Digital Logic Design: a rigorous approach (C)

Chapter 7: Asymptotics

$$
\begin{aligned}
& \text { part 1: big -0, big- } \Omega \\
& \text { Guy Even Moti Medina }
\end{aligned}
$$

School of Electrical Engineering Tel-Aviv Univ.
April 6, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

The functions we study

We study functions that describe the number of gates in a circuit, the delay of a circuit (length of longest path), the running time of an algorithm, number of bits in a data structure, etc. In all these cases it is natural to assume that

$$
\forall n \in \mathbb{N}: \quad f(n) \geq 1
$$

Assumption

The functions we study are functions $f: \mathbb{N} \rightarrow \mathbb{R} \geq 1$.

Order of Growth Rates

- We want to compare functions asymptotically (how fast does $f(n)$ grow as $n \rightarrow \infty)$.
- Ignore constants (not because they are not important, but because we want to focus on "high order" terms).

big-O, big-Omega, big-Theta

Definition

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}^{\geq 1}$ denote two functions.
(1) We say that $f(n)=O(g(n))$, if there exist constants $c \in \mathbb{R}^{+}$ and $N \in \mathbb{N}$, such that,

$$
\forall n>N: f(n) \leq c \cdot g(n) .
$$

(2) We say that $f(n)=\Omega(g(n))$, if there exist constants $c \in \mathbb{R}^{+}$ and $N \in \mathbb{N}$, such that,

$$
\forall n>N: f(n) \geq c \cdot g(n) .
$$

(3) We say that $f(n)=\Theta(g(n))$, if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

What does " $=$ " actually mean here?!

Warning on Notation

What does the equality sign in $f=O(g)$ mean?

- $O(g)$ in fact refers to a set of functions:

$$
O(g) \triangleq\left\{h: \mathbb{N} \rightarrow \mathbb{R}^{\geq 1} \mid \exists c \exists N \forall n>N: h(n) \leq c \cdot g(n)\right\}
$$

- Would have been much better to write $f \in O(g)$ instead of $f=O(g)$.
- But we want to abuse notation and write expressions like:

$$
\begin{aligned}
(\underbrace{\left.2 n^{3}+3 n\right) \cdot 5 \log \left(n^{2}\right.}_{f}) & =O(\underbrace{n^{2} \cdot \log n^{2}}_{h}) \quad f \in O(g) \\
\text { n: transitivity. } & =O(\underbrace{n^{2} \cdot \log n}_{h})
\end{aligned} \quad g \in O(h)
$$

$$
\not \mathscr{H}(g)=f \leftarrow \text { does not make }
$$

big-O, big-Omega, big-Theta

Definition

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}^{\geq 1}$ denote two functions.
(1) We say that $f(n)=O(g(n))$, if there exist constants $c \in \mathbb{R}^{+}$and $N \in \mathbb{N}$, such that,

$$
\forall n>N: f(n) \leq c \cdot g(n)
$$

(2) We say that $f(n)=\Omega(g(n))$, if there exist constants $c \in \mathbb{R}^{+}$and $N \in \mathbb{N}$, such that,

$$
\forall n>N: f(n) \geq c \cdot g(n)
$$

(3) We say that $f(n)=\Theta(g(n))$, if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

If $f(n)=O(g(n))$, then "asymptotically, $f(n)$ does not grow faster than $g(n)$ ".
If $f(n)=\Omega(g(n))$, then "asymptotically, $f(n)$ grows as least as fast as $g(n)$ ".
Finally, if $f(n)=\Theta(g(n))$, then "asymptotically, $f(n)$ grows as fast as $g(n)$ ".

Remark

When proving that $f(n)=O(g(n))$, it is not necessary to find the "smallest" constant c.

Example

Suppose you want to prove that $n+\sqrt{n}=O\left(n^{1.1}\right)$. Then, it suffices to prove that for $n>2^{100}$:

$$
n+\sqrt{n} \leq 10^{6} \cdot n^{1.1}
$$

Any other constants you can prove the statement for are just as good!

Examples

$$
\begin{aligned}
\exists c>0 \quad \exists N \quad & \forall n>N: \\
& n \leqslant c \cdot n^{2} \\
c=100 & \\
N=556 &
\end{aligned}
$$

Examples

$$
\begin{array}{cl}
& \log (n)=O(n) \\
\exists C>0 \quad \exists N & \forall n>N \\
& \lg _{n} \leqslant C \cdot n \\
C=100 & \\
\mathbb{N}=55 &
\end{array}
$$

Examples

$$
\begin{gathered}
{\underset{c}{c}}_{10 n}=O(n), \underbrace{10^{2}}_{c} n=O(n), \ldots, \underbrace{10^{100}}_{c} n=O(n) \\
c \cdot n \leqslant c \cdot n
\end{gathered}
$$

Examples

$$
\begin{aligned}
n \cdot \underbrace{\log \log \log n}_{n \rightarrow \infty} n & \neq O(n) \\
w \cdot \underbrace{\lg \lg \lg n} & \leqslant c \cdot n
\end{aligned}
$$

Constant Function

Claim
$f(n)=O(1)$ ff there exists a constant c such that $f(n) \leq c$, for every n.
proof:

$$
\begin{aligned}
& (\Leftarrow) \text { by def. } \\
& (\Leftrightarrow) \exists c^{\prime} \exists N \quad \forall n>N: \quad f(n) \leq c^{\prime} \\
& \Rightarrow \forall n: f(n) \leq \max \left\{c^{\prime}, f(1), \ldots, f(N)\right\}
\end{aligned}
$$

claim if $f_{i}=O(g)$ for $i \in\{1,2\}$
then $f_{1}+f_{2}=O(g)$
Proof: $\exists c_{i} \exists N_{i} \forall n>N_{i}$:

$$
\begin{gathered}
f_{i}(n) \leqslant c_{i} \cdot g(n) \\
\Rightarrow \quad f_{1}(n)+f_{2}(n) \leqslant\left(c_{1}+c_{2}\right) \cdot g(n) \\
\text { if } \quad n \geqslant N_{1}+N_{2} .
\end{gathered}
$$

consed: $n^{2}+n+1=O\left(n^{2}\right)$

Asymptotic Algebra (big-0)

Abbreviate: $f_{i}=O(h)$ means $f_{i}(n)=O(h(n))$.

Claim

Suppose that $f_{i}=O\left(g_{i}\right)$ for $i \in\{1, \ldots, k\}$, then:

$$
\begin{aligned}
\max \left\{f_{i}\right\}_{i} & =O\left(\max \left\{g_{i}\right\}_{i}\right) \\
\sum_{i} f_{i} & =O\left(\sum g_{i}\right) \\
\prod_{i} f_{i} & =O\left(\prod_{i} g_{i}\right) .
\end{aligned}
$$

Consequences:

$$
2 n=O(n)
$$

mull. by constant
$50 n^{2}+2 n+1=O\left(n^{2}\right)$ polynomial with positive leading coefficient $O\left(n^{2}+n+1\right)$
claim: $\quad f_{i}=O\left(g_{i}\right) \Rightarrow \max _{i} f_{i}=O\left(\max _{i} g_{i}\right)$
proof: $\forall i \quad \exists c_{i} \exists N_{i} \quad \forall n \geqslant N_{i}$

$$
f_{i}(n) \leqslant c_{i} \cdot g_{i}(n)
$$

define $c \triangleq \xlongequal{\triangleq} \max \left\{c_{1}, \ldots, c_{k}\right\}$

$$
N \cong \max \left\{N_{1}, \ldots, N_{k}\right\}
$$

$\forall n \geqslant N: \max _{i} f_{i}(n) \leq \max _{i} c \cdot g_{i}(n)$

$$
\begin{aligned}
& \leq c \cdot \max _{i} g_{i}(n) \\
& =O\left(\max _{i} g_{i}(n)\right)
\end{aligned}
$$

claim: $f_{i}=O\left(g_{i}\right) \Rightarrow \sum_{i=1}^{k} f_{i}=O\left(\sum_{i=1}^{n} g_{i}\right)$ proof: use same notation:

$$
\begin{aligned}
\forall n \geqslant N: \sum_{i=1}^{k} f_{i}(n) & \leqslant \sum_{i=1}^{k} c_{i} \cdot g_{i}(n) \\
& \leq c \cdot \sum_{i=1}^{k} g_{i}(n) \\
& =O\left(\sum_{i=1}^{k} g_{i}(n)\right)
\end{aligned}
$$

Claim $f_{i}=O\left(g_{i}\right) \Rightarrow \pi f_{i}=O\left(\pi g_{i}\right)$
proof: using same notation except

$$
\begin{aligned}
& \tilde{c} \stackrel{0}{\leftrightharpoons} c_{1} \cdot c_{2} \cdot \cdots c_{k} \\
& \forall n \geqslant N: \quad \prod_{i} f_{i}(n) \leqslant \prod_{i} c_{i} \cdot g_{i}(n) \\
& \leqslant \tilde{c} \prod_{i} g_{i}(n) \\
&=O\left(\prod_{i} g_{i}(n)\right)
\end{aligned}
$$

Asymptotic Algebra (big-Omega)

Claim

Suppose that $f_{i}=\Omega\left(g_{i}\right)$ for $i \in\{1, \ldots, k\}$, then:

$$
\begin{aligned}
\min \left\{f_{i}\right\}_{i} & =\Omega\left(\min \left\{g_{i}\right\}_{i}\right) \\
\sum_{i} f_{i} & =\Omega\left(\sum g_{i}\right) \\
\prod f_{i} & =\Omega\left(\prod g_{i}\right) .
\end{aligned}
$$

Consequences:

$$
2 n=\Omega(n)
$$

mult. by constant
$10^{-6} \cdot n^{2}+2 n+1=\Omega\left(n^{2}\right)$ polynomial with positive leading coefficient

Asymptotics of Arithmetic Series

Claim
If $\left\{a_{n}\right\}_{n}$ is an arithmetic sequence with $a_{0} \geq 0$ and $d>0$, then $\sum_{i \leq n} a_{i}=\Theta\left(n \cdot a_{n}\right)$.

Consequence:

$$
\begin{aligned}
& \sum_{i=1}^{n} i=\Theta\left(n^{2}\right) \\
& \text { proof: } S_{n}=a_{0}(n+1)+d \cdot \frac{n(n+1)}{2} \\
& \text { (algebra) }=\underbrace{a_{0}}_{\theta(1)}+\underbrace{\left(a_{0}+\frac{d}{2}\right) n}_{\theta(n)}+\underbrace{\frac{d}{2} n^{2}}_{\theta\left(n^{2}\right)} \\
&(\text { sum of } 0)=\theta\left(1+n+n^{2}\right)=\theta\left(n^{2}\right) \\
&(c l a i m)
\end{aligned}
$$

Asymptotics of Geometric Series

Claim
If $\left\{b_{n}\right\}_{n}$ is a geometric sequence with $b_{0} \geq 1$ and $q>1$, then $\sum_{i \leq n} b_{i}=\Theta\left(b_{n}\right)$.

Consequence: If $q>1$, then $\sum_{i=1}^{n} q^{i}=\Theta\left(q^{n}\right)$.

$$
\text { proof: } \begin{aligned}
S_{n} & =b_{0} \cdot \frac{q^{n+1}-1}{q-1} \\
& =\frac{b_{0} \cdot q}{q-1} \cdot q^{n}-\frac{b_{0}}{q-1} \\
& =O\left(q^{n}\right)^{1}
\end{aligned}
$$

for large enough $n: \quad S_{n} \geqslant \frac{1}{2} \cdot \frac{b_{0} q}{q-1} \cdot q^{n}=\Omega\left(q^{n}\right)_{\theta}$

Asymptotics as an Equivalence Relation

Claim

$$
\begin{array}{rrr}
f=O(f) & \text { reflexivity } \\
f=O(g) \nRightarrow g=O(f) & \text { no symmetry } \\
(f=O(g)) \wedge(g=O(h)) \Longrightarrow f=O(h) & \text { transitivity }
\end{array}
$$

What about Ω ?
claim: $f=O(g) \neq g=O(f)$
proof: suffices to show a counter example.

$$
\begin{aligned}
& f(n)=1 \\
& g(n)=n
\end{aligned}
$$

claim $f=O(g) \& g=O(h)$

$$
\Rightarrow \quad f=O(h)
$$

proof: $\exists c, \exists N, \forall n \geqslant N$: $f(n) \leqslant c_{1} g(n)$

$$
\begin{array}{rl}
\exists c_{2} \exists N_{2} & \forall n \geqslant N_{2}: g(n) \leqslant c_{2} \cdot h(n) \\
\Rightarrow \quad \forall n \geqslant N_{1}+N_{2} & f(n)
\end{array}
$$

Big-Omega: equivalent definition

Claim
Assume $f(n), g(n) \geq 1$, for every n. Then,

$$
\begin{gathered}
\quad f(n)=O(g(n)) \Leftrightarrow g(n)=\Omega(f(n)) . \\
\text { proof: }(\Rightarrow) \exists \subset \exists N \forall n>N \quad f(n) \leq c \cdot g(n) \\
\Rightarrow \exists c \exists N \forall n: g(n) \geqslant \frac{1}{c} f(n) \\
\Rightarrow g=\Omega(f) .
\end{gathered}
$$

(\Leftarrow) exercise

