Digital Logic Design: a rigorous approach ©

Chapter 13: Decoders and Encoders

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.
May 12, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

Example
An adder and a register (a memory device). The output of the adder should be stored by the register. Different name to each bit?!

$$
\langle S\rangle=\langle X\rangle+\langle Y\rangle
$$

Definition
A bus is a set of nets that are connected to the same modules. The width of a bus is the number of nets in the bus.

Example
PCI bus is data network that connects modules in a computer system.

Indexing conventions
(1)

(1) Connection of terminals is done by assignment statements: The statement $b[0: 3] \leftarrow a[0: 3]$ means connect $a[i]$ to $b[i]$.
(2) "Reversing" of indexes does not take place unless explicitly stated: $b[i: j] \leftarrow a[i: j]$ and $b[i: j] \leftarrow a[j: i]$, have the same meaning, i.e., $b[i] \leftarrow a[i], \ldots, b[j] \leftarrow a[j]$.
(3) "Shifting" is done by default: $a[0: 3] \leftarrow b[4: 7]$, meaning that $a[0] \leftarrow b[4], a[1] \leftarrow b[5]$, etc. We refer to such an implied re-assignment of indexes as hardwired shifting.
(3)
(2)

Example - 1

(A)
(B)

Figure: Vector notation: multiple instances of the same gate. (A) Explicit multiple instances (B) Abbreviated notation.

Figure: Vector notation: b feeds all the gates. (A) Explicit multiple instances (B) Abbreviated notation.

Reminder: Binary Representation

Recall that $\langle a[n-1: 0]\rangle_{n}$ denotes the binary number represented by an n-bit vector \vec{a}.

$$
\langle a[n-1: 0]\rangle_{n} \triangleq \sum_{i=0}^{n-1} a_{i} \cdot 2^{i}
$$

Definition

Binary representation using n-bits is a function $\operatorname{bin}_{n}:\left\{0,1, \ldots, 2^{n}-1\right\} \rightarrow\{0,1\}^{n}$ that is the inverse function of $\langle\cdot\rangle$. Namely, for every $a[n-1: 0] \in\{0,1\}^{n}$,

$$
\operatorname{bin}_{n}\left(\langle a[n-1: 0]\rangle_{n}\right)=a[n-1: 0] .
$$

$$
\operatorname{bin}_{3}(2)=010
$$

Division in Binary Representation

$r=(a \bmod b):$

$$
a=q \cdot b+r, \text { where } 0 \leq r<b .
$$

Claim

Let $s=\langle x[n-1: 0]\rangle_{n}$, and $0 \leq k \leq n-1$. Let q and r denote the quotient and remainder obtained by dividing s by 2^{k}. Define the binary strings $x_{R}[k-1: 0]$ and $x_{L}[n-1: n-k-1]$ as follows.
$S=9 \cdot 2^{k}+r$

$$
\begin{array}{r}
x_{R}[k-1: 0] \triangleq x[k-1: 0] \\
x_{L}[n-k-1: 0] \triangleq x[n-1: k] .
\end{array}
$$

Then,

$$
\begin{aligned}
q & =\left\langle x_{L}[n-k-1: 0]\right\rangle \\
r & =\left\langle x_{R}[k-1: 0]\right\rangle .
\end{aligned}
$$

example (division by 2^{4})

$$
\begin{aligned}
& x=\underbrace{1001}_{x_{L}} \underbrace{1110}_{x_{R}} \\
& K=4\rangle\langle 1001\rangle \cdot 2^{4}+\langle 1110\rangle \\
& \langle x\rangle=\langle 1
\end{aligned}
$$

Multiplication

Multiplication of $A[n-1: 0]$ by $B[n-1: 0]$ in binary representation proceeds in two steps:

- compute all the partial products $A[i] \cdot B[j]$
- add the partial products

1011
$\times 1110$
0000
1011
1011
+1011
10011010

Computation of Partial Products

$$
\begin{aligned}
\text { Input: } & A[n-1: 0], B[n-1: 0] \in\{0,1\}^{n} \\
\text { Output: } & C[i, j] \in\{0,1\}^{n^{2}-1} \text { where }(0 \leq i, j \leq n-1)
\end{aligned}
$$

Functionality: $C[i, j]=A[i] \cdot B[j]$
2×2

AND

We refer to such a circuit as $n \times n$ array of AND gates. Cost is n^{2} and delay equals 1 (Q: What is the lower bound?).

Definition of Decoder

Definition

A decoder with input length n is a combinational circuit specified as follows:

$$
\begin{gathered}
\text { Input: } x[n-1: 0] \in\{0,1\}^{n} \\
\text { Output: } y\left[2^{n}-1: 0\right] \in\{0,1\}^{2^{n}}
\end{gathered}
$$

Functionality:

$$
y[i] \triangleq \begin{cases}1 & \text { if }\langle\vec{x}\rangle=i \\ 0 & \text { otherwise }\end{cases}
$$

Number of outputs of a decoder is exponential in the number of inputs. Note also that exactly one bit of the output \vec{y} is set to one. Such a representation of a number is often termed one-hot encoding or 1 -out-of- k encoding.

Definition of Decoder

Definition

A decoder with input length n :

$$
\begin{gathered}
\text { Input: } x[n-1: 0] \in\{0,1\}^{n} \\
\text { Output: } y\left[2^{n}-1: 0\right] \in\{0,1\}^{2^{n}}
\end{gathered}
$$

Functionality:

$$
y[i] \triangleq \begin{cases}1 & \text { if }\langle\vec{x}\rangle=i \\ 0 & \text { otherwise }\end{cases}
$$

We denote a decoder with input length n by $\operatorname{DECODER}(n)$.

Example

Consider a decoder DECODER(3). On input $x=101$, the output y equals 00100000.

$$
(\langle x\rangle=5)
$$

Application of decoders

An example of how a decoder is used is in decoding of controller instructions. Suppose that each instruction is coded by an 4-bit string. Our goal is to determine what instruction is to be executed. For this purpose, we feed the 4 bits to a DECODER (4). There are 16 outputs, exactly one of which will equal 1 . This output will activate a module that should be activated in this instruction.

Brute force design

- simplest way: build a separate circuit for every output bit $y[i]$.
- The circuit for $y[i]$ is simply a product of n literals.
- Let $v \triangleq \operatorname{bin}_{n}(i)$, i.e., v is the binary representation of the index $i . \quad v \in\left\{0.13^{n},\langle v\rangle=i\right.$
- define the minterm p_{v} to be $p_{v} \triangleq\left(\ell_{d}^{v} \cdot \ell_{Q}^{v} \cdots \ell_{n}^{v}\right)_{,}$, where:

$$
y[\langle v\rangle] \longleftarrow \ell_{j}^{v} \triangleq \begin{cases}x_{j} & \text { if } v_{j}=1 \\ \bar{x}_{j} & \text { if } v_{j}=0 .\end{cases}
$$

Claim
$y[i]=1$ iff $\left(p_{v}\right)=1$ (p_{v} is satisficus $)$.

$$
\langle x\rangle=i
$$

$$
y[\langle v\rangle]=\operatorname{AND}_{n}\left(l_{0}^{v}, \ldots, l_{n-1}\right)
$$

example $\quad \begin{aligned} & x=101 \\ & \langle x\rangle=5\end{aligned} \quad n=3$

$$
\begin{array}{ll}
v=100 & p_{v}=x_{2} \cdot \bar{x}_{1} \cdot \bar{x}_{0} \\
i=4 & y[4]=1 \cdot 1 \cdot 0=0
\end{array}
$$

$$
\begin{array}{lrl}
v=101 & & p_{v}= \\
i=5 & & x_{2} \cdot \bar{x}_{1} \cdot x_{0} \\
y[5]= & 1 \cdot 1 \cdot 1=1 \\
& & \\
& & \\
& & \frac{\operatorname{dec}_{2} \cdot \operatorname{cosec}(3)}{Y[7: 0]}
\end{array}
$$

proof: $\quad y[i]=1 \Leftrightarrow\langle x\rangle=i$
for input $x[n-1: 0]$,

$$
\begin{aligned}
y[i]=1 & \Leftrightarrow A N D_{n}\left(l_{0}^{v}, \ldots, l_{n-1}^{v}\right)=1 \quad(\langle v\rangle=i) \\
& \Leftrightarrow \hat{c}_{x}\left(p_{v}\right)=1
\end{aligned}
$$

but $\quad \hat{c}_{x}\left(p_{v}\right)= \begin{cases}1 & \text { if } x=v \\ 0 & 0 . w\end{cases}$

$$
\begin{array}{ll}
\Leftrightarrow & v=x \\
\Leftrightarrow & i=\langle v\rangle=\langle x\rangle
\end{array}
$$

analysis: brute force design

The brute force decoder circuit consists of:

- n inverters used to compute $\operatorname{INV}(\vec{x})$, and
- a separate $\operatorname{AND}(n)$-tree for every output $y[i]$.
- The delay of the brute force design is

$$
t_{p d}(\operatorname{INV})+t_{p d}(\operatorname{AND}(n)-\text { tree })=O\left(\log _{2} n\right)
$$

- The cost of the brute force design is $\Theta\left(n \cdot 2^{n}\right)$, since we have an $\operatorname{AND}(n)$-tree for each of the 2^{n} outputs.
Wasteful because, if the binary representation of i and j differ in a single bit, then the AND-trees of $y[i]$ and $y[j]$ share all but a single input. Hence the product of $n-1$ bits is computed twice.
We present a systematic way to share hardware between different outputs.

$$
\begin{aligned}
& y[\langle 0 \ldots 0\rangle]=A N D_{n}\left(\bar{x}_{0}, \ldots, \bar{x}_{n-2}, \bar{x}_{n-1}\right) \\
& y[\langle 0 \ldots 01\rangle]=A N D_{n}\left(\bar{x}_{0}, \ldots, \bar{x}_{n-2}, \bar{x}_{n-1}\right)
\end{aligned}
$$

An asymptotically optimal decoder design

Base case DECODER(1):
The circuit DECODER(1) is simply one inverter where:
$y[0] \leftarrow \operatorname{INV}(x[0])$ and $y[1] \leftarrow x[0]$.
Reduction rule DECODER(n):
We assume that we know how to design decoders with input length less than n, and design a decoder with input length n.

$$
\langle x\rangle=\left\langle x_{L}\right\rangle \cdot 2^{k}+\left\langle x_{R}\right\rangle
$$

Figure: A recursive implementation of $\operatorname{DECODER}(n)$.

Claim (Correctness)

$$
y[i]=1 \quad \Longleftrightarrow \quad\langle x[n-1: 0]\rangle=i
$$

$$
y[i]=1 \Leftrightarrow \quad\langle x\rangle=i
$$

proof: divide by 2^{k}

$$
\langle x\rangle=\left\langle x_{2}\right\rangle \cdot 2^{k}+\left\langle x_{R}\right\rangle
$$

now $Q[j]=1 \Leftrightarrow\left\langle x_{L}\right\rangle=j$ (ind hyp.

$$
\begin{aligned}
& Q[j]=1 \quad \Leftrightarrow \quad\left\langle X_{L}\right\rangle=j \quad\left\langle\quad \begin{array}{l}
\text { inc. dey. } \\
R[l]=1 \quad \Leftrightarrow
\end{array} \quad \begin{array}{l}
\text { ind. hyp. } \\
\text { decoder }
\end{array}\right.
\end{aligned}
$$ $\operatorname{decoder}(k))$

divide $i=q \cdot 2^{k}+r \quad\left(0 \leq r<2^{k}\right.$

$$
\begin{aligned}
& \Leftrightarrow \quad Q[q]=R[r]=1 \\
& \Leftrightarrow \quad q=\left\langle x_{L}\right\rangle \quad \& \quad r=\left\langle x_{R}\right\rangle \\
& \Leftrightarrow \quad q \cdot 2^{k}+r=\left\langle x_{L}\right\rangle 2^{k}+\left\langle x_{R}\right\rangle=\langle x\rangle
\end{aligned}
$$

Cost analysis

We denote the cost and delay of $\operatorname{DECODER}(n)$ by $c(n)$ and $d(n)$, respectively. The cost $c(n)$ satisfies the following recurrence equation:

$$
c(n)= \begin{cases}c(\mathrm{INV}) & \text { if } \mathrm{n}=1 \\ c(k)+c(n-k)+2^{n} \cdot c(\mathrm{AND}) & \text { otherwise }\end{cases}
$$

It follows that, up to constant factors

$$
c(n)= \begin{cases}1 . & \text { if } n=1 \tag{1}\\ c(k)+c(n-k)+2^{n} & \text { if } n>1\end{cases}
$$

Obviously, $c(n)=\Omega\left(2^{n}\right)$ (regardless of the value of k).

Claim

$c(n)=O\left(2^{n}\right)$ if $k=\lceil n / 2\rceil$.

Cost analysis (cont.)

$$
c(n)= \begin{cases}c(\operatorname{INV}) & \text { if } \mathrm{n}=1 \\ c(k)+c(n-k)+2^{n} & \text { otherwise }\end{cases}
$$

Claim

$c(n)=O\left(2^{n}\right)$ if $k=\lceil n / 2\rceil$.

Proof.

$c(n) \leq 2 \cdot 2^{n}$ by complete induction on n.

- basis: check for $n \in\{1,2,3\}$.
- step: $(n \geqslant 4)$

$$
\begin{aligned}
c(n) & =c(\lceil n / 2\rceil)+c(\lfloor n / 2\rfloor)+2^{n} \\
& \leq 2^{1+\lceil n / 2\rceil}+2^{1+\lfloor n / 2\rfloor}+2^{n} \\
& =2 \cdot 2^{n} \cdot(\underbrace{2^{-\lfloor n / 2\rfloor}+2^{-\lceil n / 2\rceil}+1 / 2}_{\leqslant 1})
\end{aligned}
$$

Delay analysis.

The delay of $\operatorname{DECODER}(n)$ satisfies the following recurrence equation:

$$
d(n)= \begin{cases}d(\mathrm{INV}) & \text { if } \mathrm{n}=1 \\ \max \{d(k), d(n-k)\}+d(\mathrm{AND}) & \text { otherwise }\end{cases}
$$

Set $k=n / 2$. It follows that $d(n)=\Theta(\log n)$.

$$
d(n)=\left\{\begin{array}{cc}
1 \quad n=1 \\
d\left(\left[\frac{n}{2}\right]\right)+1
\end{array} \quad 0 \cdot w\right.
$$

Asymptotic Optimality

Theorem

For every decoder G of input length n :

$$
\begin{aligned}
& d(G)=\Omega(\log n) \\
& c(G)=\Omega\left(2^{n}\right) .
\end{aligned}
$$

Proof.

(1) lower bound on delay: use log delay lower bound theorem.
(2) lower bound on cost? The proof is based on the following observations:

- Computing each output bit requires at least one nontrivial gate.
- No two output bits are identical.
delay: focus on $Y[0]$

$$
\begin{aligned}
& y[0]=1 \Leftrightarrow\langle x\rangle=0 \\
& \Leftrightarrow O R_{n}\left(x_{n-1}, \ldots, x_{0}\right)=0 \\
&|\operatorname{cone}(y[0])|=n \Rightarrow \text { delay } y \geqslant \log _{2} n
\end{aligned}
$$

cost: want to prove cost $\geqslant 2^{n}$ we have 2^{n} distinct outputs:
$\forall i \neq j \quad \exists x: y[i] \neq y[j]$

$\forall i \forall j \quad \exists x: y[i] \neq x[j] \underset{y_{12}}{x_{3}}$?
$\Rightarrow\{Y[i]\}_{i=0}^{2^{n-1}}$ are outputs of different gates (that are not inputs)

- An encoder implements the inverse Boolean function implemented by a decoder.
- the Boolean function implemented by a decoder is not surjective.
- the range of the Boolean function implemented by a decoder is the set of binary vectors in which exactly one bit equals 1 .
- It follows that an encoder implements a partial Boolean function (i.e., a function that is not defined for every binary string).

Hamming Distance and Weight

Definition

The Hamming distance between two binary strings $u, v \in\{0,1\}^{n}$ is defined by

$$
\operatorname{dist}(u, v) \triangleq\left|\left\{i \mid u_{i} \neq v_{i}\right\}\right|
$$

Definition

The Hamming weight of a binary string $u \in\{0,1\}^{n}$ equals $\operatorname{dist}\left(u, 0^{n}\right)$. Namely, the number of non-zero symbols in the string.

We denote the Hamming weight of a binary string \vec{a} by $w t(\vec{a})$, namely,

$$
w t(a[n-1: 0]) \triangleq|\{i: a[i] \neq 0\}|
$$

$\operatorname{dist}(000,110)=2, \quad \omega t(101)=2$

Concatenation of strings

Recall that the concatenation of the strings a and b is denoted by $a \circ b$.

Definition

The binary string obtained by i concatenations of the string a is denoted by a^{i}.

Consider the following examples of string concatenation:

- If $a=01$ and $b=10$, then $a \circ b=0110$.
- If $a=1$ and $i=5$, then $a^{i}=11111$.
- If $a=01$ and $i=3$, then $a^{i}=010101$.
- We denote the zeros string of length n by 0^{n}.

Definition of Encoder function

We define the encoder partial function as follows.

Definition

The function ENCODER $_{n}:\left\{\vec{y} \in\{0,1\}^{2^{n}}: w t(\vec{y})=1\right\} \rightarrow\{0,1\}^{n}$ is defined as follows: $\left\langle\operatorname{ENCODER}_{n}(\vec{y})\right\rangle$ equals the index of the bit of $y\left[2^{n}-1: 0\right]$ that equals one. Formally,

$$
\operatorname{ENCODER}_{n}\left(0^{2^{n}-k-1} \circ 1 \circ 0^{k}\right)=\operatorname{bin}_{n}(k)
$$

Examples:
(1) $\operatorname{ENCODER}_{2}(0001)=00, \operatorname{ENCODER}_{2}(0010)=01$, $\operatorname{ENCODER}_{2}(0100)=10, \operatorname{ENCODER}_{2}(1000)=11$.

$$
3210 \quad 3210^{\prime}
$$

Encoder circuit - definition

Definition

An encoder with input length 2^{n} and output length n is a combinational circuit that implements the Boolean function ENCODER $_{n}$.

We denote an encoder with input length 2^{n} and output length n by $\operatorname{ENCODER}(n)$. An $\operatorname{ENCoder}(n)$ can be also specified as follows:

$$
\begin{gathered}
\text { Input: } y\left[2^{n}-1: 0\right] \in\{0,1\}^{2^{n}} . \\
\text { Output: } x[n-1: 0] \in\{0,1\}^{n} .
\end{gathered}
$$

Functionality: If $w t(\vec{y})=1$, let i denote the index such that $y[i]=1$. In this case \vec{x} should satisfy $\langle\vec{x}\rangle=i$. Formally:

$$
\vec{x}=\operatorname{ENCODER}_{n}(\vec{y}) .
$$

Encoder - remarks

- functionality is not specified for all inputs \vec{y}.
- functionality is only specified for inputs whose Hamming weight equals one.
- Since an encoder is a combinational circuit, it implements a Boolean function. This means that it outputs a digital value even if $w t(y) \neq 1$. Thus, two encoders must agree only with respect to inputs whose Hamming weight equals one.
- If \vec{y} is output by a decoder, then $w t(\vec{y})=1$, and hence an encoder implements the inverse function of a decoder.

Brute Force Implementation

$$
\begin{aligned}
& \operatorname{bin}_{3}(5)=101 \\
& \operatorname{bin}_{3}(5)[1]=0
\end{aligned}
$$

Recall that $\operatorname{bin}_{n}(i)[j]$ denotes the j th bit in the binary representation of i. Let A_{j} denote the set

$$
A_{j} \triangleq\left\{i \in\left[0: 2^{n}-1\right] \mid \operatorname{bin}_{n}(i)[j]=1\right\} .
$$

Claim

If $\mathrm{wt}(y)=1$, then $x[j]=\bigvee_{i \in A_{j}} y[i]$.

$$
\begin{aligned}
& A_{0} \triangleq\left\{i \in[0: 3] \mid \operatorname{bin}_{2}(i)[0]=1\right\} \\
& =\{1,3\} \quad\left(A_{0}=\{i \mid i \operatorname{odd}\}\right) \\
& A_{1} \triangleq\left\{i \in[0: 3] \mid \operatorname{bin}_{2}(i)[1]=1\right\} \\
& =\{2,3\} \\
& X_{0}=Y_{1}+Y_{3} \quad X_{1}=Y_{2}+Y_{3}
\end{aligned}
$$

$$
w t(Y)=1 \quad \& \quad x[j]=V_{i \in A_{j}} Y[i] \Rightarrow Y[\langle x\rangle]=1
$$

prof: Let l denote the unique index for which $Y[l]=1$.
case 1: $l=0$: Note that $\forall_{j}: 0 \notin A_{j}$. $\Rightarrow \quad x=0^{n}$, as req.
case 2: $l>0: \quad \times[j]=1 \Leftrightarrow l \in A_{j}$ but $l \in A_{j} \Leftrightarrow \operatorname{bin}_{n}(l)[j]=1$
if $\operatorname{bin}_{n}(l)[j]=1 \Rightarrow l \in A_{j} \Rightarrow x[j]=1$
if $\operatorname{bin}_{n}(l)[j]=0 \Rightarrow l \notin A_{j} \Rightarrow x[j]=0$
$\Rightarrow\langle x\rangle=l$, as required.

Brute Force Implementation - cont

Claim

If $\mathrm{wt}(y)=1$, then $x[j]=\bigvee_{i \in A_{j}} y[i]$.
Implementing an $\operatorname{ENCODER}(n)$:

- For each output x_{j}, use a separate OR-tree whose inputs are $\left\{y[i] \mid i \in A_{j}\right\}$.
- Each such OR-tree has at most 2^{n} inputs.
$Q:\left|A_{j}\right|=\frac{2^{n}}{2}$
- the cost of each or-tree is $O\left(2^{n}\right)$.
- total cost is $O\left(n \cdot 2^{n}\right)$. (in fact, $\left.\theta\left(n \cdot 2^{n}\right)\right)$
- The delay of each or-tree is $O\left(\log 2^{n}\right)=O(n)$.

Can we do better?

graphical

- We will prove that the ${ }^{\vee}$ cone of the first output is $\Omega\left(2^{n}\right)$.
- So for every encoder $C: c(C)=\Omega\left(2^{n}\right)$ and $d(C)=\Omega(n)$.
- The brute force design is not that bad. Can we reduce the cost?
- Let's try...

For $n=1$, is simply $x[0] \leftarrow y[1]$.

Reduction step:

$$
\begin{aligned}
y_{L}\left[2^{n-1}-1: 0\right] & =y\left[2^{n}-1: 2^{n-1}\right] \\
y_{R}\left[2^{n-1}-1: 0\right] & =y\left[2^{n-1}-1: 0\right] .
\end{aligned}
$$

Use two $\operatorname{ENCODER}^{\prime}(n-1)$ with inputs $\overrightarrow{y L}$ and $\overrightarrow{y_{R}}$. But,

$$
w t(\vec{y})=1 \Rightarrow\left(w t\left(\overrightarrow{y_{L}}\right)=0\right) \vee\left(w t\left(\overrightarrow{y_{R}}\right)=0\right)
$$

What does an encoder output when input all-zeros?

Augmenting functionality

Augment the definition of the ENCODER ${ }_{n}$ function so that its domain also includes the all-zeros string $0^{2^{n}}$. We define

$$
\operatorname{ENCODER}_{n}\left(0^{2^{n}}\right) \triangleq 0^{n}
$$

Note that ENCODER' (1) (i.e., $x[0] \leftarrow y[1])$ also meets this new condition, so the induction basis of the correctness proof holds.

Reduction step for ENCODER'(n)

Claim
The circuit ENCODER ${ }^{\prime}(n)$ implements the Boolean function ENCODER $_{n}$.
cases:

$$
f \cdot(n) y=0^{2^{n}}
$$

$$
\begin{gathered}
y_{L}\left[2^{n-1}-1: 0\right] \\
\triangleq y\left[2^{n}-1: 2^{n-1}\right] \\
2^{n-1} \nmid \underbrace{2 n}=(n, 1)
\end{gathered}
$$

$$
y_{R}\left[2^{n-1}-1: 0\right]
$$

$$
\text { (2) } \operatorname{wt}\left(y_{R}\right)=1
$$

$$
\triangleq y\left[2^{n-1}-1: 0\right]
$$

$$
\text { ut }\left(y_{2}\right)=0
$$

$$
2^{n-1} \nmid \bigcirc \cdots \circ
$$

$$
\text { 3) } u+\left(y_{2}\right)=1
$$

$$
w+\left(y_{R}\right)=0
$$

$$
\operatorname{ENCODER}^{\prime}(n-1)
$$

$$
a[n-2: 0] \nmid n-1
$$

$$
\begin{aligned}
& b[n-2: 0] \nmid n-1 \\
& \text { (ind. } \left.\operatorname{lin}^{n}\right) \left\lvert\, \begin{array}{l}
n- \\
\langle b\rangle=k
\end{array}\right.
\end{aligned}
$$

$$
0 \ldots 0 \text { (ind. hyp-) }
$$

$$
\text { OR-tree }\left(2^{n-1}\right)
$$

$$
\mathrm{OR}(n-1)
$$

$$
O R\left(b_{i}, 0\right)=b_{i}
$$

$$
\text { Output: }\langle 10 b\rangle=2^{n-1}+\langle b\rangle=2^{n-1}+k
$$

Cost Analysis

$$
c\left(\operatorname{ENCODER}^{\prime}(n)\right)= \begin{cases}0 & \text { if } n=1 \\ 2 \cdot c\left(\operatorname{ENCODER}^{\prime}(n-1)\right) & \\ +c\left(\operatorname{OR-tree}\left(2^{n-1}\right)\right) & \\ +(n-1) \cdot c(\mathrm{OR}) & \text { if } n>1\end{cases}
$$

Let $c(n) \triangleq c\left(\operatorname{ENCODER}^{\prime}(n)\right) / c(\mathrm{OR})$.

$$
c(n)= \begin{cases}0 & \text { if } n=1 \tag{2}\\ 2 \cdot c(n-1)+\left(2^{n-1}-1+n-1\right) & \text { if } n>1\end{cases}
$$

Claim

$c(n)=\Theta\left(n \cdot 2^{n}\right)$.
So $c\left(\operatorname{ENCODER}^{\prime}(n)\right)$ (asymptotically) equals the cost of the brute force design...

Solve: $c(n)=2 \cdot c(n-1)+\theta\left(2^{n}\right)$
Recall: $f\left(2^{n}\right) \triangleq c(n)$

$$
\begin{aligned}
& f\left(2^{n}\right)=2 \cdot f\left(2^{n-1}\right)+\theta\left(2^{n}\right) \\
\Rightarrow \quad f\left(2^{n}\right) & =\theta\left(2^{n} \cdot \log 2^{n}\right) \\
& =\theta\left(2^{n} \cdot n\right) \\
\Rightarrow \quad c(n) & =\theta\left(2^{n} \cdot n\right)
\end{aligned}
$$

Reducing The Cost
LHS

Claim
If $\operatorname{wt}\left(y\left[2^{n}-1: 0\right]\right) \leq 1$, then

$$
\begin{aligned}
& \operatorname{ENCODER}_{n-1}\left(\operatorname{OR}\left(\vec{y}_{L}, \vec{y}_{R}\right)\right) \\
& \quad=\operatorname{OR}\left(\operatorname{ENCODER}_{n-1}\left(\vec{y}_{L}\right), \operatorname{ENCODER}_{n-1}\left(\vec{y}_{R}\right)\right) .
\end{aligned}
$$

Correctness?

Functional Equivalence

Definition

Two combinational circuits are functionally equivalent if they implement the same Boolean function.

Claim
If $\mathrm{wt}\left(y\left[2^{n}-1: 0\right]\right) \leq 1$, then
$\operatorname{ENCODER}_{n-1}\left(\operatorname{OR}\left(\vec{y}_{L}, \vec{y}_{R}\right)\right)=\mathrm{OR}\left(\operatorname{ENCODER}_{n-1}\left(\vec{y}_{L}\right) \operatorname{ENCODER}_{n-1}\left(\vec{y}_{R}\right)\right)$.

Claim

$\operatorname{ENCODER}^{\prime}(n)$ and $\operatorname{ENCODER}(n)$ are functionally equivalent.

Corollary

$\operatorname{ENCODER}^{*}(n)$ implements the ENCODER ${ }_{n}$ function.

Cost analysis

The cost of ENCODER* (n) satisfies the following recurrence equation:
$c\left(\operatorname{ENCODER}^{*}(n)\right)= \begin{cases}0 & \text { if } \mathrm{n}=1 \\ c\left(\operatorname{ENCODER}^{*}(n-1)\right)+\left(2^{n}-1\right) \cdot c(\mathrm{OR}) & \text { otherwis }\end{cases}$
$C\left(2^{k}\right) \triangleq c\left(\operatorname{ENCODER}^{*}(k)\right) / c(\mathrm{OR})$. Then,

$$
f(n)=
$$

$$
C\left(2^{k}\right)= \begin{cases}0 & \text { if } \mathrm{k}=0 \\ \left.C\left(2^{k-1}\right)+\left(2^{k}-1\right) \cdot c^{\kappa} \propto \hat{R}\right) & \text { otherwise }\end{cases}
$$

$$
f\left(\frac{n}{2}\right)+\theta(n)
$$

$$
f(n)=\theta(n)
$$

we conclude that $C\left(2^{k}\right)=\Theta\left(2^{k}\right)$.

Claim

$c\left(\operatorname{ENCODER}^{*}(n)\right)=\Theta\left(2^{n}\right) \cdot c($ OR $)$.

Delay analysis

The delay of ENCODER* (n) satisfies the following recurrence equation:
$d\left(\operatorname{ENCODER}^{*}(n)\right)= \begin{cases}0 & \text { if } \mathrm{n}=1 \\ \max \left\{d\left(\operatorname{OR}-\operatorname{tree}\left(2^{n-1}\right)\right),\right. & \\ \left.d\left(\operatorname{ENCODER}^{*}(n-1)+d(\mathrm{OR})\right)\right\} & \text { otherwise. }\end{cases}$
Since $d\left(\right.$ OR-tree $\left.\left(2^{n-1}\right)\right)=(n-1) \cdot d(\mathrm{OR})$, it follows that

$$
\begin{aligned}
& d\left(\operatorname{ENCODER}^{*}(n)\right)=\underset{(n-1)}{\mu} \cdot d(\text { OR }) . \\
& d(n)=d(n-1)+1 \Rightarrow d(n)=n-1
\end{aligned}
$$

Asymptotic Optimality

Theorem

For every encoder G of input length n :

$$
\begin{aligned}
& d(G)=\Omega(n) \\
& c(G)=\Omega\left(2^{n}\right) .
\end{aligned}
$$

Wrong Proof:

Focus on the output $x[0]$ and the Boolean function f_{0} that corresponds to $x[0]$. Tempting to claim that \mid cone $\left(f_{0}\right) \mid \geq 2^{n-1}$, and hence the lower bounds follow.
But, this is not a valid argument because the specification of f_{0} is a partial function (domain consists only of inputs whose Hamming weight equals one)... must come up with a correct proof!

Asymptotic Optimality

Theorem

For every encoder G of input length n :

$$
\begin{aligned}
& d(G)=\Omega(n) \\
& c(G)=\Omega\left(2^{n}\right) .
\end{aligned}
$$

$x[0]=O R_{2^{n} / 2}$
func. cove considerations
tricley be cause input
is restricted?

Proof.

Consider the output $x[0]$. We claim that

$$
\text { for } e_{i}: \times[0] \text { shul } f=0
$$

$$
\left|\operatorname{cone}_{G}(x[0])\right| \geq \frac{1}{2} \cdot 2^{n} \cdot 0^{2^{n}}=\text { flip: } l_{i}\left(e_{i}\right) \quad \text { flip } \quad x[0] \text { sha }\left(\rho_{j}\right)=0^{2^{n}}
$$

Otherwise, there exists an even index i and an odd index j such that $\{i, j\} \cap \operatorname{cone}_{G}(x[0])=\emptyset$. Now consider two inputs: e_{i} (a unit vector with a one in position i) and e_{j}. The output $x[0]$ is the same for $e_{i}, 0^{2^{n}}=\operatorname{flip}_{i}\left(e_{i}\right)=\operatorname{flip}_{j}\left(e_{j}\right)$ and e_{j}. This implies that $x[0]$ errs for at least of the inputs e_{i} or e_{j}.

Parametric Specification

- The specification of $\operatorname{DECODER}(n)$ and $\operatorname{EnCoder}(n)$ uses the parameter n.
- The parameter n specifies the length of the input.
- DECODER(8) and DECODER(16) are completely different circuits.
- \{DECODER $(n)\}_{n=1}^{\infty}$ is a family of circuits, one for each input length.

Summary - 1

We discussed:

- buses
- decoders
- encoders

Summary - 2

- Extend specification to make problem easier. Adding restrictions to the specification made the task easier since we were able to add assumptions in our recursive designs.
- Evolution. Naive, correct, costly design. Improved while preserving functionality to obtain a cheaper design.
spec: $\cot (y)=1$
extended spec: $\quad \omega f(y) \leqslant 1$

