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Building Blocks of Boolean Formulas

The building blocks of a Boolean formula are constants, variables,
and connectives.

1 A constant is either 0 or 1. As in the case of bits, we interpret
a 1 as “true” and a 0 as a “false”. The terms constant and bit
are synonyms; the term bit is used in Boolean functions and in
circuits while the term constants is used in Boolean formulas.

2 A variable is an element in a set of variables. We denote the
set of variables by U. The set U does not contain constants.
Variables are usually denoted by upper case letters.

3 Connectives are used to build longer formulas from shorter
ones. We denote the set of connectives by C.
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Logical Connectives

We consider unary, binary, and higher arity connectives.

1 There is only one unary connective called negation. Negation
of a variable A is denoted by not(A), ¬A, or Ā.

2 There are several binary connectives, the most common are
and (denoted also by � or ·) and or (denoted also by � or
+). A binary connective is applied to two formulas. We later
show the relation between binary connectives and Boolean
functions B : {0, 1}2 � {0, 1}.

3 A connective has arity j if it is applied to j formulas. The arity
of negation is 1, the arity of and is 2, etc.
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Example: parse tree

and

X Y0

¬or

Figure: A parse tree that corresponds to the Boolean formula
((X or 0) and (¬Y )). The rooted trees that are hanging from the root
of the parse tree (the and connective) are bordered by dashed rectangles.
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Parse Trees

We use parse trees to de�ne Boolean formulas.

De�nition

A parse tree is a pair (G ,�), where G = (V ,E ) is a rooted tree
and � : V � {0, 1} � U � C is a labeling function that satis�es:

1 A leaf is labeled by a constant or a variable. Formally, if
v � V is a leaf, then �(v) � {0, 1} � U.

2 An interior vertex v is labeled by a connective whose arity
equals the in-degree of v . Formally, if v � V is an interior
vertex, then �(v) � C is a connective with arity degin(v).

We usually use only unary and binary connectives. Thus, unless
stated otherwise, a parse tree has an in-degree of at most two.
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Boolean formulas

We use strings that contain constants, variables, connectives,
and parenthesis to construct Boolean formulas.

We use parse trees to de�ne Boolean formulas.

This de�nition is constructive (inorder traversal of the parse
tree).
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Examples of Good and Bad Formulas

(A and B)

(A or B)

A or or B) not a Boolean formula!

((A and B) or (A and C ) or 1).

If � and � are Boolean formulas, then (� or �) is a Boolean
formula.

If � is a Boolean formula, then (¬�) is a Boolean formula.

We will stick to parse trees, and now show how they are parsed to
generate valid Boolean formulas.
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Algorithm 1 INORDER(G ,�) - An algorithm for generating the
Boolean formula corresponding to a parse tree (G ,�), where G =
(V ,E ) is a rooted tree with in-degree at most 2 and � : V �
{0, 1} � U � C is a labeling function.

1 Base Case: If |V | = 1 then return �(v) (where v � V is the
only node in V )

2 Reduction Rule:
1 If degin(r(G)) = 1, then

1 Let G1 = (V1,E1) denote the rooted tree hanging from r(G).
2 Let �1 denote the restriction of � to V1.
3 � � INORDER(G1,�1).
4 Return (¬�).

2 If degin(r(G)) = 2, then
1 Let G1 = (V1,E1) and G2 = (V2,E2) denote the rooted

subtrees hanging from r(G ).
2 Let �i denote the restriction of � to Vi .
3 � � INORDER(G1,�1).
4 � � INORDER(G2,�2).
5 Return (� �(r(G )) �).



Boolean Formula

De�nition

Let (G ,�) denote a parse tree and let Tv denote the subtree
hanging from v .

The output � of INORDER(G ,�) is a Boolean formula.

The output of INORDER(Tv ,�) is a subformula of �.

We say that Boolean formula � is de�ned by the parse tree (G ,�).
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Notation

Consider all the parse trees over the set of variables U and the
set of connectives C.

The set of all Boolean formulas de�ned by these parse trees is
denoted by BF(U, C).

To simplify notation, we abbreviate BF(U, C) by BF when
the sets of variables and connectives are known.
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Examples

Some of the connectives have several notations. The following
formulas are the same, i.e. string equality.

(A+ B) = (A � B) = (A or B) ,

(A · B) = (A � B) = (A and B) ,

(¬B) = (not(B)) = (B̄) ,

(A xor B) = (A� B) ,

((A � C ) � (¬B)) = ((A+ C ) · (B̄)) .

We sometimes omit parentheses from formulas if their parse tree is
obvious. When parenthesis are omitted, one should use precedence
rules as in arithmetic, e.g., a · b + c · d = ((a · b) + (c · d)).
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The Implication Connective

The implication connective is denoted by �.

X Y X � Y
0 0 1
1 0 0
0 1 1
1 1 1

� 0 1

0 1 1
1 0 1

Table: The truth table representation and the multiplication table of the
implication connective.

Lemma

A � B is true i� A � B.
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more on the implication connective

The implication connective is not commutative, namely,
(0 � 1) 6= (1 � 0).

This connective is called implication since it models the
natural language templates “Y if X” and “if X then Y ”.

Note that X � Y is always 1 if X = 0.
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Connectives nand nor

nand(A,B)
�

= not(and(A,B)) ,

nor(A,B)
�

= not(or(A,B)) .
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Truth Tables

X Y X nand Y
0 0 1
1 0 1
0 1 1
1 1 0

X Y X nor Y
0 0 1
1 0 0
0 1 0
1 1 0

nand 0 1

0 1 1
1 1 0

nor 0 1

0 1 0
1 0 0
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The Equivalence Connective

The equivalence connective is denoted by 	.

(p 	 q) abbreviates ((p � q) and (q � p)).

X Y X 	 Y
0 0 1
1 0 0
0 1 0
1 1 1

	 0 1

0 1 0
1 0 1

(X 	 Y ) =

�

1 if X = Y

0 if X 6= Y .
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Order Matters!

or

X Y0

�

not

Figure: The parse tree of the Boolean formula ((X or 0) � (¬Y )). The
root is labeled by an implication connective. The rooted trees hanging
from the root are encapsulated by dashed rectangles.
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Recapping

Variables: X ,Y ,Z , . . .

Logical connectives:
unary: not
binary: and,or,nor,nand,�,	

Parse Trees: rooted tree labeled by variables and connectives.

Boolean Formula: de�ned by inorder traversal of parse tree.

Attach Boolean operators to logical connectives.
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