Digital Logic Design: a rigorous approach © Chapter 4: Directed Graphs

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

March 18, 2020

Book Homepage: http://www.eng.tau.ac.il/~guy/Even-Medina example: longest paths in DAGs

paths ending in V10

We denote the length of a path Γ by $|\Gamma|$.

Definition

A path Γ that ends in vertex v is a longest path ending in v if $|\Gamma'| \leq |\Gamma|$ for every path Γ' that ends in v.

Note: there may be multiple longest paths ending in v (hence "a longest path" rather than "the longest path").

Definition

A path Γ is a longest path in G if $|\Gamma'| \leq |\Gamma|$, for every path Γ' in G.

Question

Does a longest path always exist in a directed graph?

If a directed graph has a cycle, then there does not exist a longest path. Indeed, one could walk around the cycle forever. However, longest paths do exist in DAGs.

Lemma

If G = (V, E) is a DAG, then there exists a longest path that ends in v, for every v. In addition, there exists a longest path in G.

Proof: The length of every path in a DAG is at most |V| - 1. [Or, every path is simple, hence, the number of paths is finite.]

a-b->c->d ->a->b->c->d->

computing longest paths: specification

Goal: compute, for every v in a DAG, a longest path that ends in v. We begin with the simpler task of computing the length of a longest path.

Specification

Algorithm longest-path is specified as follows.

input: A DAG G = (V, E).

output: A delay function $d: V \to \mathbb{N}$.

functionality: For every vertex $v \in V$: d(v) equals the length of a longest path that ends in v.

Application: Model circuits by DAGs. Assume all gates complete their computation in one unit of time. The delay of the output of a gate v equals d(v)

example: delay function

Algorithm 2 longest-path-lengths (V, E) - An algorithm for computing the lengths of longest paths in a DAG. Returns a delay function d(v).

One could design a "single pass" algorithm; the two pass algorithm is easier to prove.

Let

 $d(v) \triangleq$ output of algorithm $\delta(v) \triangleq$ the length of a longest path that ends in v

ind. hyp.: $\forall i \leq j : d(v_i) = \delta(v_i)$ step: prove that $d(v_{j^*}) = \delta(v_{j^{*+1}})$

Theorem

Algorithm correct: $\forall j : d(v_j) = \delta(v_j)$.

Proof: Complete induction on *j*. Basis for sources easy.

We prove now that

- $\delta(v_{j+1}) \ge d(v_{j+1})$, namely, there exists a path Γ that ends in v such that $|\Gamma| \ge d(v_{j+1})$.
- ② $\delta(v_{j+1}) \leq d(v_{j+1})$, namely, for every path Γ that ends in v we have $|\Gamma| \leq d(v_{j+1})$.

length of
$$\delta(v_{j+1}) \ge d(v_{j+1}) \le \text{output of}$$

longest path
ending in V_{j+1}
need to show $\exists path \xrightarrow{\Gamma} V_{j+1} : |\Gamma| \ge d(v_{j+1})$
cases: (A) V_{j+1} is a source. easy.
(2) V_{j+1} is not a source. assume degin $(v_{j+1}) = 3$
 $V_{i_1} \bigcirc 0$
 $V_{i_2} \bigcirc 0$
 $V_{i_3} \bigcirc 1$
 $d(V_{j+1}) = 1 + \max \{ d(v_{i_1}), d(v_{i_3}), d(v_{i_3}) \}$

(2) V; 1, is not a source. assume day in (v; 1)=3 assume: Via O Vin d(v;) > max { d(v;), d(v;)} 50: $d(v_{j+1}) = 1 + d(v_{j+1})$ d (v;+1) = 1+ max { d (v;), d (v;), d (v;)} Topo. sort => i2 < j+1 ind. hyp. => Epath T'>Vi2: |T'|3d(Vi2) consider p' extended by edge Viz Viti: $|T' \circ (v_{i_2}, v_{j+1})| = |T'| + 1 \ge d(v_{i_2}) + 1 = d(v_{j+1})$ path ending in Vj+1 $V_{i_2} \rightarrow V_{j_1} \bowtie$

$$\begin{split} & \delta(v_{j+1}) \leq d(v_{j+1}) \\ \text{need to prove: } \forall path \quad finite v_{j+1} : |\Gamma| \leq d(v_{j+1}) \\ \text{case (1) } |\Gamma| = 0, \quad \text{clearly } 0 \leq d(v_{j+1}) \\ \text{case (2) } |\Gamma| > 0, \quad \text{Let } v_i \quad \text{denote the predessor} \\ \text{of } v_{j+1} \quad \text{along the path } \Gamma, \\ \Gamma = \Gamma' \circ (v_i, v_{j+1}); \quad f' \rightarrow \circ \circ \circ \\ v_i \quad v_{j+1} \\ \text{topo, sort : } i < j+1 \\ \text{ind. } hyp. : \quad |\Gamma'| \leq d(v_i) \\ \text{hence:} \\ |\Gamma| = |+|T'| \leq |+ d(v_i) \leq d(v_{j+1}) \\ \\ \text{why?} \end{split}$$

Q: how can we actually find a longest path? longest-path just tells us its length. can we find a longest path?