Digital Logic Design: a rigorous approach © Chapter 7: Asymptotics

part 1: big-0, big-SL Guv Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

#### April 6, 2020

Book Homepage: http://www.eng.tau.ac.il/~guy/Even-Medina We study functions that describe the number of gates in a circuit, the delay of a circuit (length of longest path), the running time of an algorithm, number of bits in a data structure, etc. In all these cases it is natural to assume that

$$\forall n \in \mathbb{N} : f(n) \geq 1.$$

### Assumption

The functions we study are functions  $f : \mathbb{N} \to \mathbb{R}^{\geq 1}$ .

- We want to compare functions asymptotically (how fast does f(n) grow as  $n \to \infty$ ).
- Ignore constants (not because they are not important, but because we want to focus on "high order" terms).



## big-O, big-Omega, big-Theta

### Definition

Let  $f, g : \mathbb{N} \to \mathbb{R}^{\geq 1}$  denote two functions.

• We say that f(n) = O(g(n)), if there exist constants  $c \in \mathbb{R}^+$ and  $N \in \mathbb{N}$ , such that,

$$\forall n > N : f(n) \leq c \cdot g(n) .$$

② We say that  $f(n) = \Omega(g(n))$ , if there exist constants  $c \in \mathbb{R}^+$ and  $N \in \mathbb{N}$ , such that,

$$\forall n > N : f(n) \ge c \cdot g(n) .$$

• We say that  $f(n) = \Theta(g(n))$ , if f(n) = O(g(n)) and  $f(n) = \Omega(g(n))$ .

What does "=" actually mean here?!

J

What does the equality sign in f = O(g) mean?

• O(g) in fact refers to a set of functions:

$$O(g) riangleq \{h: \mathbb{N} 
ightarrow \mathbb{R}^{\geq 1} \mid \exists c \exists N orall n > N: h(n) \leq c \cdot g(n) \}$$

- Would have been much better to write  $f \in O(g)$  instead of f = O(g).
- But we want to abuse notation and write expressions like:

$$(2n^{3} + 3n) \cdot 5\log(n^{2}) = O(n^{2} \cdot \log n^{2}) \quad f \in O(g)$$
  

$$= O(n^{2} \cdot \log n) \cdot g \in O(h)$$
  
ustification: transitivity.  

$$\swarrow O(g) = f \quad \leftarrow \text{ log } n \text{ ot make}$$
  

$$\text{sense } l$$

### big-O, big-Omega, big-Theta

#### Definition

Let  $f, g : \mathbb{N} \to \mathbb{R}^{\geq 1}$  denote two functions.

We say that f(n) = O(g(n)), if there exist constants  $c \in \mathbb{R}^+$  and  $N \in \mathbb{N}$ , such that,

$$\forall n > N : f(n) \leq c \cdot g(n)$$
.

2 We say that  $f(n) = \Omega(g(n))$ , if there exist constants  $c \in \mathbb{R}^+$  and  $N \in \mathbb{N}$ , such that,

$$\forall n > N : f(n) \geq c \cdot g(n)$$
.

3 We say that  $f(n) = \Theta(g(n))$ , if f(n) = O(g(n)) and  $f(n) = \Omega(g(n))$ .

If f(n) = O(g(n)), then "asymptotically, f(n) does not grow faster than g(n)". If  $f(n) = \Omega(g(n))$ , then "asymptotically, f(n) grows as least as fast as g(n)". Finally, if  $f(n) = \Theta(g(n))$ , then "asymptotically, f(n) grows as fast as g(n)". When proving that f(n) = O(g(n)), it is not necessary to find the "smallest" constant c.

### Example

Suppose you want to prove that  $n + \sqrt{n} = O(n^{1.1})$ . Then, it suffices to prove that for  $n > 2^{100}$ :

$$n+\sqrt{n}\leq 10^6\cdot n^{1.1}$$
 .

Any other constants you can prove the statement for are just as good!

$$n = O(n^{2})$$

$$\exists c > 0 \exists N \quad \forall n > N :$$

$$n \leq c \cdot n^{2}$$

$$C = 100$$
  
N = 556

$$log(n) = O(n)$$
  

$$\exists c > 0 \quad \exists N \quad \forall n > N$$
  

$$lg_n \leq C \cdot N$$
  

$$C = loo$$
  

$$W = 55$$

$$\underbrace{10n}_{C} = O(n), \underbrace{10^2n}_{C} = O(n), \ldots, \underbrace{10^{100}n}_{C} = O(n)$$

cn ¿ c·n

 $n \cdot \log \log \log n \neq O(n)$  $\sim$ nso pt. lglglgn < C. K

### **Constant Function**

### Claim

f(n) = O(1) iff there exists a constant c such that  $f(n) \le c$ , for every n.

proof:

(<=) by def.

$$(=))$$
  $\exists c' \exists N \forall n > N : f(n) \leq c'$   
=>  $\forall n : f(n) \leq \max \{c', f(n), ..., f(N)\}$ 

 $\leq laim if f_i = O(g)$  for ie {1,2} then  $f_1 + f_2 = O(g)$ JC: JN: AN>N: : Proof:  $f'(n) \neq c' \cdot d(n)$  $f_{1}(n) + f_{2}(n) \leq (c_{1} + c_{2}) \cdot g(n)$  $if n \ge N_1 + N_2.$ conseq:  $n^2 + n + 1 = O(n^2)$  $\square$ 

### Asymptotic Algebra (big-O)

Abbreviate: 
$$f_i = O(h)$$
 means  $f_i(n) = O(h(n))$ .

#### Claim

Suppose that  $f_i = O(g_i)$  for  $i \in \{1, ..., k\}$ , then:

$$\max\{f_i\}_i = O(\max\{g_i\}_i)$$
$$\sum_i f_i = O(\sum g_i)$$
$$\prod_i f_i = O(\prod_i g_i) .$$

Consequences:

2n = O(n) mult. by constant  $50n^2 + 2n + 1 = O(n^2)$  polynomial with positive leading coefficient  $O(n^2 + n + n)$ 

 $\underline{C(a:m:} \quad f_i = O(g_i) =) \max_i f_i = O(\max_i g_i)$ Yi Jc; JN; YnzN; proof:  $f_i(n) \leq C_i \cdot g_i(n)$ C = max { C1, ..., C12 } define  $N \stackrel{\circ}{=} \max\{N_{1,...}, N_{k}\}$  $\max_{i} f_i(n) \leq \max_{i} c \cdot g_i(n)$ Aus N:  $= O(\max_{i} g_{i}(m))$ 

 $claim: f_i = O(g_i) \Rightarrow \tilde{Z}f_i = O(\tilde{Z}g_i)$ proof: use same notation:  $\forall n \geq N$ ;  $\sum_{i=1}^{k} f_i(n) \leq \sum_{i=1}^{k} c_i \cdot g_i(n)$  $x \quad c \cdot \sum_{i=1}^{K} g_i(n)$  $= \bigcup_{k \in \mathcal{N}} \left( \sum_{k \in \mathcal{N}} g_{i}(n) \right)$ 

 $\underline{Claim} \quad f_i = O(g_i) \implies \overline{\pi} f_i = O(\pi g_i)$ prosf: using same notation except  $\tilde{c} \stackrel{\circ}{=} c_1 \cdot c_2 \cdot \cdots \cdot c_K$  $\frac{1}{T}f_{i}(n) \leq \frac{1}{T}c_{i}g_{i}(n)$ Ausly;  $\xi \in \mathcal{I} \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J}$ =  $\bigcirc$   $(\Pi g; (n))$ N

Suppose that  $f_i = \Omega(g_i)$  for  $i \in \{1, ..., k\}$ , then:

$$\min\{f_i\}_i = \Omega(\min\{g_i\}_i)$$
  
 $\sum_i f_i = \Omega(\sum g_i)$   
 $\prod_i f_i = \Omega(\prod_i g_i)$ .

Consequences:

 $2n=\Omega(n) \qquad \qquad {\rm mult.\ by\ constant}$   $10^{-6}\cdot n^2+2n+1=\Omega(n^2) \quad {\rm polynomial\ with\ positive\ leading\ coefficient}$ 

If  $\{a_n\}_n$  is an arithmetic sequence with  $a_0 \ge 0$  and d > 0, then  $\sum_{i \le n} a_i = \Theta(n \cdot a_n).$ 

Consequence:

$$\sum_{i=1}^{n} i = \Theta(n^{2}).$$

$$\sum_{i=1}^{n} i = \Theta(n^{2}).$$

$$\sum_{n=1}^{n} a_{0}(n+i) + c(\frac{n(n+i)}{2})$$

$$(algebra) = a_{0} + (a_{0} + \frac{d}{2})n + \frac{d}{2}n^{2}$$

$$(algebra) = \Theta(n^{2})$$

$$(algebra) = \Theta(n+i) + c(\frac{d}{2})n + \frac{d}{2}n^{2}$$

$$(algebra) = \Theta(n^{2})$$

$$(algebra) = \Theta(n^{2})$$

$$(algebra) = \Theta(n^{2})$$

$$(algebra) = \Theta(n^{2})$$

If  $\{b_n\}_n$  is a geometric sequence with  $b_0 \ge 1$  and q > 1, then  $\sum_{i \le n} b_i = \Theta(b_n)$ .

Consequence: If q > 1, then  $\sum_{i=1}^{n} q^i = \Theta(q^n)$ .



# Asymptotics as an Equivalence Relation

### Claim

$$f = O(f)$$
 reflexivity  
 $f = O(g) \implies g = O(f)$  no symmetry  
 $(f = O(g)) \land (g = O(h)) \implies f = O(h)$  transitivity

What about  $\Omega$ ?

claim:  $f=O(g) \neq g=O(f)$ proof: suffices to show a counter example. f(n) = 1

g(n) = n

f=O(g) & g=O(h)claim  $\rightarrow$  f = O(h) 3 c, 3N, AN >N, : f(n) < c, g(n) proof: 3 c2 3N2 AN3N2: 3(n) 2 c2. p(m)  $=) \quad A^{n} \ge N^{1} + N^{3} : \quad f(n) \le c^{1} f(n)$  $\leq c_1 \cdot c_2 \cdot h(n)$ 

Assume  $f(n), g(n) \ge 1$ , for every n. Then,  $f(n) = O(g(n)) \quad \Leftrightarrow \quad g(n) = \Omega(f(n)).$ proof (=) FC BN KNON f(n) < c g(n) => ]c ]N Yn: g(n) > - f(n)  $\Rightarrow$   $g = \Omega(f)$ . (E) exercise