

5.1 Computational models

By now you are familiar with two models of a “computer”: (A) A DLX CPU with main
memory that can execute programs written in DLX machine language. (B) A computer
system that can execute various programs. These programs are often written in a high
level language such as C. Moreover, computers are capable of executing multiple programs
simultaneously (or at least give users sometimes the impression that programs are being
executed simultaneously). How is abstraction B obtained from abstraction A?

Every complex system is built hierarchically: each level in the hierarchy provides service
to the level above it and receives service from the level below it. Good engineering practice
is expressed by concise and precise definitions of each level and of the interactions between
the levels. In our context, the DLX CPU abstraction is obtained by a digital circuit, which
in turn is based on the digital abstraction. The abstraction of a computer system is based
on the abstraction of a CPU with main memory (as well as many other components). This
chapter deals with how the abstraction of a computer system is obtained.

Let us start with a relatively simple issue. How are programs written in C executed on a
DLX CPU? This question encapsulates many issues, the first issue is the issue of language; it
is required to translate the program written in C to the DLX machine language. Translation
is performed by a program called a compiler. A somewhat over-simplified definition of a
compiler is that it is a program that is given as input a file that contains a program written
in a high level language and outputs its translation to a program written in machine language.
However, translation is not enough to bridge between the two abstractions (i.e. high-level
programming and a computer running programs).

A computer can be viewed as a list of resources: the CPU, main memory, secondary
memory (disks), keyboard, mouse, monitor, printer, modem, etc. (Just look at computer
ads if you are curious about more components that are often part of a computer system). A
program that is executed by a computer uses these resources. The main resource consumed
by a running program is the time of the CPU, namely the right to run commands of the
program on the CPU. Other resources used by a program are storing the program and the
data in the memory, receiving input from the use via the mouse and keyboard, displaying
output on the monitor. The main problem is in managing such a complex set of resources

55

56 CHAPTER 5. INTRODUCTION TO INTERRUPTS

so that they function in a coordinated fashion. Moreover, a typical programmer does not
concern herself with the fact that some of the resources are being used by other programs.
Magically a typical programmer works under the illusion that all the resources are available
upon request, and yet even though this assumption is false things “work out eventually”.

Question 34 Points to think about:

1. Does a programmer know the physical addresses in the main memory in which the
program is stored when it is executed? Can you describe a situation in which the
address is determined in advance and a situation in which it is not determined in
advance?

2. What happens from the moment you click on an icon of an application till the applica-
tion actually starts running?

3. What happens when a computer is being boot?

5.2 The operating system

In this section we describe the main gaols of the operating system and how these goals are
achieved. We refer to the operating system as the OS.

5.2.1 Gaps between models

As pointed out earlier, a computer is a list of resources. Programs are usually designed under
the assumption that all the resources are available upon request. How can one justify this
assumption?

We list below a few important problems in computer systems. These problems point out
gaps between the model of a CPU plus main memory and the model of a computer system.

1. Suppose that a user is running two applications: an editor and a browser. The two
programs are stored in the main memory and are executed according to some schedule
(for example, the user types some sentences using her editor, and then reads some
pages using the browser). Each program is designed under the assumption that all
resources belong to it. But the main memory is a resource that is used simultaneously
by both. It is absolutely crucial that the editor not over-write information stored
in the memory space of the browser, and vice-versa. This means that each program
should have a well defined “territory” in the main memory that can be changed only
by the program. Mechanisms should be devised to allocate such territories to running
programs, to protect these territories, and finally to return these territories to the
“public pool” when the programs halts.

2. Suppose the editor is faulty; in particular, assume that the editor runs into an endless
loop. Executing the loop requires CPU cycles. Does that mean that the editor takes
over the CPU? Does that mean that the computer should be “stuck” since now the
CPU is busy executing the instructions of the endless loop? Obviously, the CPU is

5.2. THE OPERATING SYSTEM 57

not conscious of the fact that the execution of instructions of an endless loop is a futile
task. How is control of the CPU taken away from the editor?

This question is a crucial one, since the CPU is where the main activity takes place.
There is a crucial difference between a program printing an endless number of pages
and a program taking over the CPU. In the case of an endless printout, other programs
may not be able to print, but they could be executed. In the case of a program taking
over the CPU, other programs are disabled, and often the whole system is rendered
useless.

3. How are keyboard and mouse movements interpreted? This problem is of particular
importance when more than one application is being executed. For example, when you
press the “enter” key, how is this input sent to the right application?

4. How can the same program be executed simultaneously multiple times? I often have
many windows of a browser application running simultaneously. Is that like having
many separate applications (each running as if it were the only application)? Or, is
there some “smart” way of letting the multiple instances of the same program share
resources. It seems rather wasteful to store the many copies of the same instructions
in the main memory.

5. How can multiple users use the same computer? Is there a difference between programs
of different users and programs of the same user? How can different user execute the
same program simultaneously?

5.2.2 Processes

A key notion in providing the abstraction of a computer system is the notion of a process.

Definition 21 A process is an instance of an execution of a program.

Note that a program may be run simultaneously more than once (by the same user or even
by different users). Each such execution is called an instance.

The goal of the OS is to provide each process with the abstraction of a virtual computer.
Namely, both the user and programmer of a program assume that the program is the only
program that runs on the computer, and that all the resources are available upon request.
The virtual computer is then a concept that captures the idea that a program has a memory
space, the ability to receive input from the user, the ability to display output on the screen,
etc.

The OS manages multiple processes and allocates the resources to the processes. In
particular, our abstraction of a CPU is that the CPU can execute one instruction at a time.
This means that the operating system must schedule the processes: processes are given the
right to execute instructions on the CPU, and that right may be taken away before the
process terminates. We refer to a process whose instructions are being executed by the CPU
as active. Inactive processes are often referred to as sleeping processes. It is the task of the
OS to be able to swap between an active process and a sleeping process.

58 CHAPTER 5. INTRODUCTION TO INTERRUPTS

To be able to provide the abstraction of the virtual computer to all the processes, the
OS must deal with the following issues:

• Management of memory: every process is limited to its memory space. Correct man-
agement has many implications such as: privacy (a process may not read the contents
of the memory in addresses out of its memory space), security (a process may not write
to addresses out of its memory space), and consistency (if processes share memory, then
they must not violate consistency).

• Fairness: resources must be allocated in a fair manner.

• Avoiding deadlock. An example of deadlock is a situation in which Process A is holding
resource X and needs resource Y to proceed. On the other hand, Process B is holding
resource Y and needs resource X to proceed. Neither process releases a resource not
proceeds, and the system is stuck.

It is important to note that the OS is itself a process (or a set of processes). This leads for
the need for at least two levels of privileges: a regular user privilege, and a system privilege.
A process with system privileges may allocate resources or capture a resource. The system
privileges are given to the OS processes so that they can provide the abstraction of the
virtual computer to user processes.

5.2.3 Process context

The implementation of the idea of a process requires that a running user program be en-
capsulated by various data that enables the OS to provide the abstraction of the virtual
computer. This “wrapping” is constructed when the processes is initiated and is managed
by the OS. We refer to this wrapping as the process context. The context of a process consists
of the following parts:

• A memory space: the memory space contains the program, data, the program stack,
and the program’s heap.

• The state of the CPU: the contents of the general purpose registers and the special
registers.

• Resources allocated to the process: file handles, buffers, etc.

5.2.4 Context switching

Our abstraction of the CPU is that the CPU can execute a single instruction during every
cycle. The execution of an instruction may require several clock cycles. Even pipelined CPU’s
and CPU’s with parallelism usually function equivalently to a CPU that runs instruction in
a serial fashion.

In order to run multiple processes, the OS must be able to switch between an active
process and an inactive process. Such an event is called swapping of processes or context
switching. When should the OS decide to switch contexts? We list a few cases that require
context switching.

5.3. INTERRUPTS 59

• There is an error in the active process: division by zero, a mis-aligned access to the
memory, an illegal instruction.

• A page fault occurred.

• The active process is requesting service from the OS. For example, the process wishes
to open a file, close a file, read from a file, etc.

• Too much time has passed: to guarantee fairness, the CPU should be allocated to other
processes.

• Hardware faults. For example, a memory access failed or, in general, a device is
reporting an error.

• Reset: the user pressed the reset button.

A mechanism must be devised to enable context switching. Except for the case that the
active process requests service from the OS, in all the other examples the execution of the
active process is preempted. Namely, the active process is stopped without request.

5.3 Interrupts

Interrupts play a key role in enabling the CPU and OS to provide the abstraction of the
virtual computer.

Definition 22 An interrupt is a change in the sequence of executed instructions that is not
caused by a jump or branch instruction.

Note that the definition of an interrupt assumes that there exists some sequence of in-
structions that should be executed in the absence of interrupts. In this sequence the typical
successive instruction Ij+1 to instruction Ij is simply the instruction stored in address PC+4
(or PC + 1 if the memory is word addressable rather than byte addressable).

5.3.1 List of common interrupts

We list the various types of interrupts below:

1. Reset: A reset interrupt is caused by the user pressing the reset button. A privileged
user (or process) may also initiate a reset by a special command. One should also
consider the situation shortly after the computer is turned on. We will present a
unified way for dealing with all these cases, and for simplicity focus on the case that
the reset button is pressed.

2. Illegal instruction: Recall that the contents of the PC register determines the next
fetched instruction. The fetched instruction is stored in the IR register. The IR envi-
ronment in conjunction with the control attempt to decode the instruction. However,
not all 32-bit strings are valid encodings of instructions. An illegal instruction interrupt

60 CHAPTER 5. INTRODUCTION TO INTERRUPTS

is the event that the decoding of an instruction fails. If a machine language program
is generated by a compiler, then we do not expect an illegal instruction interrupt to
occur. It is still possible if a jump is made to a memory address that does not store
an instruction. Another possibility is that a store instruction stored a non-instruction
in the address pointed now by the PC.

3. Misaligned access: The main memory allows to access single bytes (i.e.8 bits), half-
words (i.e. 16 bits), or words (i.e. 32 bits). However, when accessing a word, the
address must be divisible by 4 (i.e. the two least significant bits must equal zero).
Similarly, when accessing a half-word, the address must be even. A memory access
that does not satisfy this condition causes an misaligned memory access. The main
reason for this rule is the organization of the RAM.

4. Page fault: Explaining page-faults requires some explaining of a method called virtual
memory (which is part of the abstraction of the virtual computer). Very briefly, virtual
memory is an abstraction that decouples the memory space of a process from the
physical main memory. A process is designed under the abstraction that there is a
rather large memory space at its disposal. The virtual memory can be even much
bigger than the actual amount of memory in the main memory. The virtual memory
is divided into pages (the length of each page is typically a few kilo-bytes). Instead
of attempting to store all the pages of the virtual memory in the main memory (an
impossible task if the virtual memory is bigger than the physical memory), the OS
manages the virtual memory by storing only a subset of the pages in the physical
memory. The management of the virtual memory has a few aspects. First, the address
of every memory access must be translated to the corresponding physical address. We
do not describe this mechanism here, but point out that this is achieved by managing a
table with the list of stored pages and their physical addresses. A second issue, is what
should be done if an accessed memory address belongs to a page that has not been
copied to the main. This is exactly the event of a page-fault. In this event, the OS
determines which page should be evacuated. The space of the evacuated page is used
to store the page that contains the accessed address. Once the page has been loaded,
the memory access can be completed. The chapter of virtual memory is typically a
major chapter in OS books and computer architecture books. We strongly suggest
that you read such a chapter.

5. A system call: The abstraction of the virtual memory not only provides the illusion
that all the resources are available to the process. The virtual computer abstraction
also dictates that the usage of resources be done by calling procedures of the OS. Every
“printf” instruction in a C program is translated to calling an OS procedure. A process
may not access the screen, the keyboard buffer, etc. directly. All such accesses are
mediated by the OS. System calls are implemented by a special DLX instruction, called
“trap”.

6. Overflow: overflow is an interrupt that occur when an execution of an arithmetic
instruction (i.e. add or subtract) results with an overflow. Divide by zero is a similar
type of interrupt.

5.4. HANDLING INTERRUPTS 61

7. Input/Output interrupts: Devices such as a keyboard, mouse, hard disk, printer, mo-
dem, etc., are input/output devices. Most of these devices are characterized by being
much slower than the CPU and the memory. For example, printing a page can take
several seconds. The common method of dealing with a slow device, such as a hard
disk, is to give the disk a task (read or write a block). When the task is completed, the
disk signals this fact, and eventually the CPU returns to deal with the disk. There is
no good reason for the CPU to remain idle while the disk is completing its task. The
event that an input/output signals that the CPU it needs the “attention” of the CPU
is an input/output interrupt.

5.3.2 Characteristics of interrupts

To be completed:

1. internal/external

2. maskable/non-maskable

3. type: abort/repeat/continue

4. priority

5.4 Handling interrupts

To be completed

1. ISR

2. comparison with invoking procedures

5.5 Main problems

To be completed

1. Simultaneous occurrence of interrupts. Which interrupt should be served first?

2. Nesting of interrupts.

62 CHAPTER 5. INTRODUCTION TO INTERRUPTS

Chapter 6

DLX with interrupt handling

This description of interrupt handling in a DLX processor is based on Chapter 8 in the book
of Müller and Paul [?]. It is highly recommended that you read that chapter.

6.1 List of interrupts and their properties

Table 6.1 lists the interrupts that we consider; each interrupt is given a priority, and three
additional attributes: internal/external, maskable/non-maskable, and type (abort, repeat,
continue). The interrupts are numbered from 0 to 31. Interrupt 0 has the highest priority
and interrupt 31 has the lowest priority.

Name Priority Internal/External Maskable/Non-maskable Type

reset 0 external non-maskable abort
illegal instruction 1 internal non-maskable abort
misaligned access 2 internal non-maskable abort
page fault on fetch 3 internal non-maskable repeat

page fault on load/store 4 internal non-maskable repeat
trap 5 internal non-maskable continue

arithmetic overflow 6 internal maskable continue
input/output 7− 31 external maskable continue

Table 6.1: List of interrupts

Question 35 List, for each interrupt, the state of the control of the DLX when the interrupt
occurs and the instruction that is executed when the interrupt occurs. Note that, for some
interrupts, the control must be in a specific subset of states, whereas, for others, the control
may be in any state.

63

64 CHAPTER 6. DLX WITH INTERRUPT HANDLING

6.2 Signaling an occurrence of an interrupt

The DLX with hardware support has an event signal for every possible interrupt. The event
signal for interrupt i is denoted by evn[i]. The occurrence of interrupt i is signaled by a
signal evn[i]. There is a difference between the signaling of internal interrupts and external
interrupts. The following assumptions are used for signaling of interrupts:

External Interrupts: We assume that evn[i] is output by a register that belongs to an
external device outside of the processor. The external device activates evn[i] to signal
that it would like to receive service from the OS. The evn[i] signal remains active until
the the Interrupt Service Routine (ISR) instructs the external device that the interrupt
has been served and that evn[i] should be deactivated1.

The reasons for this signaling mechanism are: (a) The control of the DLX may be
in any state when evn[i] is activated. We would like the control to be in a unique
state (i.e. “fetch”) when the decision is made whether an interrupt should be served.
(b) The task of remembering that an external interrupt is pending is delegated to the
external devices (this also simplifies timing issues).

Internal Interrupts: The occurrence of an unmaskable internal interrupt is signaled by a
condition of the form:

evn[i] = States(i) ∧ Condition(i)

where: (a) States(i) denotes the set of control states in which interrupt i can occur;
and (b) Condition(i) denotes the required condition for an occurrence of interrupt i.

Examples:

1. An illegal instruction can occur if: (a) the control is in the “decode” state; and
(b) the control reports that the instruction is illegal.

2. A misaligned memory access can occur if: (a) the control is in the states: “fetch”,
“load” or “store”; and (b) the memory environment reports a misaligned memory
access. How does the memory environment determine if a misaligned memory
access occurred? The answer is that it must know what type of access is made
(word, half-word, or byte). It then checks the 2-LSBs of the address to see if the
address is properly aligned.

The occurrence of a maskable internal interrupt is signaled by a condition of the form:

evn[i] = States(i) ∧ Condition(i) ∧ SR(i)

where SR(i) denotes whether interrupt i is enabled.

1The ISR communicates with the external device simply by loading and storing words in a dedicated area
in the memory. For more details, see the topic of memory mapped I/O in hardware books.

6.3. HARDWARE AND SOFTWARE SUPPORT 65

Example: An overflow interrupt is signaled if: (a) the control is in an “alu” or “alui”
state; (b) the ALU environment is signaling an overflow and the executed instruction
is a signed add or subtract instruction; and (c) the overflow interrupt is enabled.

The occurrence of an internal interrupt is signaled only during one clock cycle. The
DLX must store this signal so that it can be treated. We will see that the control is
modified so that an occurrence of an internal interrupt causes a transition to a special
state.

Effect of masking. Interrupt masking has a different effect on internal interrupts and
on external interrupts: An occurrence of a disabled internal interrupt is ignored altogether
(namely, the occurrence is “lost” forever); an occurrence of a disabled external interrupt is
ignored until the interrupt is enabled (i.e. the evn[i] signal remains active).

6.3 Hardware and Software Support

Interrupt handling requires both hardware and software support. The software support is
done by a program of the operating system called the Interrupt Service Routine (ISR - in
short).

Hardware support

Hardware support for handling interrupts consists of four components: special registers, new
instructions, extension of the datapath, and extension of the control.

In practice, some of the new instructions are restricted and may only be used by routines
that are part of the operating system. This is enforced by defining two modes for the
processor: a user mode and a privileged mode. A user program is allowed to use a subset
of the instructions that can be used during privileged mode. This means that additional
hardware mechanisms need to be introduced to enable changing the mode and checking that
restricted instructions are used only in privileged mode. The DLX architecture does not
support multiple modes; we simply assume that user programs do not contain restricted
instructions.

Special registers. In general, the access to the special registers is restricted and only the
operating system is allowed to execute instructions that modify the special registers.

The interrupt handling mechanism uses the following special registers:

1. Status Register SR[31 : 0]. Interrupt i is enabled when SR[i] = 1. A user can change
the contents of the SR register in two ways: (1) Use a system call to enable/disable
maskable interrupts. The operating system (i.e. the ISR) can use a privileged instruc-
tion “movei2s” to set the contents of the SR. Of course, the system verifies that the
request is “legal” before changing the mask. (2) During the execution of an instruction
in which an overflow should be signaled (i.e. signed add, signed subtract), the overflow
interrupt is enabled.

66 CHAPTER 6. DLX WITH INTERRUPT HANDLING

2. Cause Register CA[31 : 0]. Interrupt i is pending if CA(i) = 1. The functionality of
the cause register CA is given by

CA[i](t+ 1) =

reset ∨ pup ∨ (CA[0](t) ∧ not(clear CA(t)) if i = 0
evn[i](t) if i ∈ [31 : 7]
evn[i](t) ∨ (CA[i](t) ∧ not(clear CA(t))) if i ∈ [6 : 1].

Note that i = 0 means a reset interrupt, i ∈ [31 : 7] means an external input/output
interrupt, and i ∈ [6 : 1] means an internal interrupt.

We will later address the following questions: Why and when is the CA register cleared?
Who is allowed to clear the CA register?

3. The Exception Program Counter EPC. Holds the return address for the ISR before
jumping to the ISR.

4. The Exception Status Register ESR. Holds the contents of the SR before jumping to
the ISR.

5. The Exception Cause Register ECA. Holds the list of pending unmasked interrupts
when jumping to the ISR. When jumping to the ISR, the ECA register satisfies:

ECA[i](t+ 1) =

{

CA[i](t) if i ≤ 6
CA[i](t) ∧ SR[i](t) otherwise

Note that i ≤ 6 means a non-maskable interrupt.

6. The Exception Memory Address Register EMAR. When jumping to the ISR, the con-
tents of the MAR are copied to the EMAR. This enables the ISR that deals with page
faults to know which address caused the page fault.

New instructions. Four instructions are used for interrupt handling:

1. movei2s RS1 SA : copies the contents of R〈RS1〉 to Special R〈SA〉.

2. moves2i RD SA : copies the contents of Special R〈SA〉 to R〈RD〉.

3. trap type : a request for a system call. Note that the ISR extracts the type of the
system call from the word in the main memory whose address is stored in the EPC (the
IR is not backed up). The trap instruction causes some side effects that are common
to the all jumps to the ISR; we will specify these side effects later.

4. rfe : return from exception. Restores the SR and PC registers as follows:

SR(t+ 1) = ESR(t)

PC(t+ 1) = EPC(t)

6.3. HARDWARE AND SOFTWARE SUPPORT 67

Extension of the datapath. Handling interrupts requires a few modifications in the
datapath.

1. PC environment. Previously, the PC register sampled either the new address from the
D-Bus or was reset to zero during power-up. The situation now is very similar: during
power-up or jump-to-ISR the PC is reset to starting address of the ISR; otherwise, the
PC samples the D-bus. Question: when should the PCce signal be active?

2. Memory environment. The write signals are activated only during write accesses which
are properly aligned - it is critical that memory is protected from store instructions
that are misaligned! A similar demand holds for page faults; namely, during a page
fault the memory is not changed. The memory environment outputs the event signals
for misaligned access, page fault during fetch, and page fault during load or store. The
busy signal indicates, as before, whether a successful memory access is not completed
yet.

3. Special purpose register environment. Consists of 5 registers (the CA register is con-
sidered part of the control). Supports the movei2s and moves2i instructions as well as
parallel copying of registers described later.

Extension of the control The following states are added to the control:

1. movs2i, movi2s: these state deal with the execution phase of the corresponding in-
structions.

2. JISR(-1), JISR1, JISR2: these states deal with part of snap-shooting the state of the
processor. We elaborate on these states in Sec. 6.4.

3. RFE1, RFE2: these states deal with the execution phase of the rfe instruction. We
elaborate on these states in Sec. 6.4

External interrupts may occur in any state of the control. The decision to serve them
takes place only during the “fetch” state.

Internal interrupts occur in specific states of the control (see Question 35). An occurrence
of an internal interrupt in a state in which such an interrupt may occur causes a transition
to one of the states JISR(-1) or JISR1. For example: an occurrence of a page fault during
“load” causes a transition to JISR(-1), an occurrence of misaligned access during “store”
causes a transition to JISR(-1), an occurrence of an overflow during an “alu” state causes a
transition from the write-back states to JISR1. We describe in Section 6.4 why and when a
transition to JISR(-1) is needed.

The illegal instruction interrupt is an exception to this rule: instead of adding a transition
to JISR1, a transition was added to “fetch”. The reason for this is simplification of control
at the cost of a unified structure (think twice before you apply such tricks...).

The following control signals determine whether jump to the ISR takes place (i.e. whether
a transition to JISR(-1) or JISR1 takes place):

68 CHAPTER 6. DLX WITH INTERRUPT HANDLING

1. Interrupt handling is invoked from the “fetch” control state by a signal int defined by

int =
3
∨

i=0

CA[i] ∨
31
∨

i=7

(CA[i] ∧ SR[i])

Note that interrupts 0-6 are non-maskable. An illegal instruction (interrupt 1) is
detected during “decode”, causes the control to return to “fetch” (the default transition
in the control is to go to “fetch”), and then CA[1] is checked. Interrupts 4-6 are
considered during other control states.

2. From the “load” and “store” control states, interrupt handling is invoked by the signal
intm, defined by:

intm = CA[2] ∨ CA[4] (misaligned access or page fault on load/store).

3. From write-back control states, interrupt handling is invoked when an unmasked over-
flow occurs:

int ovf = CA[6].

Note that the masking of the overflow interrupt is already considered when evn[6] is
computed.

4. From the “trap” control state, the event signal evn[5] is set, which causes CA[5] to be
set as well. The next transition is always to JISR1.

Software support

Software support consists of the Interrupt Service Routine (ISR). The ISR is a DLX pro-
gram. Correct functionality is obtained by requiring certain properties from the ISR. These
requirements are:

1. Termination: every uninterrupted execution of the ISR terminates.

2. Critical sections of the ISR may be interrupted only by a reset interrupt.

3. Obeying priority: an ISR for interrupt i > 0 is not interrupted by an interrupt j for
which j ≥ i.

How are these requirements satisfied?

1. Termination is satisfied by correct programming. This is not a trivial task and it
is even harder to prove that a program is correct than to write a correct program.
Unfortunately, we can offer very limited guidelines how to write correct programs.

2. Critical sections are not interrupted by maskable interrupts simply by disabling mask-
able interrupts upon entering the critical section. Some non-maskable interrupts can
be avoided again by correct programming (misaligned access, illegal instruction, and
trap can be avoided, especially during short program segments).

6.4. INTERRUPT HANDLING 69

Page faults are avoided during the critical sections by insuring that the program seg-
ments of the critical sections and the interrupt stack is stored on a permanent page
of memory. A permanent page is never swapped out by the virtual memory manage-
ment system, and hence, access to the interrupt stack or fetching of instructions in the
critical sections do not create page faults.

3. Priority is obeyed by (a) disabling maskable interrupts of lower priority, and (b) avoid-
ing internal interrupts in ISRs of internal interrupts (using the same ideas used to avoid
interrupts during the execution of the critical sections).

6.4 Interrupt Handling

Interrupt handling is divided into three stages, as follows.

Save Status

The first two steps of saving the status are implemented in hardware, the rest are imple-
mented in software.

1. Save the PC of the running program. This PC serves as the return address of the ISR.
There are two control states the are involved with this step: JISR1 and JISR(-1), and
their actions are:

JISR(-1) : PC(t+ 1)← PC(t)− 4

JISR1 : EPC(t+ 1)← PC(t)

There is a subtle issue regarding the return address. Recall that the PC is incre-
mented during the “decode” control state. This means that if the “decode” control
state has been already executed, then the PC points to the “next” instruction. If
the “decode” control state has not been already executed, then the PC points to the
“current” instruction. This observation together with whether the interrupt is of type
abort/repeat/continue determines which return address should be used, and is reflected
in the control in the states JISR1 and JISR(-1).

In the JISR1 control state, the PC is simply copied to the EPC. However, in the JISR(-
1) state, the PC is decremented before it is copied to the EPC (i.e. EPC ← PC−4) to
reverse the increment performed during the “decode” control state so that the return
address is the “current” instruction. (Question: check which interrupts go through
JISR1 and which interrupts go through JISR(-1)).

2. The JISR1 state is followed by the JISR2 state. During the JISR2 control state three
actions take place simultaneously (i.e. during the same clock cycle): enter a critical
section, snapshot the status, and jump to the ISR.

(a) Enter the critical section. This step consists of two actions:

70 CHAPTER 6. DLX WITH INTERRUPT HANDLING

i. Disable the maskable interrupts (i.e interrupts 6-31) by setting

SR[31 : 6](t+ 1)← 026.

ii. Clear the CA: Set clear CA to 1. This has the effect of setting CA(t+ 1) as
follows:

CA(t+ 1)← evn[31 : 7] · 06 · (reset ∨ pup).

This clears the CA and insures that pending internal interrupts 1-6 will not
invoke the interrupt handling mechanism during the critical section.

(b) Snapshot the status:

ESR(t+ 1) ← SR(t)

ECA(t+ 1) ← CA(t) ∧ SR(t)

EMAR(t+ 1) ← MAR(t)

(c) Jump to the ISR:
PC(t+ 1)← SISR

where SISR is the fixed address of the beginning of the ISR. (Question: Where
does SISR appear in the DLX?)

3. The ISR starts running, and performs the following steps (Note, this is software - not
hardware! Everything below is implemented by regular DLX instructions.):

(a) Allocate a new frame for the interrupt on the interrupt stack (in the main mem-
ory). This is done by adding 35 · 4 (i.e 35 words) to the interrupt stack pointer
(recall: there are 4 special registers with backup information and 31 general pur-
poses registers). We need an interrupt stack to support nesting of interrupts.

An interesting issue is where is the interrupt stack pointer stored? There are two
options: (a) in a special register - in which case we need to add it to the DLX, or
(b) in the data segment of the ISR program. I prefer the second option although
it requires loading the interrupt stack pointer. (Can you think of reasons why
using a general purpose register is not such a good idea?)

A reset interrupt cannot be interrupted (it has the highest priority), and therefore,
we don’t have to create a new frame if a reset interrupt is being served. I suspect
that allocating a new frame in the interrupt stack is a good idea even in the case
of an reset interrupt.

(b) Copy the special registers EPC, ESR, ECA, EMAR to the new frame on the
interrupt stack. This is done by using one of the general purpose registers as a
“channel” (why?). The instruction movs2i is used to copy a special register to a
general purpose register. (How is the value of the general purpose register that is
used as a “channel” preserved?). We do this step even if a reset interrupt occurred
(why?).

6.4. INTERRUPT HANDLING 71

(c) Compute the pending interrupt with the highest priority:

` = min{j : ECA[j] = 1}

(where do we store this value?)

(d) Exit the critical section. Disable all maskable interrupts with priority lower than
`:

SR[i] =

{

1 if i < max{6, `}
0 otherwise

We are now ready to serve interrupt `. (Question: do you know how to program these steps
using the DLX instruction set?)

Serve the Interrupt

This stage is part of the ISR. The ISR executes the following steps and may be interrupted
by an unmasked interrupt.

1. Jump to the segment of the ISR that handles interrupt `.

2. Save the general purpose registers that will be used by the ISR in the interrupt stack.

3. Serve the interrupt.

4. Restore the general purpose registers from the interrupt stack.

Restore Status

This stage is also part of the ISR.

1. Enter a critical section by setting: SR[31 : 6](t+ 1)← 026.

2. Restore the EPC and the ESR from the interrupt stack. (We will be using a general
purpose register for this, and need to restore it from the interrupt stack as well).

3. Free the top frame from the interrupt stack (i.e. subtract 35 · 4 from the interrupt
stack pointer).

4. Exit the critical section. Use the instruction RFE (return from exception) which does
the following:

RFE1 : SR(t+ 1) ← ESR(t)

RFE2 : PC(t+ 1) ← EPC(t)

The next instruction which is fetched is the instruction which should be executed when
returning from handling the interrupt (this can be an instruction of a user’s program
or an instruction of an ISR of an interrupt of a lower priority).

72 CHAPTER 6. DLX WITH INTERRUPT HANDLING

An important point to remember is that the critical sections are not interrupted, except for
reset interrupts which cannot be “avoided” since they are external. The occurrence of an
interrupt of priority 1-5 during a critical section is a severe error in the ISR.

Question 36 Why isn’t “saving of the general purpose registers” part of “save status”?
Similarly, why isn’t “restoring the general purpose registers” part of “restore status”?

Question 37 Why isn’t the cause register restored during Restore Status?

Question 38 Design the environment of the special registers. Describe how this environ-
ment connects to the busses of the DLX, describe the control signals (and when they are
active), and show how this environment can support the functionality needed to support in-
terrupts.

6
.4

.
IN

T
E

R
R

U
P

T
H

A
N

D
L
IN

G
73

��������
�	��
	�������������������

�

Branch

Btaken

JR

Save PC

JALR JAL

Fetch

Decode

Movs2i

ShiftI

Test

WBR

TestI

WBI

Adr.Comp

JISR1JISR(-1)

JISR2

TRAP

Store

Load

J

Shift4Load

* /intm

nready

* /intm

nready

Alu AluI

AluIO

AluO

Shift

RFE2

RFE1 Movi2s

/nread
 * /intm

/nread
 * /intm

bt bnt

nready * /int

/intov /intovintov intov

else

int

/nready * /int

intm intm

D16 D14

D1

D2

D3

D4

D15

D5

D6

D7

/D13 D13

D8

D9 v D10

D9 D10

D11

D12

D19 D18 D17

Shift4Store

����	 "!$#%�'&��)("*,
+�-).�/"#0*21436

57#�8���	9:
8� �;";'+	!$.��9"�<

�9=.�#�!$!� ";�.�8?>A@<
BD
C	E�8$.GF�.�#�8�H

F
igu

re
6.1:

T
h
e
state-d

iagram
of

th
e
D
L
X

w
ith

su
p
p
ort

of
in
terru

p
ts

from
th
e
b
o
ok

of
M
u
eller

an
d
P
au

l

74 CHAPTER 6. DLX WITH INTERRUPT HANDLING

Chapter 7

Correctness of The DLX Interrupt
Handling Mechanism

7.1 Terminology

Clock cycle t. We number the clock cycles starting with clock cycle 0.

Which instruction is executed in clock cycle t? This is presumably a trivial question.
The DLX executes the instructions one by one. However, interrupts disturb the “normal”
execution of instructions. For example, when handling an internal interrupt, the control
transitions to the JISR states rather than continue with the execution of the instruction.
The following definitions resolve this ambiguity.

Definition 23 The control enters the “fetch” state in clock cycle t if in cycle t the control
is in the “fetch” state and in cycle t− 1 the control is not in the “fetch” state.

The instruction executed in cycle t, denoted by I(t), is defined as follows:

Definition 24 Given clock cycle t, define last entrance fetch(t) as follows:

last entrance fetch(t) = max{t′ ≤ t : the control enters “fetch” is cycle t′}.

I(t), the instruction executed in cycle t, is defined as the instruction pointed to by the PC in
cycle last entrance fetch(t).

Note that last entrance fetch(t) may not be well defined! If the control does not enter the
“fetch” state in the cycles [0, t], then last entrance fetch(t) is not well defined and neither is
I(t). This is not an impossible situation; it occurs shortly after power-up. Such a situation
can be avoided by changing the control so that power-up has two effects: (a) the control
transitions to the “fetch” state, and (b) the PC is set to SISR (i.e. the starting address of
the ISR).

Let t1 < t2 denote successive entrances to the “fetch” state, then I(t) is constant in
the interval [t1, t2). The definition of I(t) partitions the clock cycles into intervals, the
boundaries of which are entrances into the “fetch” state. Within each such interval, the
current instruction I(t) is fixed and well defined.

75

76CHAPTER 7. CORRECTNESS OF THE DLX INTERRUPT HANDLING MECHANISM

The next instruction. The next instruction in an execution of a program that is not
interrupted is defined by the semantics of the DLX instruction set (note, however, that the
address of the next instruction is not always PC+4). We denote the instruction that follows
instruction I by I+.

Note that: (a) If I is a trap instruction, then I+ is the instruction in address PC+4 - not
the first instruction in the ISR. The reason is that the abstraction of the virtual computer
regards a system call as a single instruction (even though we know that a system call requires
many instructions). (b) If I is an illegal instruction or its fetch causes a misaligned access,
then I+ is not well defined.

Admissible ISRs The ISR is admissible if:

1. Every uninterrupted execution of the ISR terminates.

2. The critical sections are not interrupted by interrupts 1-5.

3. ISR[0]-ISR[5] are not interrupted by interrupts 1-5.

How do we guarantee that interrupts 1-5 do not occur during the critical sections?

• Illegal instructions and misaligned memory accesses are avoided if the critical sections
are programmed properly. This is a relatively easy task.

• Page faults during fetch are avoided by requiring that the program segments of the
critical sections are stored on a permanent page of memory.

• Page faults during load and store are avoided by requiring that the interrupt stack, as
well as other data segments accessed by the critical sections are stored on a permanent
page of memory.

• Trap interrupts are avoided during the execution of ISRs of internal interrupts and
the execution of the ISR of the reset interrupt. This is done simply by not using
the trap instruction in these program segments. (Note that when programming these
parts of the ISR the programmer may not use print statement to monitor the values
of variables.)

Similar requirements suffice to insure that ISR[1]-ISR[5] are not interrupted by interrupts
1-5.

We summarize which memory addresses are stored on a permanent page of memory.

1. The interrupt stack,

2. The critical sections of the ISR, and

3. The ISRs for interrupts 0-5.

Note that these conditions could be relaxed to allow page faults during ISR(5) that (the
segment that handles the trap interrupt).

7.1. TERMINOLOGY 77

The current interrupt. Just as we defined the current instruction, we would like to define
the current interrupt that is being handled. For this purpose we consider the user’s program
as interrupt 32. The current interrupt is defined by the interrupt level, denoted by il(t).

The interrupt level is defined inductively, starting from the first entrance to the “fetch”
state, as follows:

1. Basis: If the interrupt stack is empty in cycle t and the control enters the “fetch” state
in cycle t, then il(t) = 32.

2. “Push”: If the control is in state JISR2 in cycle t and in “fetch” state in cycle t+ 1,
then

il(t+ 1) = min{i : ECA[i](t+ 1) = 1}

Recall that at JISR2 the ECA register is set to CA ∧ SR, hence, ECA holds the
information about which ISR should be executed.

3. “Pop”: If (a) the control is in state RFE2 in cycle t and in “fetch” state in cycle t+1;
and (b) the interrupt stack is not empty in cycle t+ 1, then

il(t+ 1) = min{i : eca[i](t) = 1}

where eca[i] is the backup of the ECA stored in top frame in the interrupt stack. Note
that if the interrupt stack is empty, then the “basis” case is chosen (i.e. il(t+1) = 32).

4. In all other cases: il(t+ 1) = il(t).

Note that the interrupt level changes only during an entrance to the “fetch” state from
states JISR2 and RFE2. Hence, the interrupt level during the execution of instruction I is
fixed. During the period between power-up and the entrance to “fetch” with PC = SISR
the interrupt level is not well defined (one reason is that the interrupt stack is not in a well
defined state). We are not concerned about this situation because we prove later that this
undefined period is bounded.

Waiting for service.

Definition 25 1. Interrupt i occurs in clock cycle t if evn[i](t) = 1 and evn[i](t−1) = 0.

2. Interrupt i is caught in clock cycle t if CA[i](t + 1) = 1 (namely, CA[i] sampled a 1
in the end of cycle t and outputs a 1 in the beginning of cycle t+ 1).

3. An interrupt j is served in cycle t if

il(t) = j or il(t) = i for an interrupt i of type “abort”

4. An interrupt j is pending (i.e. waiting for service) in cycle t if (a) it was caught in
cycle t1 ≤ t; and (b) it was not served in the interval [t1, t].

78CHAPTER 7. CORRECTNESS OF THE DLX INTERRUPT HANDLING MECHANISM

Machine State. The machine’s state refers to the contents of the registers that effect
functionality from the programmer’s point of view. Therefore, the machine’s state is defined
as follows.

Definition 26 The state of the DLX is the contents of the general purpose registers R1−R31
and the registers PC and SR.

Note that the CA and MAR are not part of the state, although the MAR and CA are
backed-up; they are backed-up to help the ISR, but they are not restored later.

Wait states (WS). An access to the memory may take more than one cycle. Consider,
for example, fetching of an instruction. The control remains in the state “fetch” until the IR
register is loaded with the instruction to be executed. The number of consecutive self-loop
transitions “fetch” → “fetch” is called the number of wait states.

We use the same definition for the self-loops in the states “load” and “store”. Namely,
the number of wait states is the number of consecutive transitions s → s, where s is a a
state s ∈ {“fetch”,”load”, “store”}.

We denote the number of wait states by WS. For simplicity, we assume that WS is
constant.

Note that unless interrupts are detected during fetch/load/store, the control will stay in
these states for WS + 1 cycles. If WS = 0, then the control stays in the fetch/load/store
states for only one clock cycle, namely, the self-loop is not never used.

7.2 Specification of the interrupt handling mechanism

Before proving correctness, we need to define what we expect the interrupt handling mecha-
nism to do. In fact, we should have specified the mechanism before we described it. Due to
the complexity of the interrupt handling mechanism we first described what we would like
it to do and how this is done. Now we formally specify properties of this mechanism. We
regard a mechanism that satisfies these specifications as correct.

Response time. How many cycles elapse from the cycle in which an interrupt occurs till
it is served? We consider 3 cases:

1. A reset interrupt that occurs in cycle t is served in cycle t′ ≤ t+ 9 +WS.

2. Consider an external input/output interrupt i > 6 (not reset) that is caught in cycle
t. Let t2 denote the closest entrance to “fetch”, namely,

t2 = min{t′ ≥ t : state(t′) = “fetch”}.

We demand that if interrupt i is enabled in cycle t2 (i.e. SR[i](t2) = 1), then there
exists an interrupt j ≤ i that is served in cycle t′ ≤ t+ 9 +WS.

3. An internal interrupt i that occurs in cycle t is served in cycle t′ ≤ t + 4. (Note that
an internal interrupt must be enabled to occur.)

7.3. CORRECTNESS PROOF 79

Obeying priority. When can the execution of ISR(i) be interrupted? Loosely speaking,
we allow ISR(i) to be interrupted only by an interrupt j < i. We make this requirement
more detailed as follows:

1. ISR(0) can be interrupted only by a reset interrupt.

2. ISR(i) for i ∈ {1, . . . , 5}, can only be interrupted by a reset interrupt. Recall that
admissibility implies that an interrupt j ∈ {1, . . . , 5} does not occur while ISR(i) is
running.

3. ISR(i) for i ≥ 6 can be interrupted only by an enabled interrupt j, for which j < i.

Finite memory. The interrupt stack never contains more than 32 frames (the size of each
frame is 35 words). This condition is important because we require that the interrupt stack
be stored in a page that is not swapped out. Hence, we want to verify that the interrupt
stack is not too big.

Preciseness. Preciseness refers to the state of the DLX after the interrupt is served. Sup-
pose that interrupt j is served in the interval [t+ 1, t′). Let t0 denote the cycle in which the
execution of instruction I(t) started. Figure 1 depicts the required state of the DLX in cycle
t′ after the return from exception. The intuition is that one can “cut” the segment between
the two cycles in which the DLX state is S and obtain an uninterrupted execution.

Termination. Assume that only a finite number of interrupts occur. An execution of
ISR(i) that serves interrupt i either terminates or is aborted due to the occurrence of an
interrupt of type “abort” while it is running.

Completeness. Assume that only a finite number of interrupts occur. Every internal
interrupt is served eventually. A pending external interrupt is served eventually if it is
enabled long enough.

7.3 Correctness Proof

In this section we prove that the interrupt handling mechanism described in Chapter 6 is
correct; namely, it satisfies the specifications.

7.3.1 response time

Let state(t) denote the state of the control in cycle t. We first prove the following claim.

Claim 24 Let t1 < t2 denote two cycles of successive entrances to the fetch state. If
state(t2 − 1) 6= JISR2, then

t2 − t1 ≤ 6 + 2 ·WS.

80CHAPTER 7. CORRECTNESS OF THE DLX INTERRUPT HANDLING MECHANISM

DLX state=S

t t + 1

I I+service the interrupt

fetch fetch

t′

DLX state=S

(B) JISR2JISR1trap/ovf

t − 1t − 2

DLX state=S

t0 t t + 1

I Iservice the interrupt

fetch fetch fetch

t′

DLX state=S DLX state=S

(A) JISR2

t t + 1

I Iservice the interrupt

fetch fetch

t′

DLX state=S

(C) JISR2JISR1fetch

t − 1t − 2

RFE2

RFE2

RFE2

t′ − 1

t′ − 1

t′ − 1

Figure 7.1: Preciseness requirement on state after RFE: (A) internal interrupt of type “re-
peat” (B) internal interrupt of type “continue” (C) external interrupt (not reset)

Proof: Compute the longest simple cycle from fetch to fetch in the state diagram of the
control after removing the state JISR2. We denote the number of cycles x the control stays
in state A before moving to state B by A

x
→B. The longest simple cycle is as follows:

fetch
WS+1
→ decode

1
→ Adr. Comp.

1
→ load

WS+1
→ shift4store

1
→ WBI

1
→ fetch

2

Corollary 25 Assume that state(t) 6= “fetch”. Let t1 < t2 denote two cycles of successive
entries to the fetch state for which t1 < t < t2. If state(t2 − 1) 6= JISR2, then

t2 − t ≤ WS + 5.

Note that Coro. 25 holds even if t1 is not defined because of power-up. In this case, power-up
occurs in cycle t, and the machine enters fetch for the first time in cycle t2 (but this entrance
is not from JISR2).

7.3. CORRECTNESS PROOF 81

The following claim addresses the rather special case that (a) a reset interrupt is pending,
(b) the control enters state “fetch” from state JISR2, and (c) the interrupt level is not zero
upon entry to “fetch”.

Claim 26 Assume that a reset interrupt occurs in cycle t (namely, reset(t) = 1). Let t2
denote the first cycle in which the control enters the “fetch” state after cycle t (namely,
t < t2). If il(t2) 6= 0 and state(t2 − 1) = JISR2, then t = t2 − 1.

Proof: If il(t2) 6= 0, then ECA[0](t2) = 0. Since the state of the control is JISR2 in cycle
t2 − 1, it follows that CA[0](t2 − 1) = 0. But reset(t) = 1 implies that CA[0](t + 1) = 1.
We would like to argue that the only way CA[0](t2 − 1) = 0 and CA[0](t + 1) = 1 is that
t+ 1 > t2 − 1. If this is true, then t2 > t > t2 − 2, and hence, t = t2 − 1, as required.

Assume that t+ 1 ≤ t2 − 1. The value of CA[0] does not change in cycle (t+ 1) from 1
to 0 in cycle t2 − 1 unless a clear CA is active in a cycle t′ ∈ [t + 1, t2 − 2]. A clear CA is
active only in the JISR2 state. The only cycle in the interval [t+ 1, t2] in which the control
can be in the JISR2 state is cycle t2 − 1. Hence the control is not in the JISR2 state during
the interval [t+ 1, t2 − 2], a contradiction, and the claim follows. 2

How does the process of servicing an interrupt begin? There are two cases: (1) The control
is in the “fetch” state and the int signal is raised causing a transition to JISR1, JISR2, and
then upon entry to “fetch” again an interrupt is served. (2) The control is in “load”, “store”,
“WBI”, or “WBR” states and the corresponding internal interrupt is caught. This interrupt
causes a transition to JISR(-1) or JISR1, and then upon entry to “fetch” an interrupt is
served.

We analyze the response times for the various types of interrupts as follows:

1. A reset interrupt. First, observe that the occurrence of a reset interrupt is always
caught in the CA register, even during a JISR2 cycle (in which the CA register is
cleared). Second, observe that before the CA register is cleared, it is copied to the
ECA register. So an already caught reset interrupt occurrence is not lost.

Suppose that the reset interrupt occurs in cycle t ∈ [t1, t2), where t1 < t2 denote two
successive entries to the fetch state. (If power-up occurs in cycle t, then t1 might not
be defined.) We consider the following cases:

(a) t < t2 − 1, or equivalently, state(t + 1) 6=“fetch”. We consider the following
sub-cases:

• il(t2) = 0, namely, the reset interrupt is served in cycle t2. We can bound
t2− (t+1) by observing that state(t+1) 6= “fetch”. By Coro. 25, The longest
path in the control from a non-”fetch” state to the “fetch” state is WS + 5
cycles. Hence,

t2 − t = 1 + (t2 − (t+ 1)) ≤ 1 +WS + 5 = WS + 6.

• il(t2) 6= 0 and state(t2−1) 6=“JISR2”. According to Corollary 25, t2−(t+1) ≤
5+WS. Since CA[0](t2) = 1 (i.e. the reset interrupt is pending) the following
transitions are made (starting from cycle t2):

82CHAPTER 7. CORRECTNESS OF THE DLX INTERRUPT HANDLING MECHANISM

fetch
1
→ JISR1

1
→ JISR2

1
→ fetch

Therefore, in cycle t2+3, the reset interrupt is served, and (t2+3)−t ≤ 9+WS,
as required.

• il(t2) 6= 0 and state(t2 − 1) =“JISR2”. Claim 26 implies that t = t2 − 1. But
this contradicts our assumption that t < t2 − 1.

(b) Suppose that t = t2 − 1, namely, state(t + 1) =“fetch”. Then in cycle t2 = t + 1
the control signal int equals 1, and the following transitions are made (starting
from cycle t+ 1):

fetch
1
→ JISR1

1
→ JISR2

1
→ fetch

Therefore, in cycle t+ 4 the reset interrupt is served.

2. An external interrupt (not reset). The proof follows the same type of arguments; the
main difference is that we require that some interrupt be served instead of a specific
interrupt.

The following claim is the analogue of Claim 26 (try to prove it!).

Claim 27 Assume that interrupt i, for i ≥ 7, occurs in cycle t (namely, evn[0](t) = 1).
Let t2 denote the first cycle in which the control enters the “fetch” state after cycle t
(namely, t < t2). If il(t2) = 32 and state(t2 − 1) = JISR2, then t = t2 − 1.

The proof now follows the same cases (make sure you can fill the proof): (a) t < t2− 1
and (i) il(t) < 32; (ii) il(t) = 32 and state(t2 − 1) 6= JISR2; or (iii) il(t) = 32 and
state(t2 − 1) = JISR2. (b) t = t2 − 1.

3. An enabled internal interrupt. If an enabled internal interrupt i occurs in cycle t, then
in cycle t+ 1 the control transitions to state JISR1 or JISR(-1).

An exception is the illegal instruction interrupt, in which the control moves to the
“fetch” state and from there to the JISR1 state. Therefore, in time t2 = t + 3 (or
t2 = t+ 4), the control enters the fetch state and serves an interrupt j.

The easy case is that i = j or interrupt j is an aborting interrupt. Is it possible that
i 6= j and j is non-aborting? We claim that this is impossible. This could only happen
if i, j ∈ {3, 4, 5, 6} (i.e. pff,pfls,trap,ovf). But interrupts 3-6 occur in different control
states, and therefore, cannot occur simultaneously and cannot be pending together.

7.3.2 priority

Consider interrupts 0 − 5. During the service of interrupt i ∈ {0, . . . , 5}, all the maskable
interrupts are disabled, so they can’t interrupt ISR[i]. Since the ISR’s are admissible,
interrupts 1-5 do not occur during ISR[i], this completes the first two parts.

Consider a maskable interrupt j. The critical section starts by disabling all the maskable
interrupts and ends by disabling all the interrupts with priority less than or equal to j. This
masking is kept until the service terminates, so if ISR[j] is interrupted by ISR[i], then i < j
and interrupt i is enabled, and we are done.

7.3. CORRECTNESS PROOF 83

7.3.3 finite space

Nesting of interrupts implies that the interrupt levels increases. So there can be at most one
frame for each interrupt in the range 31-0, which implies at most 32 frames in the interrupt
stack. The size of each frame is 35 words. A more careful argument is to observe that
interrupts 1− 5 never have frames simultaneously in the interrupt stack.

7.3.4 preciseness

We consider the three cases:

1. An internal interrupt i of type repeat. Interrupt i is a page fault either on fetch or
on load/store. In both cases the general-purpose registers and the SR register are not
changed by the current execution of the instruction. The PC is not changed in page
fault on fetch, and therefore, JISR1 copies the PC. The PC is incremented in page
fault on load/store (during the decode state) and therefore, JISR(-1) decrements the
PC back before it is copied.

2. An internal interrupt of type continue. This interrupt occurs after the PC is incre-
mented and after the general purpose register is updated (in overflow). Therefore, a
transition to JISR1 ensures that the CPU state after executing the current instruction
is copied.

3. An external interrupt of type continue. The control checks for an external interrupt
only in the fetch state in cycle t. The instruction I(t), the execution of which starts
when the control enters the fetch state, is not executed at all because the control moves
to JISR1,JISR2,fetch, and servicing of the interrupt starts in cycle t + 3. This means
that when the CPU returns from the ISR, the CPU state should be restored to the
CPU state in cycle t and instruction I(t) should be restarted. The JISR1 and JISR2
states in cycles t+ 1 and t+ 2 copy the state of the CPU in cycle t, as required.

7.3.5 termination

We wish to prove that ISR(j) terminates or that the program is aborted.
The proof is by double induction! First, we claim that ISR(i) terminates or is inter-

rupted by an aborting interrupt. This claim is proved by induction on i. If i = 0, then
obeying priorities implies that ISR(i) can only be interrupted by another reset interrupt.
Assuming that the number of interrupts is finite, the last reset interrupt is not interrupted
and terminates, as required. A similar argument holds for the other interrupts of type abort
(i.e., i = 1, 2).

The (first) induction hypothesis is that ISR(j), for j ≤ i, terminates or is interrupted
by an aborting interrupt. The induction step is to prove that the same holds for ISR(i+1).
The induction step is proved by induction on n - the number of interrupts that have not
occurred yet (again, we are assuming that only a finite number of interrupts occur).

The induction basis, for n = 0, is easy because ISR(i + 1) is not interrupted at all, so
it terminates. The (second) induction hypothesis is that if at most n interrupts have not

84CHAPTER 7. CORRECTNESS OF THE DLX INTERRUPT HANDLING MECHANISM

occurred yet when ISR(i+1) is running, then ISR(i+1) either terminates or is interrupted
by an aborting interrupt. The induction step for n+ 1 is as follows: the next interrupt that
occurs has priority `, and we consider two cases:

1. ` ≥ i + 1 or interrupt ` is disabled. In this case, our claim on priorities implies
that interrupt ` does not interrupt ISR(i + 1), and hence, the remaining number of
interrupts decreases by one, and we apply the induction hypothesis (on n), to conclude
that ISR(i+ 1) terminates or is interrupted by an interrupt of type abort.

2. ` < i+ 1 and interrupt ` is enabled. In this case, interrupt ` interrupts ISR(i+ 1). If
interrupt ` is of type abort, then we are done. Otherwise, the first induction hypothesis
implies that ISR(`) either terminates or is interrupted by an interrupt of type abort.
If ISR(`) terminates, then ISR[i+1] is resumed with at most n remaining interrupts,
and the second induction hypothesis (on n) implies that ISR(i + 1) terminates or is
interrupted by an interrupt of type abort. If ISR(`) is interrupted by an interrupt of
type abort, then so is ISR(i+ 1), and we are done.

7.3.6 Completeness

A reset interrupt or an enabled internal interrupt is served after at most WS + 9 cycles.
We prove that an external interrupt i that occurs in cycle t is served after a finite time

if it is enabled long enough. The proof is by induction on n, where n denotes the number of
pending interrupts in cycle t plus the number of interrupts that occur during cycle t or after
it. The induction basis for n = 1 is easy because after WS + 9 cycles an interrupt is served,
and the interrupt that is served must be i.

The induction step is proved as follows. If the interrupt ` that is served after WS + 9
cycles does not serve to interrupt i, then ISR[`] terminates. After ISR[`] terminates, there
are less than n interrupts left, and the induction hypothesis implies that interrupt i is served
after a finite time.

7.4 Power-up

Can we guarantee that the state of the DLX is in a pre-defined state shortly after power-up?
The response time specification implies that, at most 9 + WS cycles after power-up, the
reset signal is served. Assume that this execution of ISR(0) is not interrupted (it can be
interrupted only by a reset interrupt). This means that the state of the DLX can be fixed by
ISR(0), except for the content of the cause register CA (external interrupts may occur all
the time). The amount of time it takes to start servicing the reset interrupt upon power-up
can be shortened by causing a reset of the state of the control to the fetch state whenever
pup = 1.

Our assumption that ISR(0) is not interrupted could be somewhat relaxed to deal with
a finite (and small) number of reset interrupts. This can happen if, for example, the reset
button causes a burst of power-up signals.

Note that executing ISR(0) upon power-up makes sense only if part of the memory
(including SISR) is non-volatile read-only memory.

