Digital Logic Design: a rigorous approach © Chapter 5: Binary Representation

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

March 22, 2020

Book Homepage: http://www.eng.tau.ac.il/~guy/Even-Medina

Definition

Given $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^+$ (b > 0) define:

$$(a \div b) \triangleq \max\{q \in \mathbb{Z} \mid q \cdot b \le a\}$$

 $\operatorname{mod}(a, b) \triangleq a - b \cdot (a \div b).$

- $(a \div b)$ is called the quotient and mod(a, b) is called the remainder.
- if mod(a, b) = 0, then a is a multiple of b (a is divisible by b).
- $(a \div b) = \lfloor \frac{a}{b} \rfloor.$
- $(a \mod b), \mod(a, b), a \pmod{b}$ denote the same thing.

- **3** mod 5 = 3 and $5 \mod 3 = 2$.
- **2** 999 mod 10 = 9 and $123 \mod 10 = 3$.
- **a** mod 2 equals 1 if a is odd, and 0 if a is even.
- $a \mod b \ge 0$.
- $one a \mod b \le b 1.$

Claim

$$mod(a, b) \in \{0, 1 \dots, b-1\}.$$

Claim

If
$$a = q \cdot b + r$$
 and $0 \le r \le b - 1$, then

$$q = a \div b$$
$$r = a \pmod{b}$$

claim: if a=qb+r ozr=b-1 => q= a + b L= a (mod b) proof: we want to prove that if $a = q_1 \cdot b + r_1 = q_2 \cdot b + r_2$ where $r_1, r_2 \in [0, b]$, then $(q_1, r_1) = (q_2, r_2)$. WLOG, 1231. Subtraction => $0 = (q_2 - q_1) b + (r_2 - r_1) r_2 - r_1 \in [0, b].$ now: O& (92-91). b are divisible by b. ⇒ (r2-r1) is divisible by b $\Rightarrow r_2 - r_1 = 0 \implies r_1 = r_2 \implies q_1 = q_2 \cdot \boxtimes$

Lemma

For every $z \in \mathbb{Z}$,

$$x \mod b = (x + z \cdot b) \mod b$$

Lemma

$$((x \mod b) + (y \mod b)) \mod b = (x+y) \mod b$$

 $a \pmod{b} = (a+2.b) \pmod{b}$ Yze Z q = a+b, r = a (mod b) proof: let hence: $a = q \cdot b + r$ $o \leq r \leq b - 1$ consider a+3.b; $a + 3 \cdot b = q \cdot b + r + 3 \cdot b = (q + 3)b + r$ $prev. claim = (a+zb) \div b = q+z$ $\{(a+3\cdot b)(mod b) = r$ \mathbb{N}

claim: ((x mod b) + (y mod b)) (mod b) $r_x = (x+r_y) \pmod{b}$ proof: divide x & y by b: $\begin{cases} x = q_x \cdot b + r_x \\ y = q_y \cdot b + r_y \end{cases}$ $r_{x}, r_{y} \in [0, b-i]$ $x+y = (q_x+q_y)b + r_x+r_y$ prev. claim (x+y) mod b = (rx+ry) modb 3= 9x+9y X

Definition

A binary string is a finite sequence of bits.

Ways to denote strings:

- **1** sequence $\{A_i\}_{i=0}^{n-1}$,
- ❷ vector A[0 : n − 1], or

(a) \vec{A} if the indexes are known.

We often use A[i] to denote A_i .

- A[0:3] = 1100 means $A_0 = 1$, $A_1 = 1$, $A_2 = 0$, $A_3 = 0$.
- The notation A[0:5] is zero based, i.e., the first bit in \vec{A} is A[0]. Therefore, the third bit of \vec{A} is A[2] (which equals 0).

A basic operation that is applied to strings is called concatenation. Given two strings A[0:n-1] and B[0:m-1], the concatenated string is a string C[0:n+m-1] defined by

$$C[i] \stackrel{\triangle}{=} \begin{cases} A[i] & \text{if } 0 \le i < n, \\ B[i-n] & \text{if } n \le i \le n+m-1. \end{cases}$$

We denote the operation of concatenating string by \circ , e.g., $\vec{C} = \vec{A} \circ \vec{B}$.

Examples of concatenation of strings. Let A[0:2] = 111, B[0:1] = 01, C[0:1] = 10, then:

$$\vec{A} \circ \vec{B} = 111 \circ 01 = 11101 ,$$

$$\vec{A} \circ \vec{C} = 111 \circ 10 = 11110 ,$$

$$\vec{B} \circ \vec{C} = 01 \circ 10 = 0110 ,$$

$$\vec{B} \circ \vec{B} = 01 \circ 01 = 0101 .$$

Let $i \leq j$. Both A[i : j] and A[j : i] denote the same sequence $\{A_k\}_{k=i}^{j}$. However, when we write A[i : j] as a string, the leftmost bit is A[i] and the rightmost bit is A[j]. On the other hand, when we write A[j : i] as a string, the leftmost bit is A[j] and the rightmost bit is A[j].

Example

The string A[3:0] and the string A[0:3] denote the same 4-bit string. However, when we write A[3:0] = 1100 it means that A[3] = A[2] = 1 and A[1] = A[0] = 0. When we write A[0:3] = 1100 it means that A[3] = A[2] = 0 and A[1] = A[0] = 1.

Definition

The least significant bit of the string A[i : j] is the bit A[k], where $k \stackrel{\triangle}{=} \min\{i, j\}$. The most significant bit of the string A[i : j] is the bit $A[\ell]$, where $\ell \stackrel{\triangle}{=} \max\{i, j\}$.

The abbreviations LSB and MSB are used to abbreviate the least significant bit and the most significant bit, respectively.

- The least significant bit (LSB) of A[0:3] = 1100 is A[0] = 1. The most significant bit (MSB) of \vec{A} is A[3] = 0.
- The LSB of A[3:0] = 1100 is A[0] = 0. The MSB of \vec{A} is A[3] = 1.
- The least significant and most significant bits are determined by the indexes. In our convention, it is not the case that the LSB is always the leftmost bit. Namely, if $i \le j$, then LSB in A[i : j] is the leftmost bit, whereas in A[j : i], the leftmost bit is the MSB.

We are now ready to define the binary number represented by a string A[n-1:0].

Definition

The natural number, *a*, represented in binary representation by the binary string A[n-1:0] is defined by

$$a \stackrel{\triangle}{=} \sum_{i=0}^{n-1} A[i] \cdot 2^i.$$

In binary representation, each bit has a weight associated with it. The weight of the bit A[i] is 2^i .

Consider a binary string A[n-1:0]. We introduce the following notation:

$$\langle A[n-1:0] \rangle \stackrel{\Delta}{=} \sum_{i=0}^{n-1} A[i] \cdot 2^i.$$

To simplify notation, we often denote strings by capital letters (e.g., A, B, S) and we denote the number represented by a string by a lowercase letter (e.g., a, b, and s).

Examples

Consider the strings: $A[2:0] \stackrel{\triangle}{=} 000, B[3:0] \stackrel{\triangle}{=} 0001$, and $C[3:0] \stackrel{\triangle}{=} 1000$. The natural numbers represented by the binary strings A, B and C are as follows.

$$\begin{split} \langle A[2:0] \rangle &= A[0] \cdot 2^0 + A[1] \cdot 2^1 + A[2] \cdot 2^2 \\ &= \mathbf{0} \cdot 2^0 + \mathbf{0} \cdot 2^1 + \mathbf{0} \cdot 2^2 = 0 , \\ \langle B[3:0] \rangle &= B[0] \cdot 2^0 + B[1] \cdot 2^1 + B[2] \cdot 2^2 + B[3] \cdot 2^3 \\ &= \mathbf{1} \cdot 2^0 + \mathbf{0} \cdot 2^1 + \mathbf{0} \cdot 2^2 + \mathbf{0} \cdot 2^3 = 1 , \\ \langle C[3:0] \rangle &= C[0] \cdot 2^0 + C[1] \cdot 2^1 + C[2] \cdot 2^2 + C[3] \cdot 2^3 \\ &= \mathbf{0} \cdot 2^0 + \mathbf{0} \cdot 2^1 + \mathbf{0} \cdot 2^2 + \mathbf{1} \cdot 2^3 = 8 . \end{split}$$

Leading Zeros

Consider a binary string A[n-1:0]. Extending \vec{A} by leading zeros means concatenating zeros in indexes higher than n-1. Namely,

- extending the length of A[n-1:0] to A[m-1:0], for m > n, and
- **2** defining A[i] = 0, for every $i \in [m 1 : n]$.

Example

$$A[2:0] = 111$$

 $B[1:0] = 00$
 $C[4:0] = B[1:0] \circ A[2:0] = 00 \circ 111 = 00111.$

$$\begin{bmatrix} n-1 & 0 \\ \hline A \end{bmatrix} \qquad \begin{bmatrix} m-1 & n-1 & 0 \\ \hline 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} A \\ \hline A \end{bmatrix}$$

The following lemma states that extending a binary string by leading zeros does not change the number it represents in binary representation.

Lemma

Let
$$m > n$$
. If $A[m-1:n]$ is all zeros, then $\langle A[m-1:0] \rangle = \langle A[n-1:0] \rangle$.

Example

Consider C[6:0] = 0001100 and D[3:0] = 1100. Note that $\langle \vec{C} \rangle = \langle \vec{D} \rangle = 12$. Since the leading zeros do not affect the value represented by a string, a natural number has infinitely many binary representations.

$$claim: A[m-1:n] = 0^{m-n} = (A[m-1:0]) = (A[n-1:0])$$

 $= \langle A[n-1:0] \rangle + 0$

The following lemma bounds the value of a number represented by a k-bit binary string.

Lemma

Let A[k-1:0] denote a k-bit binary string. Then,

$$0 \leq \langle A[k-1:0] \rangle \leq 2^k - 1 \; .$$

What is the largest number representable by the following number of bits: (i) 8 bits, (ii) 10 bits, (iii) 16 bits, (iv) 32 bits, and (v) 64 bits? $2^{8} = 256$ $2^{16} = 65,536$ $2^{64} \approx 1.8 \cdot 10^{17}$

$$2^{10} = 1024$$
 $2^{30} = 4$ gigabit $\approx 4.29 \cdot 10^{9}$

Claim: $0 \leq \langle A[K-1:0] \rangle \leq 2^{K}-1$ proof: (À) 20 easy. $\langle AEK-1:03 \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{K-1} AEi] \cdot 2^{i}$ 1=0 2^K-1 $\leq \frac{k-1}{2} 2^{i} = \frac{1}{3}$ 2-1 geom. AE:751 series

Fix k the number of bits (i.e., length of binary string). Goals:

- show how to compute a binary representation of a natural number using k bits.
- **②** prove that every natural number in $[0, 2^k 1]$ has a unique binary representation that uses k bits.

binary representation algorithm: specification

Algorithm BR(x, k) for computing a binary representation is specified as follows:

- Inputs: $x \in \mathbb{N}$ and $k \in \mathbb{N}^+$, where x is a natural number for which a binary representation is sought, and k is the length of the binary string that the algorithm should output.
- Output: The algorithm outputs "fail" or a k-bit binary string A[k-1:0].

Functionality: The relation between the inputs and the output is as follows:

- If 0 ≤ x < 2^k, then the algorithm outputs a k-bit string A[k − 1 : 0] that satisfies x = ⟨A[k − 1 : 0]⟩.
- 2 If $x \ge 2^k$, then the algorithm outputs "fail".

Algorithm 1 BR(x, k) - An algorithm for computing a binary representation of a natural number *a* using *k* bits.

Base Cases:

If x ≥ 2^k then return (fail).
If k = 1 then return (x).

Reduction Rule:

If x ≥ 2^{k-1} then return (1 ∘ BR(x − 2^{k-1}, k − 1)).
If x ≤ 2^{k-1} − 1 then return (0 ∘ BR(x, k − 1)).

example: execution of BR(2,1) and BR(7,3)

Theorem

If $x \in \mathbb{N}$, $k \in \mathbb{N}^+$, and $x < 2^k$, then algorithm BR(x, k) returns a *k*-bit binary string A[k-1:0] such that $\langle A[k-1:0] \rangle = x$.

BR(2,1)
$$\begin{bmatrix} x=2 \\ k=1 \end{bmatrix}$$

222': fail!
Indeed: 272'-1=1 (out of range)

メニチ BR(7,3)k = 3722 NO! 3=1 NO! 77, 2 = 4 yes ; A[2] = 1 $BR(7-2^2, 3-1)$ BR(3, 2)3222 NO! 2=1 NO! 372=2 yes! AL13=1 BR(3-2',1) BR(1,1)K=1 return A[0]=1

claim:
$$k \ge 1$$
 & $o \le x < 2^k \implies \langle BR(x,k) \rangle = x$
proof: ind. on k.
basis: $k = 1$: $o \le x < 2$.
 $BR(x,k) = x \in \{0,1\}$
indeed, $\langle x \rangle = x$
hyp: $\langle BR(x,k) \rangle = x$
step: prove that if $o \le x < 2^{k+1}$
then $\langle BR(x,k+1) \rangle = x$

 $\langle BR(x, K+1) \rangle = \times$ $\times < 2^{k}$ case 1: $BR(x, K+1) = O \cdot BR(x, K)$ ind. hyp. $\langle BR(x, k) \rangle = X$ So $\langle BR(x, k+1) \rangle = \langle O \circ BR(x, k) \rangle$ $= \langle BR(x, k) \rangle$ = ×

 $\langle BR(x, k+1) \rangle = X$ case 2: 2 *1 > x > 2 K $BR(x, k+1) = 1 \circ BR(x-2^{k}, k)$ ind. hyp. $\langle BR(x-2^{k},k) \rangle = x-2^{k}$ 50 $\langle BR(x, k+1) \rangle = \langle 1 \circ BR(x-2^k, k) \rangle$ $= 2^{k} + \langle BR(x-2^{k},k) \rangle$ $= 2^{k} + x - 2^{k} = x$

 \mathbb{N}

alternative view of BR(X,K) Notation: B_K= {0,1,...,2-1} < set of numbers repr. using k-bits claim: let XEB, and A[K-1:0] s.t. (A)=X. then A[K-1]=1 (=) ×32^{k-1} <u>proof</u>: $x = \langle \vec{A} \rangle = A[K-1] \cdot 2^{K-1} + \langle A[K-2:0] \rangle$ if A[K-1]=0, then $X = \langle A[K-2:0] \rangle \leq 2^{K-1} - 1$ if A[K-1]=1, then $X \ge 2^{K-1}$ Ø

suppose
$$x \in B_k$$
 and we want to
compute $A[K-1:o]$ s.t. $(\overline{A}) = X$.
* if $X < 2^{k-1}$, then $A[K-1] = 0$.
But : $x \in B_{k-1}$, so
 $A[K-2:o] \leftarrow BR(X,K-1)$
* if $X \ge 2^{K-1}$, then $A[K-1] = 1$.
Now $X \le 2^{K-1}$, then $A[K-1] = 1$.
hence
 $A[K-2:o] \leftarrow BR(X-2^{K-1}, K-1)$.

Corollary

Every positive integer x has a binary representation by a k-bit binary string if $k > \log_2(x)$.

Proof.

BR(x, k) succeeds if $x < 2^k$. Take a log:

 $\log_2(x) < k.$

Theorem (unique binary representation)

The binary representation function

$$\langle \rangle_k : \{0,1\}^k \to \{0,\ldots,2^k-1\}$$

defined by

$$\langle A[k-1:0] \rangle_k \stackrel{\scriptscriptstyle riangle}{=} \sum_{i=0}^{k-1} A[i] \cdot 2^i$$

is a bijection (i.e., one-to-one and onto).

Proof.

2 |Domain| = |Range| implies that $\langle \rangle_k$ is one-to-one.

 $\begin{array}{c} \eta \quad f: A \xrightarrow{\text{onto}} 2\\ z) \quad |A| = |B| \\ \Rightarrow \quad f: n \quad 1-1 \end{array}$

We claim that when a natural number is multiplied by two, its binary representation is "shifted left" while a single zero bit is padded from the right. That property is summarized in the following lemma.

Lemma

Let
$$a \in \mathbb{N}$$
. Let $A[k-1:0]$ be a k-bit string such that
 $a = \langle A[k-1:0] \rangle$. Let $B[k:0] \stackrel{\triangle}{=} A[k-1:0] \circ 0$, then
 $2 \cdot a = \langle B[k:0] \rangle$.

Example

$$\langle 1000\rangle = 2\cdot \langle 100\rangle = 2^2\cdot \langle 10\rangle = 2^3\cdot \langle 1\rangle = 8.$$

$$(10.0) = 4$$
 $(10) = 2$

claim: B[K:0] = A[K-1:0] · 0 => = 2-< R7

 $\frac{proof}{\langle \vec{B} \rangle} = \sum_{i=0}^{K} B[i] \cdot 2^{i}$

 $= \sum_{i=1}^{k} A[i-i] \cdot 2^{i} + 0 \cdot 2^{\circ}$ 1=1 $= 2 (\vec{A}) = 2 (\vec{A})$

