
Digital Logic Design: a rigorous approach c©
Chapters 17-20: Flip-Flops, Synchronous Circuits, and Finite

State Machines

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 27, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1 / 75

http://www.eng.tau.ac.il/~guy/Even-Medina

Preliminary questions

1 How is time measured in a synchronous circuit?

2 What is a “clock” in a microprocessor?

3 What is the frequency of a clock?

4 What is memory? How are bits stored?

2 / 75

The clock

the clock is generated by rectifying and amplifying a signal
generated by special non-digital devices (e.g., crystal oscillators).

Definition

A clock is a periodic logical signal that oscillates instantaneously
between logical one and logical zero. There are two instantaneous
transitions in every clock period: (i) in the beginning of the clock
period, the clock transitions instantaneously from zero to one; and
(ii) at some time in the interior of the clock period, the clock
transitions instantaneously from one to zero.

logical level

0

1
pulse width

time

clock fall clock rise
clock period

3 / 75

Clock cycles

A clock partitions time into discrete intervals.

ti - the starting time of the ith clock cycle.

[ti , ti+1) -clock cycle i .

Clock period = ti+1 − ti .

Assumption

We assume that the clock period equals 1.

ti+1 = ti + 1 .

4 / 75

Flip-Flop

Definition

A flip-flop is defined as follows.

Inputs: Digital signals D(t) and a clock clk.

Output: A digital signal Q(t).

Functionality:
Q(t + 1) = D(t) .

t D[t] Q[t]
0 1 ?
1 0 1
2 0 0
3 1 0
4 1 1

5 / 75

Clock enabled flip-flops

Definition

A clock enabled flip-flop is defined as follows.

Inputs: Digital signals D(t),ce(t) and a clock clk.

Output: A digital signal Q(t).

Functionality:

Q(t + 1) =

{

D(t) if ce(t) = 1

Q(t) if ce(t) = 0.

We refer to the input signal ce(t) as the clock-enable signal. Note
that the input ce(t) indicates whether the flip-flop samples the
input D(t) or maintains its previous value.

6 / 75

Which design is a correct clock enabled FF?

clk ff

mux

01

Q(t)

D(t)

ce(t)

(A)

ff

Q(t)

(B)

D(t)

clk

ce(t)
and

7 / 75

The Zero Delay Model

1 Transitions of all signals are instantaneous.

2 Combinational gates: tpd = tcont = 0.

3 Flip-flops satisfy:

Q(t + 1) = D(t) .

4 Simplified model for specifying and simulating the
functionality of circuits with flip-flops.

5 For a signal X , let Xi denote its value during the ith clock
cycle.

8 / 75

Example: Sequential xor

clk

Q

D
ff

A

xor

Z

Y

i Ai Yi Zi

0 0 0 0
1 0 0 0
2 1 1 0
3 0 1 1
4 0 1 1
5 1 0 1
6 0 0 0
7 1 1 0
8 0 1 1

9 / 75

Sequential Adder

Definition

A sequential adder is defined as follows.

Inputs: A,B and a clock signal clk, where
Ai ,Bi , reseti ∈ {0, 1}.

Output: S , where Si ∈ {0, 1}.

Functionality: Then, for every i ≥ 0,
〈A[i : 0]〉+ 〈B [i : 0]〉 = 〈S [i : 0]〉 (mod 2i+1).

10 / 75

Sequential Adder Implementation

11 / 75

Sequential Adder: Correctness

Theorem

i
∑

j=0

Aj · 2
j +

i
∑

j=0

Bj · 2
j =

i
∑

j=0

Sj · 2
j + cout(i) · 2

i+1 .

Proof.

The proof is by induction on i .
The induction basis for i = 0 follows from the functionality of the
full-adder:

A0 + B0 + Cin(0) = 2 · Cout(0) + S0 .

This requires that Cin(0) = 0! Namely, that the FF is initialized to
zero. (We will discuss how to partly mitigate the issue of
initialization later.)

12 / 75

Sequential Adder: Implementation - correctness (cont.)

Proof.

We now prove the induction step for i > 0.

i
∑

j=0

Aj · 2
j +

i
∑

j=0

Bj · 2
j = (Ai + Bi) · 2

i +
i−1
∑

j=0

Aj · 2
j +

i−1
∑

j=0

Bj · 2
j

= (Ai + Bi) · 2
i +

i−1
∑

j=0

Sj · 2
j + Cout(i − 1) · 2i

= (Cin(i) + Ai + Bi) · 2
i +

i−1
∑

j=0

Sj · 2
j

= (Si + 2 · Cout(i)) · 2
i +

i−1
∑

j=0

Sj · 2
j

=
i

∑

j=0

Sj · 2
j + Cout(i) · 2

i+1.

13 / 75

Relation between rca(n) and Sequential Adder

1 fai is “simulated” by the fa (in Seq. Adder) in the i ’th clock
cycle.

2 We can view rca(n) as an “unrolling” of the Seq. Adder.

sc
fa0

S[0]

A[0]B[0]

sc
fa1

A[1]B[1]

C[2] S[1]C[n − 2]

sc
fan−2

sc
fan−1

S[n − 2]C[n − 1]S[n − 1]C[n] C[1]

A[n − 2]B[n − 2]A[n − 1]B[n − 1]

C[0]

14 / 75

Comparison with Combinational Lower Bounds

1 Addition and xorn have functional cone of size n.

2 Every combinational circuit has cost Ω(n) and delay Ω(log n).

3 But sequential versions have cost O(1)! How can that be?

15 / 75

Registers

A term register is used to define a memory device that stores a bit
or more. There are two main types of register depending on how
their contents are loaded.

1 Parallel Load Register

2 Shift Register (also called a serial load register)

16 / 75

Parallel Load Register - specification

Definition

An n-bit parallel load register is specified as follows.

Inputs: D[n − 1 : 0](t),
ce(t), and
a clock clk.

Output: Q[n − 1 : 0](t).

Functionality:

Q[n − 1 : 0](t + 1) =

{

D[n− 1 : 0](t) if ce(t) = 1

Q[n − 1 : 0](t) if ce(t) = 0.

An n-bit parallel load register is simply built from n clock enabled
flip-flops.

17 / 75

Parallel Load Register - design

4

clk

ce

ce-ff(4)

D[3 : 0]

Q[3 : 0]

4

Q[3]

clk

ce

D[0]

ce-ff

1

1

Q[0]

clk

ce

D[1]

ce-ff

1

1

Q[1]

clk

ce

D[2]

ce-ff

1

1

Q[2]

clk

ce

D[3]

ce-ff

1

1

Figure: A 4-bit parallel load register

18 / 75

Parallel Load Register - simulation

Q[3]

clk

ce

D[0]

ce-ff

1

1

Q[0]

clk

ce

D[1]

ce-ff

1

1

Q[1]

clk

ce

D[2]

ce-ff

1

1

Q[2]

clk

ce

D[3]

ce-ff

1

1

i D[3 : 0] ce Q[3 : 0]
0 1010 1 0000
1 0101 1 1010
2 1100 0 0101
3 1100 1 0101
4 0011 1 1100

19 / 75

Shift Register - definition

Definition

A shift register of n bits is defined as follows.

Inputs: D[0](t) and a clock clk.

Output: Q[n − 1](t).

Functionality: Q[n − 1](t + n) = D[0](t).

20 / 75

Shift Register - design

Q[3]

clk clk clk clk

1

1

1

1

1

1

1

1

ff0ff1ff2ff3

D[3] D[2] D[1] D[0]

Q[0]Q[1]Q[2]

Figure: A 4-bit shift register. Functionality: Q[3](t + 4) = D[0](t)

21 / 75

Shift Registers - simulation

Q[3]

clk clk clk clk

1

1

1

1

1

1

1

1

ff0ff1ff2ff3

D[3] D[2] D[1] D[0]

Q[0]Q[1]Q[2]

i D[0] Q[3 : 0]
0 1 0000
1 1 0001
2 1 0011
3 0 0111
4 1 1110

22 / 75

ROM - definition/design

Definition

A rom(2n) that implements a Boolean function
M : [0..2n − 1]→ {0, 1} is defined as follows.

Inputs: Address[n − 1 : 0](t).

Output: Dout(t).

Functionality :
Dout = M[〈Address〉] .

Address[n− 1 : 0]

1

2n

(2n : 1)−muxn

Dout

M [2n − 1 : 0]

23 / 75

Read-Only Memory (ROM)

The contents stored in each memory cell are preset and fixed.

ROMs are used to store information that should not be
changed.

For example, the ROM stores the program that is executed
when the computer is turned on.

Modern computers use non-volatile memory as ROM (such
memory does allow write operations - and writing is often
limited by “permissions”)

24 / 75

Random Access Memory (RAM)

1 Hardware module that implements an array of memory cells,
where each memory cell stores a single bit.

2 In each cycle, a single memory cell is accessed.
3 Two operations are supported: read and write.

read operation: the contents of the accessed memory is output.
write operation: a new value is stored in the accessed memory
cell.

4 The number of memory cells is denoted by 2n.

5 Each cell has a distinct address between 0 and 2n − 1.

6 The cell to be accessed is specified by an n-bit string called
Address.

7 The array of memory cells is denoted by M[2n − 1 : 0]. Let
M[i](t) denote the value stored in the ith entry of the array
M during clock cycle t.

25 / 75

RAM - definition

Definition

A ram(2n) is specified as follows.

Inputs: Address[n − 1 : 0](t) ∈ {0, 1}n ,Din(t) ∈ {0, 1},
R/W (t) ∈ {0, 1} and a clock clk.

Output: Dout(t) ∈ {0, 1}.

Functionality :

1 data: array M[2n − 1 : 0] of bits.

2 initialize: ∀i : M[i]← 0.
3 For t = 0 to ∞ do

1 Dout(t) = M [〈Address〉](t).
2 For all i += 〈Address〉: M [i](t + 1)← M [i](t).
3

M [〈Address〉](t + 1)←

{

Din(t) if R/W (t) = 0

M [〈Address〉](t) else.

26 / 75

RAM - schematic

Din

clk

R/W
ram(2n)

Dout

Address[n − 1 : 0]

Figure: A schematic of a ram(2n).

27 / 75

RAM -design

2n

2n

1

1

1

Din

1 1

111

R/W
1

R/W
1

R/W
1

Address[n− 1 : 0]

n

decoder(n)

(2n : 1)− mux

Dout

M2n−1

D[2n − 1]

Din

1

D[2n − 1 : 0]

1

M1

D[1]

M0

D[0]

sel[1] sel[0]

n
Address[n− 1 : 0]

sel[2n − 1] Din

sel[2n − 1 : 0]

28 / 75

Memory Cell - specification

Definition

A single bit memory cell is defined as follows.

Inputs: Din(t), R/W (t), sel(t), and a clock clk.

Output: Dout(t).

Functionality:

Let S(t) ∈ {0, 1} denote the state of memory cell in cycle t.
Assume that the state is initialized to be S(0) = 0. The
functionality is defined according to the following cases.

1 S(t)←

{

Din(t) if sel(t) = 1 and R/W (t) = 0

S(t − 1) otherwise.

2 Dout(t)← S(t − 1).

29 / 75

Memory Cell - design

sel ∧ not(R/W)
ff

clk

ce

Din

Dout

Figure: An implementation of a memory cell.

30 / 75

Summary of Part 1

Clock signal & clock cycles.

Flip-Flops and clock-enabled FF’s

Examples:
1 Sequential XOR
2 Sequential Adder
3 Comparison with combinational lower bounds.

Registers: parallel load and shift registers.

ROM and RAM.

31 / 75

Preliminary questions

1 What is a synchronous circuit?

2 How can we initialize a synchronous circuit?

32 / 75

Synchronous Circuits

Building blocks: combinational gates, wires, and flip-flops.

The graph G of a synchronous circuit is directed but may
contain cycles (e.g., sequential adder).

A flip-flop has two inputs D and clk that play quite different
roles. We must make sure that we know the input port of
each incoming edge.

Definition based on a reduction to a combinational circuit...

33 / 75

Synchronous Circuits

Definition

A synchronous circuit is a circuit C composed of combinational
gates, wires, and flip-flops that satisfies the following conditions:

1 There is an input gate that feeds the clock signal clk.

2 The set of ports that are fed by the clock clk equals the set
of clock-inputs of the flip-flops.

3 Let C ′ denote a circuit obtained from C by stripping the
flip-flops away. Then, the circuit C ′ is a combinational circuit.

34 / 75

Stripping Flip-Flops Away

Definition
1 Delete the input gate that feeds the clock clk and all the

wires carrying the clock signal.

2 Remove all the flip-flops.

3 Add an output gate for each D port.

4 Add an input gate for each Q port.

35 / 75

Example - stripping FFs away

clk

ff

and3

clk

ff

or

and3

or

Figure: A synchronous circuit C and the combinational circuit C ′

obtained from C by stripping away the flip-flops.
36 / 75

Remarks:

It is easy to check if a given circuit C is a synchronous circuit.

Check if there is a clock signal that is connected to all the
clock terminals of the flip-flops and only to them.

Strip the flip-flops away to obtain the circuit C ′. Check if C ′

is a combinational circuit.

37 / 75

Cycles (closed paths) in a synchronous circuit

Claim

Every closed path in a synchronous circuit traverses at least one

flip-flop.

38 / 75

Logical Simulation of Synchronous Circuits

Assumptions:

Initialization (magical?): For every flip-flop FFi , let
S0(FFi) ∈ {0, 1} denote the value output by FFi in clock cycle
t = 0.

Input sequence: For every input gate X let INt(X) ∈ {0, 1}
the input fed by X in clock cycle t.

Initialization serves a crucial role in the induction basis!

39 / 75

Simulation Algorithm

Algorithm 1 SIM(C ,S0, {INt}
T−1
t=0) - An algorithm for simulating

a synchronous circuit C with respect to an initialization S0 and a
sequence of inputs {INt}

T−1
t=0 .

1 Construct the combinational circuit C ′ obtained from C by
stripping away the flip-flops.

2 For t = 0 to T − 1 do:
1 Simulate the combinational circuit C ′ with input values

corresponding to St and INt . Namely, every input gate in C
feeds a value according to INt , and every Q-port of a flip-flop
feeds a value according to St . For every sink z in C ′, let zt
denote the value fed to z according to this simulation.

2 For every Q-port S of a flip-flop, define St+1 ← NSt , where
NS denotes the D-port of the flip-flop.

40 / 75

The Canonic Form of a Synchronous Circuit

comb. circuit
λ

comb. circuit
δ

Q D

clk

IN

OUT

S NS

Figure: A synchronous circuit in canonic form.

41 / 75

Initialization

We require that the output of every flip-flop be defined during
the first clock cycle. Impossible?

1 How can we even define the “first” clock cycle?
2 What is the state of a flip-flop after power on?
3 How can anything be set or determined after power on?

Deus ex machine: introduce a reset signal:

reset(t)
!

=

{

1 if t = 0,

0 otherwise.

How is a reset signal generated? How could a reset signal
differ from the the output of a flip-flop?

No solution to this problem within the digital abstraction. All
we can try to do is reduce the probability of such an event.

In practice, a special circuit, called a reset controller, generates
a proper reset signal with very high probability. Oddly enough,
a reset controller is usually constructed by cascading flip-flops!

42 / 75

Using the reset

comb. circuit
λ

comb. circuit
δ

Q D

clk

IN

OUT

NSS

reset

initial state

0

1
sel

mux
2 : 1-

Restart “time”: If reset(t) = 1, then set t ← 0.

43 / 75

Functionality: the canonic form

We denote the logical value of a signal X during the i ’th clock
cycle by Xi .

Claim

For every i ≥ 0:

S0 = initial state

NSi = δ(INi ,Si)

OUTi = λ(INi ,Si)

Si+1 = NSi .

44 / 75

Sequential Adder with Reset

clk

D

Q
ff

A

SC

BCin

Full-Adder

S
Cout

reset

Note: Mux controlled by reset implemented by an and-gate.

45 / 75

Sequential Adder with Reset

What happens if |{t | reset(t) = 1}| > 1? If reset(t) = 1, then we
forget about the past, we treat clock cycle t as the first clock cycle.
Formally, we define the last initialization r(i) as follows:

r(i)
!

= max{t ≤ i : reset(t) = 1}.

Namely, r(i) specifies the last time reset(t) = 1 not after cycle i .
If resetj = 0, for every j ≤ i , then r(i) is not defined, and
functionality is unspecified. If r(i) is well defined, then the
functionality is that, for every i ≥ 0,

〈A[i : r(i)]〉+ 〈B [i : r(i)]〉 = 〈S [i : r(i)]〉 (mod 2i−r(i)+1).

46 / 75

Finite State Machines

The functionality of a synchronous circuit in the canonic form is so
important that it justifies a term called finite state machines.

Definition

A finite state machine (FSM) is a 6-tuple A = 〈Q,Σ,∆, δ,λ, q0〉,
where

Q is a set of states.

Σ is the alphabet of the input.

∆ is the alphabet of the output.

δ : Q × Σ→ Q is a transition function.

λ : Q × Σ→ ∆ is an output function.

q0 ∈ Q is an initial state.

47 / 75

What does an FSM do?

An FSM is an abstract machine that operates as follows. The
input is a sequence {xi}

n−1
i=0 of symbols over the alphabet Σ. The

output is a sequence {yi}
n−1
i=0 of symbols over the alphabet ∆. An

FSM transitions through the sequence of states {qi}ni=0. The state
qi is defined recursively as follows:

qi+1
!

= δ(qi , xi)

The output yi is defined as follows:

yi
!

= λ(qi , xi).

48 / 75

FSM - terminology

Other terms for a finite state machine are a finite automaton with
outputs and transducer. In the literature, an FSM according to our
definition is often called a Mealy Machine. Another type of
machine, called Moore Machine, is an FSM in which the domain of
output function λ is Q (namely, the output is only a function of
the state and does not depend on the input).

49 / 75

State Diagrams

FSMs are often depicted using state diagrams.

Definition

The state diagram corresponding to an FSM A is a directed graph
G = (Q,E) with edge labels (x , y) ∈ Σ×∆. The edge set E is
defined by

E
!

= {(q, δ(q, x)) : q ∈ Q and x ∈ Σ}.

Each edge (q, δ(q, x)) is labeled (x ,λ(q, x)).

The vertex q0 corresponding to the initial state of an FSM is
usually marked in an FSM by a double circle.
We remark that a state diagram is in fact a multi-graph, namely,
one allows more than one directed edge between two vertices.
Such edges are often called parallel edges. Note that the
out-degree of every vertex in a state diagram equals |∆|.

50 / 75

Example: A two-state FSM

Consider the FSM A = 〈Q,Σ,∆, δ,λ, q0〉 depicted in the next
figure, where

Q = {q0, q1},

Σ = ∆ = {0, 1}.

(1, 1)

(1, 0)

(0, 1)

q0 q1

(0, 1)

51 / 75

Synthesis and Analysis

Two tasks are often associated with synchronous circuits. These
tasks are defined as follows.

1 Analysis: given a synchronous circuit C , describe its
functionality by an FSM.

2 Synthesis: given an FSM A, design a synchronous circuit C
that implements A.

52 / 75

Analysis: Sync Circuit /→ FSM

The task of analyzing a synchronous circuit C is carried out as
follows.

1 Define the FSM A = 〈Q,Σ,∆, δ,λ, q0〉 as follows.

1 The set of states is Q
!

= {0, 1}k, where k denotes the number
of flip-flops in C .

2 Define the initial state q0 to be the initial outputs of the
flip-flops.

3 Σ = {0, 1}!, where # denotes the number of input gates in C .
4 ∆ = {0, 1}r , where r denotes the number of output gates in C .
5 Define the transition function δ : {0, 1}k × {0, 1}!→ {0, 1}k

to be the function implemented by the combinational “part” of
C for the inputs of the flip-flops.

6 Define the output function λ : {0, 1}k × {0, 1}! → {0, 1}r to
be the function implemented by the combinational “part” of C
for the output gates.

53 / 75

A Counter

Definition

A counter(n) is defined as follows.

Inputs: a clock clk.

Output: N ∈ {0, 1}n .

Functionality:

∀t : 〈Nt〉 = t(mod 2n)

No input?! Input is “implied”: it is the (missing) reset signal!

54 / 75

Counter Implementation

n

n

n

D

ff(n)

incrementer(n)

Q
clk

N

Figure: A synchronous circuit that implements a counter.

55 / 75

Counter Analysis

10

3 2

Figure: An FSM of a counter(2). The output always equals binary
representation of the state from which the edge emanates.

56 / 75

A Counter with input

Definition

A counter(n) is defined as follows.

Inputs: X ∈ {0, 1} and a clock clk.

Output: N ∈ {0, 1}n .

Functionality:

∀t : 〈Nt〉 =
t

∑

i=0

Xi(mod 2n)

57 / 75

Implementation of Counter with Input

58 / 75

Analysis of Counter with Input for n = 2

(0, y) (0, n)

(0, n)(0, n)

(1, y)
(1, n)

(1, n)

(1, n)

A

B C

D

59 / 75

Sequential Adder: Analysis

((reset = 1, A+B = 2), 0)

0

((A+B ≤ 1), A⊕B)

((reset = 0, A+B = 0), 1)

(A+B = 2, 0)

((reset = 1, A+B ≤ 1), A⊕B)

1

((reset = 0, A+B ≥ 1), 1⊕A⊕B)

Figure: an FSM of a sequential adder (each transition is labeled by a
pair: the condition that the input satisfies and the value of the output).

60 / 75

Revisiting Shift Registerers

Recall the definition of a shift register of n bits, that is:

Inputs: D[0](t) and a clock clk.

Output: Q[n − 1](t).

Functionality: Q[n − 1](t + n) = D[0](t).

61 / 75

Implementation of Shift Register

Q[3]

clk clk clk clk

1

1

1

1

1

1

1

1

ff0ff1ff2ff3

D[3] D[2] D[1] D[0]

Q[0]Q[1]Q[2]

Figure: A 4-bit shift register.

62 / 75

Analysis of Shift Register for n = 2

00

10 11

01

(0, 0)

(1, 0)

(1, 0)
(0, 0)

(1, 1)

(1, 1)

(0, 1)

(0, 1)

63 / 75

Revisiting RAM

Definition

A ram(2n) is specified as follows.

Inputs: Address[n − 1 : 0](t) ∈ {0, 1}n ,Din(t) ∈ {0, 1},
R/W (t) ∈ {0, 1} and a clock clk.

Output: Dout(t) ∈ {0, 1}.

Functionality : The functionality of a ram is specified by the
following program:

1 data: array M[2n − 1 : 0] of bits.

2 initialize: ∀i : M[i]← 0.
3 For t = 0 to ∞ do

1 Dout(t) = M [〈Address〉](t).
2 For all i += 〈Address〉: M [i](t + 1)← M [i](t).
3

M [〈Address〉](t + 1)←

{

Din(t) if R/W (t) = 0

M [〈Address〉](t) else. 64 / 75

(R/W = 1, 0)

00

10

(R/W = 1,Address = 0, 0)
(R/W = 1,Address = 1, 1)

(R/W = 1,Address = 0, 1)
(R/W = 1,Address = 1, 0)

01

(R/W = 1, 1)

11

((R/W = 0,Address = 1, Din = 1), 0)

((R/W = 0,Address = 0, Din = 0), 1)

((R/W = 0,Address = 0, Din = 1), 0)

((R/W = 0,Address = 0, Din = 0), 1)

((R/W = 0,Address = 0, Din = 1), 0)

((R/W = 0,Address = 1, Din = 0), 1)

Figure: A (partial) FSM of a ram(21) (the “legend” of the edge
labels:((Din, address,R/W),Dout)).

65 / 75

Effect of Adding Initialization to a Synchronous Circuit

C is a synchronous circuit without an initialization signal (but
we assume FFs output a specific value in t = 0).

Introduce an initialization signal reset that initializes the
outputs of all flip-flops (namely, it cause the outputs of the
flip-flops to equal a value that encodes the initial state).

How? add a mux after every FF that selects Q or initial-state
based on reset.

Denote the new synchronous circuit by Ĉ .

Let A and Â denote the FSMs that model the functionality of
C and Ĉ , respectively.

What is the relation between A and Â?

66 / 75

Adding the initialization signal to an FSM - cont

Theorem

Let A = 〈Q,Σ,∆, δ,λ, q0〉 denote the FSM that models the

functionality of the synchronous circuit C . Let

Â = 〈Q ′,Σ′,∆′, δ′,λ′, q′0〉 denote the FSM that models the

synchronous circuit Ĉ . Then,

Q ′ !

= Q,

q′0
!

= q0,

Σ′ !

= Σ× {0, 1},

∆′ !

= ∆,

δ′(q, (σ, reset))
!

=

{

δ(q,σ), if reset = 0,

δ(q0,σ), if reset = 1,

λ′(q, (σ, reset))
!

=

{

λ(q,σ), if reset = 0,

λ(q0,σ), if reset = 1.

67 / 75

Synthesis: FSM /→ Sync Circuit

Given an FSM A = 〈Q,Σ,∆, δ,λ, q0〉, the task of designing a
synchronous circuit C that implements A is carried out as follows.

1 Encode Q,Σ and ∆ by binary strings. Formally, let f , g , h
denote one-to-one functions, where

f :Q → {0, 1}k

g :Σ→ {0, 1}!

h :∆→ {0, 1}r .

2 Design a combinational circuit Cδ that implements the
(partial) Boolean function Bδ : {0, 1}k × {0, 1}! → {0, 1}k

defined by

Bδ(f (x), g(y))
!

= f (δ(x , y)), for every (x , y) ∈ Q × Σ.

3 Design a combinational circuit Cλ that implements the
(partial) Boolean function Bλ : {0, 1}k × {0, 1}! → {0, 1}r

Bλ(f (x), g(z))
!

= h(λ(x , z)), for every (x , z) ∈ Q ×∆.

68 / 75

Synthesis - cont

How many flip-flops are required? f : Q → {0, 1}k is
one-to-one. So

k ≥ log2 |Q|

It is not clear that minimizing k is a always a good idea.
Certain encodings lead to more complicated Boolean functions
Bδ and Bλ.

The question of selecting a “good” encoding is a very
complicated task, and there is no simple solution to this
problem.

69 / 75

Example: A two-state FSM

Consider the FSM A = 〈Q,Σ,∆, δ,λ, q0〉 depicted in the next
figure, where

Q = {q0, q1},

Σ = ∆ = {0, 1}.

(1, 1)

(1, 0)

(0, 1)

q0 q1

(0, 1)

Figure: A two-state FSM.

70 / 75

Two-State FSMs: Synthesis

Given an FSM A = 〈Q,Σ,∆, δ,λ, q0〉, the synchronous circuit C
that is obtained by executing the synthesis procedure is as follows.
We encode Q,Σ and ∆ by binary strings Formally, let f , g , h
denote one-to-one functions, where

f :Q → {0, 1}

g :Σ→ Σ

h :∆→ ∆,

where
f (q0) = 0, f (q1) = 1,

and
∀x ∈ {0, 1} : g(x) = h(x) = x .

71 / 75

Two-State FSMs: Synthesis - Cδ

We design a combinational circuit Cδ that implements the Boolean
function Bδ : {0, 1}2 → {0, 1} defined by

Bδ(f (x), g(y))
!

= f (δ(x , y)), for every (x , y) ∈ Q ×Σ.

f (x) g(y) f (δ(x , y))

0 0 1
1 0 1
0 1 0
1 1 0

Table: The truth table of Bδ.

It follows that Bδ(f (x), g(y)) = not(g(y)).

72 / 75

Two-State FSMs: Synthesis - Cλ

We design a combinational circuit Cλ that implements the Boolean
function Bλ : {0, 1}2 → {0, 1} defined by

Bλ(f (x), g(y))
!

= h(λ(x , y)), for every (x , y) ∈ Q × Σ.

f (x) g(y) h(λ(x , y))

0 0 1
1 0 1
0 1 0
1 1 1

Table: The truth table of Bλ.

It follows that Bλ(f (x), g(y)) = f (x) ∨ g(y).

73 / 75

Two-State FSMs: Synthesis - the Synch. circuit C

The synchronous circuit in canonic form constructed from a
flip-flops and two combinational circuits is depicted in Figure 14.

clk

OUT

S NS
ff

Cλ

Cδ

IN

Q D

Figure: Synthesis of A.

74 / 75

Summary of Part 2

Definition of synchronous circuits.

Simulation algorithm.

Synchronous circuits in canonic form.

Initialization & reset signal.

Functionality: finite-state machines & state diagrams.

Analysis and synthesis of synchronous circuits.

75 / 75

