Digital Logic Design: a rigorous approach © Chapter 4: Directed Graphs

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.
March 18, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina
example: longest paths in DAGs
paths ending in V_{10}

longest paths

We denote the length of a path Γ by $|\Gamma|$.

Definition

A path Γ that ends in vertex v is a longest path ending in v if $\left|\Gamma^{\prime}\right| \leq|\Gamma|$ for every path Γ^{\prime} that ends in v.

Note: there may be multiple longest paths ending in v (hence "a longest path" rather than "the longest path").

Definition

A path Γ is a longest path in G if $\left|\Gamma^{\prime}\right| \leq|\Gamma|$, for every path Γ^{\prime} in G.

Question

Does a longest path always exist in a directed graph?

longest paths in DAGs

If a directed graph has a cycle, then there does not exist a longest path. Indeed, one could walk around the cycle forever. However, longest paths do exist in DAGs.

Lemma

If $G=(V, E)$ is a $D A G$, then there exists a longest path that ends in v, for every v. In addition, there exists a longest path in G.

Proof: The length of every path in a DAG is at most $|V|-1$. [Or, every path is simple, hence, the number of paths is finite.]

computing longest paths: specification

Goal: compute, for every v in a DAG, a longest path that ends in v. We begin with the simpler task of computing the length of a longest path.

Specification

Algorithm longest-path is specified as follows.
input: A DAG $G=(V, E)$.
output: A delay function $d: V \rightarrow \mathbb{N}$.
functionality: For every vertex $v \in V: d(v)$ equals the length of a longest path that ends in v.

Application: Model circuits by DAGs. Assume all gates complete their computation in one unit of time. The delay of the output of a gate v equals $d(v)$

example: delay function

algorithm: longest path lengths

Algorithm 2 longest-path-lengths (V, E) - An algorithm for computing the lengths of longest paths in a DAG. Returns a delay function $d(v)$.
(1) topological sort: $\left(v_{0}, \ldots, v_{n-1}\right) \leftarrow T S(V, E)$.
(2) For $j=0$ to $(n-1)$ do
(1) If v_{j} is a source then $d\left(v_{j}\right) \leftarrow 0$.
(2) Else

$$
d\left(v_{j}\right)=1+\max \left\{d\left(v_{i}\right) \mid i<j \text { and }\left(v_{i}, v_{j}\right) \in E\right\} .
$$

One could design a "single pass" algorithm; the two pass algorithm is easier to prove.

Let
$d(v) \triangleq$ output of algorithm
$\delta(v) \triangleq$ the length of a longest path that ends in v

Theorem

Algorithm correct: $\forall j: d\left(v_{j}\right)=\delta\left(v_{j}\right)$.
Proof: Complete induction on j. Basis for sources easy.
ind. hyp. : $\forall i \leqslant j: d\left(v_{i}\right)=\delta\left(v_{i}\right)$
step: prove that $d\left(v_{j+1}\right)=\delta\left(v_{j+1}\right)$

algorithm correctness - cont.

We prove now that
(1) $\delta\left(v_{j+1}\right) \geq d\left(v_{j+1}\right)$, namely, there exists a path Γ that ends in $v_{j}{ }^{\text {such }}+$
(2) $\delta\left(v_{j+1}\right) \leq d\left(v_{j+1}\right)$, namely, for every path Γ that ends in v we have $|\Gamma| \leq d\left(v_{j+1}\right)$.

length of $\leadsto \delta\left(v_{j+1}\right) \geqslant d\left(v_{j+1}\right) \curvearrowleft$ output of longest path alg. longest-path ending in V_{j+1}
need to show path $\Gamma \longrightarrow v_{j+1}:|\Gamma| \geqslant d\left(v_{j+1}\right)$
cases: (1) v_{j+1} is a source. easy.
(2) v_{j+1} is not a source. assume $\operatorname{deg}_{i n}\left(v_{j+1}\right)=3$

$$
d\left(v_{j+1}\right)=1+\max \left\{d\left(v_{i_{1}}\right), d\left(v_{i_{2}}\right), d\left(v_{i_{3}}\right)\right\}
$$

(2) v_{j+1} is not a source. assume $\operatorname{dog}_{m}\left(v_{j, 1}\right)=3$ assume:

$$
\begin{gathered}
v_{i / 2}, 0 v_{j+1} \\
d\left(v_{j+1}\right)=1+\max \left\{d\left(v_{i_{i 1}}\right) d\left(v_{i j}\right), d\left(v_{i j}\right)\right\}
\end{gathered}
$$

$$
\begin{aligned}
& d\left(v_{i_{2}}\right) \geqslant \max \left\{d\left(v_{i_{1}}\right) d\left(v_{i_{3}}\right)\right\} \\
& \text { so: } \\
& d\left(v_{j+1}\right)=1+d\left(v_{i_{2}}\right)
\end{aligned}
$$

Tope. Sort $\Rightarrow i_{2}<j+1$.
ind. hyp. $\Rightarrow \exists$ path $\sim T^{\prime} \rightarrow v_{i_{2}}:\left|\Gamma^{\prime}\right| \geqslant d\left(v_{i_{2}}\right)$ consider Γ^{\prime} extended by edge $v_{i_{2}} \rightarrow v_{j+1}$:

$$
|\underbrace{\Gamma^{\prime} \circ\left(v_{i_{2}}, v_{j+1}\right)}|=\left|\Gamma^{\prime}\right|+1 \geq d\left(v_{i_{2}}\right)+1=d\left(v_{j+1}\right)
$$

path ending in v_{j+1}

$$
\delta\left(v_{j+1}\right) \leqslant d\left(v_{j+1}\right)
$$

need to prove: \forall path $\stackrel{\Gamma}{\sim} v_{j+1}$: $|\Gamma| \leqslant d\left(v_{j+1}\right)$
case (1) $|\Gamma|=0$. clearly $0 \leqslant d\left(v_{j+1}\right)$.
case (2) $|\Gamma|>0$. Let v_{i} denote the predessor of v_{j+1} along the path Γ.

$$
\Gamma=\Gamma^{\prime} 0\left(v_{i}, v_{j+1}\right):
$$

topo. sort: $i<j+1$
and. hyp.: $\left|\Gamma^{\prime}\right| \leq d\left(v_{i}\right)$
hence:

$$
|\Gamma|=1+\left|\Gamma^{\prime}\right| \leqslant 1+d\left(v_{i}\right) \leqslant d\left(v_{j+1}\right)
$$

why?
Q : how can we actually find a longest path?
longert-path just tells us its length. can we find a longest path?

