# Digital Logic Design: a rigorous approach (C) 

 Chapters 17-20: Flip-Flops, Synchronous Circuits, and Finite State Machines
## Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.
May 27, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

## Preliminary questions

(1) How is time measured in a synchronous circuit?
(2) What is a "clock" in a microprocessor?
(3) What is the frequency of a clock?

(3) What is memory? How are bits stored?

## The clock

the clock is generated by rectifying and amplifying a signal generated by special non-digital devices (e.g., crystal oscillators).

## Definition

A clock is a periodic logical signal that oscillates instantaneously between logical one and logical zero. There are two instantaneous transitions in every clock period: (i) in the beginning of the clock period, the clock transitions instantaneously from zero to one; and (ii) at some time in the interior of the clock period, the clock transitions instantaneously from one to zero.


## Clock cycles

- A clock partitions time into discrete intervals.
- $t_{i}$ - the starting time of the $i$ th clock cycle.
- $\left[t_{i}, t_{i+1}\right)$-clock cycle $i$.
- Clock period $=t_{i+1}-t_{i}$.



## Assumption

We assume that the clock period equals 1 .

$$
t_{i+1}=t_{i}+1
$$

Flip-Flop

Definition
A flip-flop is defined as follows.
Inputs: Digital signals $D(t)$ and a clock ClK.
Output: A digital signal $Q(t)$.
Functionality:

$$
Q(t+1)=D(t)
$$



| $t$ | $D[t]$ | $Q[t]$ |
| :---: | :---: | :---: |
| 0 | 1 | $?$ |
| 1 | 0 | 1 |
| 2 | 0 | 0 |
| 3 | 1 | 0 |
| 4 | 1 | 1 |

* Clk input is special may be connected only to clock signal
$y$ often called: edge triggered $D$-flep-flog


## Clock enabled flip-flops

## Definition

A clock enabled flip-flop is defined as follows.
Inputs: Digital signals $D(t), \operatorname{CE}(t)$ and a clock CLK.
Output: A digital signal $Q(t)$.

## Functionality:

$$
Q(t+1)= \begin{cases}D(t) & \text { if } \operatorname{CE}(t)=1 \\ Q(t) & \text { if } \operatorname{CE}(t)=0\end{cases}
$$

We refer to the input signal $\operatorname{CE}(t)$ as the clock-enable signal. Note that the input $\operatorname{CE}(t)$ indicates whether the flip-flop samples the input $D(t)$ or maintains its previous value.

## Which design is a correct clock enabled FF?



## The Zero Delay Model

(1) Transitions of all signals are instantaneous.
(2) Combinational gates: $t_{p d}=t_{c o n t}=0$.
(3) Flip-flops satisfy:

$$
Q(t+1)=D(t)
$$

(3) Simplified model for specifying and simulating the functionality of circuits with flip-flops.
(3) For a signal $X$, let $X_{i}$ denote its value during the $i$ th clock cycle.

Example: Sequential XOR


## Sequential Adder

## Definition

A sequential adder is defined as follows.
Inputs: $A, B$ and a clock signal CLK, where
$A_{i}, B_{i}$, reset $_{i} \in\{0,1\}$.
Output: $S$, where $S_{i} \in\{0,1\}$.
Functionality: Then, for every $i \geq 0$, $\langle A[i: 0]\rangle+\langle B[i: 0]\rangle=\langle S[i: 0]\rangle\left(\bmod 2^{i+1}\right)$.

Sequential Adder Implementation

fund. $F F$

$$
C_{\text {IN }}(t+1)=C_{\text {out }}(t)
$$

## Sequential Adder: Correctness

## Theorem

$$
\sum_{j=0}^{i} A_{j} \cdot 2^{j}+\sum_{j=0}^{i} B_{j} \cdot 2^{j}=\sum_{j=0}^{i} S_{j} \cdot 2^{j}+c_{o u t}(i) \cdot 2^{i+1}
$$

## Proof.

The proof is by induction on $i$.
The induction basis for $i=0$ follows from the functionality of the full-adder:

$$
A_{0}+B_{0}+C_{\text {in }}(0)=2 \cdot C_{\text {out }}(0)+S_{0}
$$

This requires that $C_{i n}(0)=0$ ! Namely, that the FF is initialized to zero. (We will discuss how to partly mitigate the issue of initialization later.)

## Sequential Adder: Implementation - correctness (cont.)

## Proof.

We now prove the induction step for $i>0$.

$$
\begin{aligned}
\sum_{j=0}^{i} A_{j} \cdot 2^{j}+\sum_{j=0}^{i} B_{j} \cdot 2^{j} & =\left(A_{i}+B_{i}\right) \cdot 2^{i}+\sum_{j=0}^{i-1} A_{j} \cdot 2^{j}+\sum_{j=0}^{i-1} B_{j} \cdot 2^{j} \\
& =\left(A_{i}+B_{i}\right) \cdot 2^{i}+\sum_{j=0}^{i-1} S_{j} \cdot 2^{j}+C_{\text {out }}(i-1) \cdot 2^{i} \\
& =\left(C_{i n}(i)+A_{i}+B_{i}\right)+2^{i n d}+\sum_{j=0}^{i-1} S_{j} \cdot 2^{j} \\
& =\left(S_{i}+2 \cdot C_{\text {out }}(i)\right) \cdot 2^{i}+\sum_{j=0}^{i-1} S_{j} \cdot 2^{j} \\
& =\sum_{j=0}^{i} S_{j} \cdot 2^{j}+C_{\text {out }}(i) \cdot 2^{i+1}
\end{aligned}
$$

Relation between RCA( $n$ ) and Sequential Adder
(1) $\mathrm{FA}_{i}$ is "simulated" by the FA (in Seq. Adder) in the $i$ 'th clock cycle.
(2) We can view $\operatorname{RCA}(n)$ as an "unrolling" of the Seq. Adder.


$$
t=n-1
$$

## Comparison with Combinational Lower Bounds

(1) Addition and $\mathrm{XOR}_{n}$ have functional cone of size $n$.
(2) Every combinational circuit has cost $\Omega(n)$ and delay $\Omega(\log n)$.
(3) But sequential versions have cost $O(1)$ ! How can that be?

## Registers

A term register is used to define a memory device that stores a bit or more. There are two main types of register depending on how their contents are loaded.
(1) Parallel Load Register
(2) Shift Register (also called a serial load register)

## Parallel Load Register - specification

## Definition

An $n$-bit parallel load register is specified as follows.
Inputs: $D[n-1: 0](t)$,

- CE $(t)$, and
- a clock CLK.

Output: $Q[n-1: 0](t)$.
Functionality:

$$
Q[n-1: 0](t+1)= \begin{cases}D[n-1: 0](t) & \text { if } \operatorname{cE}(t)=1 \\ Q[n-1: 0](t) & \text { if } \operatorname{cE}(t)=0\end{cases}
$$

An $n$-bit parallel load register is simply built from $n$ clock enabled flip-flops.

## Parallel Load Register - design



Figure: A 4-bit parallel load register

## Parallel Load Register - simulation



| $i$ | $D[3: 0]$ | CE | $Q[3: 0]$ |
| :---: | :---: | :---: | :---: |
| 0 | 1010 | 1 | 0000 |
| 1 | 0101 | 1 | 1010 |
| 2 | 1100 | 0 | 0101 |
| 3 | 1100 | 1 | 0101 |
| 4 | 0011 | 1 | 1100 |

## Shift Register - definition

## Definition

A shift register of $n$ bits is defined as follows. Inputs: $D[0](t)$ and a clock CLK.
Output: $Q[n-1](t)$.
Functionality: $Q[n-1](t+n)=D[0](t)$.

Shift Register - design


Figure: A 4-bit shift register. Functionality: $Q[3](t+4)=D[0](t)$
ind. hyp: $Q[2](t+3)=D[0](t)$

$$
\begin{aligned}
& Q[3](t+4)_{\lambda}=D[3](t+3) \\
& \text { funk. }=Q[2](t+3)=D[0](t) \\
& * \pi
\end{aligned}
$$



## ROM - definition/design

## Definition

A ROM $\left(2^{n}\right)$ that implements a Boolean function $M:\left[0 . .2^{n}-1\right] \rightarrow\{0,1\}$ is defined as follows.

Inputs: $\operatorname{Address}[n-1: 0](t)$.
Output: $D_{\text {out }}(t) . \in\{0,1\}$
Functionality :

$$
D_{\text {out }}=M[\langle A d d r e s s\rangle] .
$$



## Read-Only Memory (ROM)

- The contents stored in each memory cell are preset and fixed.
- ROMs are used to store information that should not be changed.
- For example, the ROM stores the program that is executed when the computer is turned on.
- Modern computers use non-volatile memory as "ROM" (such memory does allow write operations - and writing is often limited by "permissions")


## Random Access Memory (RAM)

(1) Hardware module that implements an array of memory cells, where each memory cell stores a single bit.
(2) In each cycle, a single memory cell is accessed.
(3) Two operations are supported: read and write.

- read operation: the contents of the accessed memory is output.
- write operation: a new value is stored in the accessed memory cell.
(3) The number of memory cells is denoted by $2^{n}$.
(0) Each cell has a distinct address between 0 and $2^{n}-1$.
(0) The cell to be accessed is specified by an $n$-bit string called Address.
(1) The array of memory cells is denoted by $M\left[2^{n}-1: 0\right]$. Let $M[i](t)$ denote the value stored in the $i$ th entry of the array $M$ during clock cycle $t$.


## RAM - definition

## Definition

$\operatorname{ARAM}\left(2^{n}\right)$ is specified as follows.
Inputs: $\operatorname{Address}[n-1: 0](t) \in\{0,1\}^{n}, D_{\text {in }}(t) \in\{0,1\}$, $R / \bar{W}(t) \in\{0,1\}$ and a clock CLK.
Output: $D_{\text {out }}(t) \in\{0,1\}$.
Functionality :
(1) data: array $M\left[2^{n}-1: 0\right]$ of bits.
(2) initialize: $\forall i: M[i] \leftarrow 0$.
(3) For $t=0$ to $\infty$ do
(1) $D_{\text {out }}(t)=M[\langle$ Address $\rangle](t)$.
(2) For all $i \neq\langle$ Address $\rangle: M[i](t+1) \leftarrow M[i](t)$.

3

$$
M[\langle\text { Address }\rangle](t+1) \leftarrow \begin{cases}D_{\text {in }}(t) & \text { if } R / \bar{W}(t)=0 \\ M[\langle\text { Address }\rangle](t) & \text { else. }\end{cases}
$$

## RAM - schematic



Figure: A schematic of $\operatorname{Ram}\left(2^{n}\right)$.

## RAM -design



## Memory Cell - specification

## Definition

A single bit memory cell is defined as follows.
Inputs: $D_{\text {in }}(t), R / \bar{W}(t)$, sell $(t)$, and a clock CLK.
Output: $D_{\text {out }}(t)$.

## Functionality:

$$
\triangleq \text { output of FF }
$$

Let $S(t) \in\{0,1\}$ denote the state of memory cell in cycle $t$.
Assume that the state is initialized to be $S(0)=0$. The functionality is defined according to the following cases.

$$
\text { (1) } S(t) \leftarrow \begin{cases}D_{\text {in }}(t) & \text { if } \operatorname{sel}(t)=1 \text { and } R / \bar{W}(t)=0 \\ S(t-1) & \text { otherwise. }\end{cases}
$$

(2) $D_{\text {out }}(t) \leftarrow S(t-1)$.

## Memory Cell - design



Figure: An implementation of a memory cell.

## Summary of Part 1

- Clock signal \& clock cycles.
- Flip-Flops and clock-enabled FF's
- Examples:
(1) Sequential XOR
(2) Sequential Adder
(3) Comparison with combinational lower bounds.
- Registers: parallel load and shift registers.
- ROM and RAM.

$$
\begin{aligned}
& \text { missing: timing (see book) } \\
& \text { initialization (partly covered in next }
\end{aligned}
$$

Preliminary questions
(1) What is a synchronous circuit?
(2) How can we initialize a synchronous circuit?
what are the "rules" for using flip-flups?

## Synchronous Circuits

- Building blocks: combinational gates, wires, and flip-flops.
- The graph $G$ of a synchronous circuit is directed but may contain cycles (e.g., sequential adder).
- A flip-flop has two inputs $D$ and CLK that play quite different roles. We must make sure that we know the input port of each incoming edge.
- Definition based on a reduction to a combinational circuit...



## Synchronous Circuits

## Definition

A synchronous circuit is a circuit $C$ composed of combinational gates, wires, and flip-flops that satisfies the following conditions:
(1) There is an input gate that feeds the clock signal CLK.
(2) The set of ports that are fed by the clock ClK equals the set of clock-inputs of the flip-flops.
(3) Let $C^{\prime}$ denote a circuit obtained from $C$ by stripping the flip-flops away. Then, the circuit $C^{\prime}$ is a combinational circuit.


## Stripping Flip-Flops Away

$$
\begin{aligned}
& C^{\text {candidate for }} \text { sync cirmit }
\end{aligned}
$$

## Definition

(1) Delete the input gate that feeds the clock CLK and all the wires carrying the clock signal.
(2) Remove all the flip-flops.
(3) Add an output gate for each $D$ port.
(9) Add an input gate for each $Q$ port.

## Example - stripping FFs away



Figure: A synchronous circuit $C$ and the combinational circuit $C^{\prime}$ obtained from $C$ by stripping away the flip-flops.

## Remarks:

It is easy to check if a given circuit $C$ is a synchronous circuit.

- Check if there is a clock signal that is connected to all the clock terminals of the flip-flops and only to them.
- Strip the flip-flops away to obtain the circuit $C^{\prime}$. Check if $C^{\prime}$ is a combinational circuit.

Cycles (closed paths) in a synchronous circuit

Claim
Every closed path in a synchronous circuit traverses at least one flip-flop.
proof: A closed path that lacks FF's "survives" the transformation of stripping away FF's. Thus, circuit is not sync.

## Logical Simulation of Synchronous Circuits

Assumptions:

- Initialization (magical?): For every flip-flop $F F_{i}$, let $S_{0}\left(F F_{i}\right) \in\{0,1\}$ denote the value output by $F F_{i}$ in clock cycle $t=0$.
- Input sequence: For every input gate $X$ let $I N_{t}(X) \in\{0,1\}$ the input fed by $X$ in clock cycle $t$.
Initialization serves a crucial role in the induction basis!

Algorithm $1 \mathrm{SIM}\left(C, S_{0},\left\{I N_{t}\right\}_{t=0}^{T-1}\right)$ - An algorithm for simulating a synchronous circuit $C$ with respect to an initialization $S_{0}$ and a sequence of inputs $\left\{I N_{t}\right\}_{t=0}^{T-1}$.
(1) Construct the combinational circuit $C^{\prime}$ obtained from $C$ by stripping away the flip-flops.
(2) For $t=0$ to $T-1$ do:
(1) Simulate the combinational circuit $C^{\prime}$ with input values corresponding to $S_{t}$ and $I N_{t}$. Namely, every input gate in $C$ feeds a value according to $I N_{t}$, and every $Q$-port of a flip-flop feeds a value according to $S_{t}$. For every $\operatorname{sink} z$ in $C^{\prime}$, let $z_{t}$ denote the value fed to $z$ according to this simulation.
(2) For every $Q$-port $S$ of a flip-flop, define $S_{t+1} \leftarrow N S_{t}$, where $N S$ denotes the $D$-port of the flip-flop.



Figure: A synchronous circuit in canonic form.

## Initialization

- We require that the output of every flip-flop be defined during the first clock cycle. Impossible?
(1) How can we even define the "first" clock cycle?
(2) What is the state of a flip-flop after power on?
(3) How can anything be set or determined after power on?
- Deus ex machine: introduce a reset signal:

$$
\operatorname{reset}(t) \triangleq \begin{cases}1 & \text { if } t=0 \\ 0 & \text { otherwise }\end{cases}
$$

- How is a reset signal generated? How could a reset signal differ from the the output of a flip-flop?
- No solution to this problem within the digital abstraction. All we can try to do is reduce the probability of such an event.
- In practice, a special circuit, called a reset controller, generates a proper reset signal with very high probability. Oddly enough, a reset controller is usually constructed by cascading flip-flops!


## Using the reset



We denote the logical value of a signal $X$ during the $i$ 'th clock cycle by $X_{i}$.

## Claim

For every $i \geq 0$ :

$$
\begin{aligned}
S_{0} & =\text { initial state } \\
N S_{i} & =\delta\left(I N_{i}, S_{i}\right) \\
O U T_{i} & =\lambda\left(I N_{i}, S_{i}\right) \\
S_{i+1} & =N S_{i} .
\end{aligned}
$$

## Sequential Adder with Reset



Note: Mux controlled by reset implemented by an AND-gate.

## Sequential Adder with Reset

What happens if $|\{t \mid \operatorname{reset}(t)=1\}|>1$ ? If $\operatorname{reset}(t)=1$, then we forget about the past, we treat clock cycle $t$ as the first clock cycle. Formally, we define the last initialization $r(i)$ as follows:

$$
r(i) \triangleq \max \{t \leq i: \operatorname{reset}(t)=1\}
$$

Namely, $r(i)$ specifies the last time $\operatorname{reset}(t)=1$ not after cycle $i$. If reset ${ }_{j}=0$, for every $j \leq i$, then $r(i)$ is not defined, and functionality is unspecified. If $r(i)$ is well defined, then the functionality is that, for every $i \geq 0$,

$$
\langle A[i: r(i)]\rangle+\langle B[i: r(i)]\rangle=\langle S[i: r(i)]\rangle \quad\left(\bmod 2^{i-r(i)+1}\right)
$$

The functionality of a synchronous circuit in the canonic form is so important that it justifies a term called finite state machines.

## Definition

A finite state machine (FSM) is a 6-tuple $\mathcal{A}=\left\langle Q, \Sigma, \Delta, \delta, \lambda, q_{0}\right\rangle$, where

- $Q$ is a set of states.
- $\Sigma$ is the alphabet of the input.
- $\Delta$ is the alphabet of the output.
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function.
- $\lambda: Q \times \Sigma \rightarrow \Delta$ is an output function.
- $q_{0} \in Q$ is an initial state.


## What does an FSM do?

An FSM is an abstract machine that operates as follows. The input is a sequence $\left\{x_{i}\right\}_{i=0}^{n-1}$ of symbols over the alphabet $\Sigma$. The output is a sequence $\left\{y_{i}\right\}_{i=0}^{n-1}$ of symbols over the alphabet $\Delta$. An FSM transitions through the sequence of states $\left\{q_{i}\right\}_{i=0}^{n}$. The state $q_{i}$ is defined recursively as follows:

$$
q_{i+1} \triangleq \delta\left(q_{i}, x_{i}\right)
$$

$$
\sum=\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}\right\}
$$

The output $y_{i}$ is defined as follows:


## FSM - terminology

Other terms for a finite state machine are a finite automaton with outputs and transducer. In the literature, an FSM according to our definition is often called a Mealy Machine. Another type of machine, called Moore Machine, is an FSM in which the domain of output function $\lambda$ is $Q$ (namely, the output is only a function of the state and does not depend on the input).

## State Diagrams

FSMs are often depicted using state diagrams.

## Definition

The state diagram corresponding to an FSM $\mathcal{A}$ is a directed graph $G=(Q, E)$ with edge labels $(x, y) \in \Sigma \times \Delta$. The edge set $E$ is defined by

$$
E \triangleq\{(q, \delta(q, x)): q \in Q \text { and } x \in \Sigma\}
$$

Each edge $(q, \delta(q, x))$ is labeled $(x, \lambda(q, x))$.
The vertex $q_{0}$ corresponding to the initial state of an FSM is usually marked in an FSM by a double circle.
We remark that a state diagram is in fact a multi-graph, namely, one allows more than one directed edge between two vertices. Such edges are often called parallel edges. Note that the out-degree of every vertex in a state diagram equals $\mid \Delta \Delta 广$.

## Example: A two-state FSM

Consider the $\operatorname{FSM} \mathcal{A}=\left\langle Q, \Sigma, \Delta, \delta, \lambda, q_{0}\right\rangle$ depicted in the next figure, where

$$
\begin{aligned}
Q & =\left\{q_{0}, q_{1}\right\} \\
\Sigma & =\Delta=\{0,1\}
\end{aligned}
$$



## Synthesis and Analysis

Two tasks are often associated with synchronous circuits. These tasks are defined as follows.
(1) Analysis: given a synchronous circuit $C$, describe its functionality by an FSM.
(2) Synthesis: given an $\operatorname{FSM} \mathcal{A}$, design a synchronous circuit $C$ that implements $\mathcal{A}$.


## Analysis: Sync Circuit $\mapsto$ FSM

The task of analyzing a synchronous circuit $C$ is carried out as follows.
(1) Define the $\mathrm{FSM} \mathcal{A}=\left\langle Q, \Sigma, \Delta, \delta, \lambda, q_{0}\right\rangle$ as follows.
(1) The set of states is $Q \triangleq\{0,1\}^{k}$, where $k$ denotes the number of flip-flops in C.
(2) Define the initial state $q_{0}$ to be the initial outputs of the flip-flops.
(3) $\Sigma=\{0,1\}^{\ell}$, where $\ell$ denotes the number of input gates in $C$.
(3) $\Delta=\{0,1\}^{r}$, where $r$ denotes the number of output gates in $C$.
(0) Define the transition function $\delta:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{k}$ to be the function implemented by the combinational "part" of $C$ for the inputs of the flip-flops.
(6) Define the output function $\lambda:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{r}$ to be the function implemented by the combinational "part" of $C$ for the output gates.

## A Counter

## Definition

A counter ( $n$ ) is defined as follows.
Inputs: a clock CLK.
Output: $N \in\{0,1\}^{n}$.
Functionality:

$$
\forall t:\left\langle N_{t}\right\rangle=t\left(\bmod 2^{n}\right)
$$

No input?! Input is "implied": it is the (missing) reset signal!

## Counter Implementation



Figure: A synchronous circuit that implements a counter.

## Counter Analysis



Figure: An FSM of a counter(2). The output always equals binary representation of the state from which the edge emanates.

## A Counter with input

## Definition

A counter $(n)$ is defined as follows.
Inputs: $X \in\{0,1\}$ and a clock ClK.
Output: $N \in\{0,1\}^{n}$.
Functionality:

$$
\forall t:\left\langle N_{t}\right\rangle=\sum_{i=0}^{t} X_{i}\left(\bmod 2^{n}\right)
$$

Implementation of Counter with Input


## Analysis of Counter with Input for $n=2$



## Sequential Adder: Analysis

F adder with reset


Figure: an FSM of a sequential adder (each transition is labeled by a pair: the condition that the input satisfies and the value of the output).

## Revisiting Shift Registerers

Recall the definition of a shift register of $n$ bits, that is: Inputs: $D[0](t)$ and a clock CLK.
Output: $Q[n-1](t)$.
Functionality: $Q[n-1](t+n)=D[0](t)$.

## Implementation of Shift Register



Figure: A 4-bit shift register.

## Analysis of Shift Register for $n=2$



## Revisiting RAM

## Definition

$\operatorname{ARAM}\left(2^{n}\right)$ is specified as follows.
Inputs: Address $[n-1: 0](t) \in\{0,1\}^{n}, D_{\text {in }}(t) \in\{0,1\}$, $R / \bar{W}(t) \in\{0,1\}$ and a clock CLK.
Output: $D_{\text {out }}(t) \in\{0,1\}$.
Functionality : The functionality of a RAM is specified by the following program:
(1) data: array $M\left[2^{n}-1: 0\right]$ of bits.
(2) initialize: $\forall i: M[i] \leftarrow 0$.
(3) For $t=0$ to $\infty$ do
(1) $D_{\text {out }}(t)=M[\langle$ Address $\rangle](t)$.
(2) For all $i \neq\langle$ Address $\rangle: M[i](t+1) \leftarrow M[i](t)$.
(3)

$$
M[\langle\text { Address }\rangle](t+1) \leftarrow \begin{cases}D_{\text {in }}(t) & \text { if } R / \bar{W}(t)=0 \\ M[\langle\text { Address }\rangle](t) & \text { else } .\end{cases}
$$

address
$n$ bits in ${ }^{2}$ memory


Figure: A (partial) FSM of a $\operatorname{RAM}\left(2^{1}\right)$ (the "legend" of the edge labels: $\left(\left(D_{\text {in }}\right.\right.$, address, $\left.\left.\left.R / \bar{W}\right), D_{\text {out }}\right)\right)$. to o complicated! not an effective way to describe a RAM.

## Effect of Adding Initialization to a Synchronous Circuit



- $C$ is a synchronous circuit without an initialization signal (but we assume FFs output a specific value in $t=0$ ).
- Introduce an initialization signal reset that initializes the outputs of all flip-flops (namely, it cause the outputs of the flip-flops to equal a value that encodes the initial state).
- How? add a MUX after every FF that selects $Q$ or initial-state based on reset.
- Denote the new synchronous circuit by $\hat{C}$.
- Let $\mathcal{A}$ and $\hat{\mathcal{A}}$ denote the FSM that model the functionality of $C$ and $\hat{C}$, respectively.
- What is the relation between $\mathcal{A}$ and $\hat{\mathcal{A}}$ ?


## Adding the initialization signal to an FSM - cont

## Theorem

Let $\mathcal{A}=\left\langle Q, \Sigma, \Delta, \delta, \lambda, q_{0}\right\rangle$ denote the FSM that models the functionality of the synchronous circuit $C$. Let $\hat{\mathcal{A}}=\left\langle Q^{\prime}, \Sigma^{\prime}, \Delta^{\prime}, \delta^{\prime}, \lambda^{\prime}, q_{0}^{\prime}\right\rangle$ denote the FSM that models the synchronous circuit $\hat{C}$. Then,

$$
\begin{aligned}
Q^{\prime} & \triangleq Q, \quad\left(=\{0,1\}^{\mid \text {FP's }^{\prime} \mid}\right) \\
q_{0}^{\prime} & \triangleq q_{0}, \\
\Sigma^{\prime} & \triangleq \Sigma \times\{0,1\}, \\
\Delta^{\prime} & \triangleq \Delta, \\
\delta^{\prime}(q,(\sigma, \text { reset })) & \triangleq \begin{cases}\delta(q, \sigma), & \text { if reset }=0 \\
\delta\left(q_{0}, \sigma\right), & \text { if reset }=1,\end{cases} \\
\lambda^{\prime}(q,(\sigma, \text { reset })) & \triangleq \begin{cases}\lambda(q, \sigma), & \text { if reset }=0 \\
\lambda\left(q_{0}, \sigma\right), & \text { if reset }=1\end{cases}
\end{aligned}
$$

Given an $\mathrm{FSM} \mathcal{A}=\left\langle Q, \Sigma, \Delta, \delta, \lambda, q_{0}\right\rangle$, the task of designing a synchronous circuit $C$ that implements $\mathcal{A}$ is carried out as follows.
(1) Encode $Q, \Sigma$ and $\Delta$ by binary strings. Formally, let $f, g, h$ denote one-to-one functions, where

$$
\begin{aligned}
& f: Q \rightarrow\{0,1\}^{k} \\
& g: \Sigma \rightarrow\{0,1\}^{\ell} \\
& h: \Delta \rightarrow\{0,1\}^{r} .
\end{aligned}
$$

(2) Design a combinational circuit $C_{\delta}$ that implements the (partial) Boolean function $B_{\delta}:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{k}$ defined by

$$
B_{\delta}(f(x), g(y)) \triangleq f(\delta(x, y)), \text { for every }(x, y) \in Q \times \Sigma
$$

(3) Design a combinational circuit $C_{\lambda}$ that implements the (partial) Boolean function $B_{\lambda}:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{r}$

$$
B_{\lambda}(f(x), g(z)) \triangleq h(\lambda(x, z)), \text { for every }(x, z) \in Q \times \Delta
$$

## Synthesis - cont

- How many flip-flops are required? $f: Q \rightarrow\{0,1\}^{k}$ is one-to-one. So

$$
k \geq \log _{2}|Q|
$$

- It is not clear that minimizing $k$ is a always a good idea. Certain encodings lead to more complicated Boolean functions $B_{\delta}$ and $B_{\lambda}$.
- The question of selecting a "good" encoding is a very complicated task, and there is no simple solution to this problem.


## Example: A two-state FSM

Consider the $\operatorname{FSM} \mathcal{A}=\left\langle Q, \Sigma, \Delta, \delta, \lambda, q_{0}\right\rangle$ depicted in the next figure, where

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}\right\}, \\
& \Sigma=\Delta=\{0,1\} .
\end{aligned}
$$



Figure: A two-state FSM.

## Two-State FSMs: Synthesis

Given an $\operatorname{FSM} \mathcal{A}=\left\langle Q, \Sigma, \Delta, \delta, \lambda, q_{0}\right\rangle$, the synchronous circuit $C$ that is obtained by executing the synthesis procedure is as follows. We encode $Q, \Sigma$ and $\Delta$ by binary strings Formally, let $f, g, h$ denote one-to-one functions, where

$$
\begin{aligned}
& f: Q \rightarrow\{0,1\} \\
& g: \Sigma \rightarrow Z\{a, 1\} \\
& h: \Delta \rightarrow \Delta \Delta,\{0,1\}
\end{aligned}
$$

where

$$
f\left(q_{0}\right)=0, f\left(q_{1}\right)=1
$$

and

$$
\forall x \in\{0,1\}: g(x)=h(x)=x
$$

## Two-State FSMs: Synthesis - $C_{\delta}$

We design a combinational circuit $C_{\delta}$ that implements the Boolean function $B_{\delta}:\{0,1\}^{2} \rightarrow\{0,1\}$ defined by

$$
B_{\delta}(f(x), g(y)) \triangleq f(\delta(x, y)), \text { for every }(x, y) \in Q \times \Sigma
$$

| $f(x)$ | $g(y)$ | $f(\delta(x, y))$ |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 1 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 1 | 0 |

Table: The truth table of $B_{\delta}$.

It follows that $B_{\delta}(f(x), g(y))=\operatorname{NOT}(g(y))$.

## Two-State FSMs: Synthesis - $C_{\lambda}$

We design a combinational circuit $C_{\lambda}$ that implements the Boolean function $B_{\lambda}:\{0,1\}^{2} \rightarrow\{0,1\}$ defined by

$$
B_{\lambda}(f(x), g(y)) \triangleq h(\lambda(x, y)), \text { for every }(x, y) \in Q \times \Sigma
$$

| $f(x)$ | $g(y)$ | $h(\lambda(x, y))$ |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 1 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 1 | 1 |

Table: The truth table of $B_{\lambda}$.

It follows that $B_{\lambda}(f(x), g(y))=f(x) \vee \overline{g(y)}$.

The synchronous circuit in canonic form constructed from a flip-flops and two combinational circuits is depicted in Figure 14.


Figure: Synthesis of $\mathcal{A}$.

- Definition of synchronous circuits.
- Simulation algorithm.
- Synchronous circuits in canonic form.
- Initialization \& reset signal.
- Functionality: finite-state machines \& state diagrams.
- Analysis and synthesis of synchronous circuits.
* FSM is not a useful moclel for sync. circuits with many $F F^{\prime} S$

$$
\left(\mid \text { states } \mid=2^{\left|F F^{\prime} s\right|}\right)
$$

