Digital Logic Design: a rigorous approach © Chapter 6: Propositional Logic

School of Electrical Engineering Tel-Aviv Univ.

March 23, 2020

Book Homepage: http://www.eng.tau.ac.il/~guy/Even-Medina The building blocks of a Boolean formula are constants, variables, and connectives.

- A constant is either 0 or 1. As in the case of bits, we interpret a 1 as "true" and a 0 as a "false". The terms constant and bit are synonyms; the term bit is used in Boolean functions and in circuits while the term constants is used in Boolean formulas.
- A variable is an element in a set of variables. We denote the set of variables by U. The set U does not contain constants. Variables are usually denoted by upper case letters.
- Connectives are used to build longer formulas from shorter ones. We denote the set of connectives by C.

We consider unary, binary, and higher arity connectives.

- There is only one unary connective called negation. Negation of a variable A is denoted by NOT(A), $\neg A$, or \overline{A} .
- There are several binary connectives, the most common are AND (denoted also by ∧ or ·) and OR (denoted also by ∨ or +). A binary connective is applied to two formulas. We later show the relation between binary connectives and Boolean functions $B : \{0,1\}^2 \rightarrow \{0,1\}$.
- A connective has arity j if it is applied to j formulas. The arity of negation is 1, the arity of AND is 2, etc.

Example: parse tree

Figure: A parse tree that corresponds to the Boolean formula $((X \text{ OR } 0) \text{ AND } (\neg Y))$. The rooted trees that are hanging from the root of the parse tree (the AND connective) are bordered by dashed rectangles.

We use parse trees to define Boolean formulas.

Definition

A parse tree is a pair (G, π) , where G = (V, E) is a rooted tree and $\pi : V \to \{0, 1\} \cup U \cup C$ is a labeling function that satisfies:

- A leaf is labeled by a constant or a variable. Formally, if v ∈ V is a leaf, then π(v) ∈ {0,1} ∪ U.
- ② An interior vertex v is labeled by a connective whose arity equals the in-degree of v. Formally, if $v \in V$ is an interior vertex, then $\pi(v) \in C$ is a connective with arity $deg_{in}(v)$.

We usually use only unary and binary connectives. Thus, unless stated otherwise, a parse tree has an in-degree of at most two.

- We use strings that contain constants, variables, connectives, and parenthesis to construct Boolean formulas.
- We use parse trees to define Boolean formulas.
- This definition is constructive (inorder traversal of the parse tree).

Examples of Good and Bad Formulas

- (*A* AND *B*)
- (A OR B)
- A OR OR B) not a Boolean formula!
- ((A AND B) or (A AND C) or 1).
- If φ and ψ are Boolean formulas, then (φ $_{\rm OR}$ $\psi)$ is a Boolean formula.
- If φ is a Boolean formula, then $(\neg \varphi)$ is a Boolean formula.

We will stick to parse trees, and now show how they are parsed to generate valid Boolean formulas.

Algorithm 1 INORDER (G, π) - An algorithm for generating the Boolean formula corresponding to a parse tree (G, π) , where G = (V, E) is a rooted tree with in-degree at most 2 and $\pi : V \rightarrow \{0,1\} \cup U \cup C$ is a labeling function.

- Sase Case: If |V| = 1 then return $\pi(v)$ (where $v \in V$ is the only node in V)

 Image: Object of the state of the s
- Reduction Rule:

OXE

If deg_{in}(r(G)) = 1, then
Let G₁ = (V₁, E₁) denote the rooted tree hanging from r(G).
Let π₁ denote the restriction of π to V₁.
α ← INORDER(G₁, π₁).
Return (¬α).
If deg_{in}(r(G)) = 2, then
Let G₁ = (V₁, E₁) and G₂ = (V₂, E₂) denote the rooted subtrees hanging from r(G).

- 2 Let π_i denote the restriction of π to V_i .
- $a \leftarrow \mathsf{INORDER}(G_1, \pi_1).$
- **a** $\beta \leftarrow \text{INORDER}(G_2, \pi_2).$
- S Return ($\alpha \pi(r(G)) \beta$).

Definition

Let (G, π) denote a parse tree and let T_v denote the subtree hanging from v.

- The output φ of INORDER (G, π) is a Boolean formula.
- The output of INORDER(T_v, π) is a subformula of φ .

We say that Boolean formula φ is defined by the parse tree (G, π) .

- Consider all the parse trees over the set of variables *U* and the set of connectives *C*.
- The set of all Boolean formulas defined by these parse trees is denoted by BF(U,C).
- To simplify notation, we abbreviate $\mathcal{BF}(U, \mathcal{C})$ by \mathcal{BF} when the sets of variables and connectives are known.

Some of the connectives have several notations. The following formulas are the same, i.e. string equality.

+=V=OR

$$(A + B) = (A \lor B) = (A \text{ or } B),$$

$$(A \cdot B) = (A \land B) = (A \text{ and } B),$$

$$(\neg B) = (\text{Not}(B)) = (\bar{B}),$$

$$(A \text{ xor } B) = (A \oplus B),$$

$$((A \lor C) \land (\neg B)) = ((A + C) \cdot (\bar{B})).$$

We sometimes omit parentheses from formulas if their parse tree is obvious. When parenthesis are omitted, one should use precedence rules as in arithmetic, e.g., $a \cdot b + c \cdot d = ((a \cdot b) + (c \cdot d))$.

The implication connective is denoted by \rightarrow .

Table: The truth table representation and the multiplication table of the implication connective.

Lemma

 $A \rightarrow B$ is true iff $A \leq B$.

more on the implication connective

- The implication connective is not commutative, namely, $(0 \rightarrow 1) \neq (1 \rightarrow 0).$
- This connective is called implication since it models the natural language templates "Y if X" and "if X then Y".
- Note that $X \to Y$ is always 1 if X = 0.

$\operatorname{NAND}(A,B) \stackrel{\triangle}{=} \operatorname{NOT}(\operatorname{AND}(A,B)),$ $\operatorname{NOR}(A,B) \stackrel{\triangle}{=} \operatorname{NOT}(\operatorname{OR}(A,B)).$

Truth Tables

The Equivalence Connective

The equivalence connective is denoted by \leftrightarrow .

$$p \leftrightarrow q) \text{ abbreviates } ((p \to q) \text{ AND } (q \to p)).$$

$$\frac{X \mid Y \mid X \leftrightarrow Y}{0 \mid 0 \mid 1} \xrightarrow{\qquad \leftrightarrow \mid 0 \mid 1} \frac{(X \leftrightarrow Y)}{0 \mid 1 \mid 0 \mid 1} \xrightarrow{\qquad \leftrightarrow \mid 0 \mid 1} \frac{(X \leftrightarrow Y)}{1 \mid 0 \mid 1} = \begin{cases} 1 & \text{if } X = Y \\ 0 & \text{if } X \neq Y. \end{cases}$$

Order Matters!

Figure: The parse tree of the Boolean formula $((X \text{ OR } 0) \rightarrow (\neg Y))$. The root is labeled by an implication connective. The rooted trees hanging from the root are encapsulated by dashed rectangles.

$$(x \text{ or } 0) \rightarrow (7Y)$$

$$\text{Not 'equiv''} (7Y) \longrightarrow (x \text{ or } 0)$$

- Variables: X, Y, Z, ...
- Logical connectives:
 - unary: NOT
 - binary: AND, OR, NOR, NAND, \rightarrow , \leftrightarrow
- Parse Trees: rooted tree labeled by variables and connectives.
- Boolean Formula: defined by inorder traversal of parse tree.
- Attach Boolean operators to logical connectives.