
Digital Logic Design: a rigorous approach c�
Chapter 6: Propositional Logic

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

March 29, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1 / 57

Syntax vs. Semantics

Syntax - grammatic rules that govern the construction of
Boolean formulas (rules: parse trees + inorder traversal)

Semantics - functional interpretation of a formula

Syntax has a purpose: to provide well de�ned semantics!

19 / 57

Syntax vs. Semantics

Logical connectives have two roles:

Syntax: building block for Boolean formulas (“glue”).

Semantics: de�ne a truth value based on a Boolean function.

To emphasize the semantic role: given a k-ary connective �, we
denote the semantics of � by a Boolean function

B� : {0, 1}
k � {0, 1}

.

Example

Band(b1, b2) = b1 · b2.

Bnot(b) = 1� b.

20 / 57

Syntax vs. Semantics

Semantics of Variables and Constants

The function BX associated with a variable X is the identity
function BX (b) = b.

The function B� associated with a constant � � {0, 1} is the
constant function B�(b) = �.

21 / 57

truth assignments

Let U denote the set of variables.

De�nition

A truth assignment is a function � : U � {0, 1}.

Our goal is to extend every assignment � : U � {0, 1} to a
function

�̂ : BF(U, C) � {0, 1}

Thus, a truth assignment to variables, actually induces truth values
to every Boolean formula.

22 / 57

extending truth assignments to formulas

The extension �̂ : BF � {0, 1} of an assignment � : U � {0, 1} is
de�ned as follows.

De�nition

Let p � BF be a Boolean formula generated by a parse tree
(G ,�). Then,

�̂(p)
�

= EVAL(G ,�, �),

where EVAL is listed in the next slide.

EVAL is also an algorithm that also employs inorder traversal over
the parse tree!

23 / 57

Algorithm 2 EVAL(G ,�, �) - evaluate the truth value of the
Boolean formula generated by the parse tree (G ,�), where (i) G =
(V ,E) is a rooted tree with in-degree at most 2, (ii) � : V �
{0, 1} � U � C, and (iii) � : U � {0, 1} is an assignment.

1 Base Case: If |V | = 1 then
1 Let v � V be the only node in V .
2 �(v) is a constant: If �(v) � {0, 1} then return (�(v)).
3 �(v) is a variable: return (�(�(v)).

2 Reduction Rule:
1 If degin(r(G)) = 1, then (in this case �(r(G)) = not)

1 Let G1 = (V1,E1) denote the rooted tree hanging from r(G).
2 Let �1 denote the restriction of � to V1.
3 � � EVAL(G1,�1, �).
4 Return (not(�)).

2 If degin(r(G)) = 2, then
1 Let G1 = (V1,E1) and G2 = (V2,E2) denote the rooted

subtrees hanging from r(G).
2 Let �i denote the restriction of � to Vi .
3 �1 � EVAL(G1,�1, �).
4 �2 � EVAL(G2,�2, �).
5 Return (B�(r(G))(�1,�2)).

Evaluations vs. Representing a Function

Evaluation:

Fix a truth assignment � : U � {0, 1}.

Extended � to every Boolean formula p � BF .

Formula as a function:

Fix a Boolean formula p.

Consider all possible truth assignments � : U � {0, 1}.

25 / 57

satis�ability and logical equivalence

De�nition

Let p denote a Boolean formula.

1 p is satis�able if there exists an assignment � such that
�̂(p) = 1.

2 p is a tautology if �̂(p) = 1 for every assignment � .

De�nition

Two formulas p and q are logically equivalent if �̂(p) = �̂(q) for
every assignment � .

26 / 57

Examples

1 Show that �
�

= (X � Y) is satis�able.

2 Let �
�

= (X � ¬X). Show that � is a tautology.

�(X) not(�(X)) �̂(X � ¬X)
0 1 1
1 0 1

27 / 57

more examples

Let �
�

= (X � Y), and let �
�

= (X̄ · Y + X · Ȳ). Show that � and
� are equivalent.
We show that �̂(�) = �̂ (�) for every assignment � . We do that by
enumerating all the 2|U| assignments.

� (X) � (Y) and(not(� (X)), � (Y)) and(� (X),not(� (Y))) �̂(�) �̂(�)
0 0 0 0 0 0
1 0 0 1 1 1
0 1 1 0 1 1
1 1 0 0 0 0

Table: There are two variables, hence the enumeration consists of 22 = 4
assignments. The columns that correspond to �̂ (�) and �̂ (�) are
identical, hence � and � are equivalent.

28 / 57

Satis�ability and Tautologies

Lemma

Let � � BF , then

� is satis�able 	 (¬�) is not a tautology .

Proof.

All the transitions in the proof are “by de�nition”.

� is satis�able 	
� : �̂(�) = 1

	
� : not(�̂ (�)) = 0

	
� : �̂(¬(�)) = 0

	 (¬�) is not a tautology .

29 / 57

Every Boolean String Represents an Assignment

Assume that U = {X1, . . . ,Xn}.

De�nition

Given a binary vector v = (v1, . . . , vn) � {0, 1}n , the assignment

�v : {X1, . . . ,Xn} � {0, 1} is de�ned by �v (Xi)
�

= vi .

Example

Let n = 3.

v [1 : 3] = 011

�v (X1) = v [1] = 0

�v (X2) = v [2] = 1

�v (X3) = v [3] = 1

v 7� �v is a bijection from {0, 1}n to truth assignments

{� | � : {X1, . . . ,Xn} � {0, 1}} .

30 / 57

Every Boolean Formula Represents a Function

Assume that U = {X1, . . . ,Xn}.

De�nition

A Boolean formula p over the variables U = {X1, . . . ,Xn} de�nes
the Boolean function Bp : {0, 1}n � {0, 1} by

Bp(v1, . . . vn)
�

= �̂v (p).

Example

p = X1 � X2

Bp(0, 0) = 0, Bp(0, 1) = 1, . . .

31 / 57

Every Boolean Formula Represents a Function (cont)

Assume that U = {X1, . . . ,Xn}.

De�nition

A Boolean formula p over the variables U = {X1, . . . ,Xn} de�nes
the Boolean function Bp : {0, 1}n � {0, 1} by

Bp(v1, . . . vn)
�

= �̂v (p).

The mapping p 7� Bp is a function from BF(U, C) to set of
Boolean functions {0, 1}({0,1}

n). Is this mapping one-to-one? is it
onto?

32 / 57

Every Tautology Induces a Constant Function

Claim

A Boolean formula p is a tautology if and only if the Boolean
function Bp is identically one, i.e., Bp(v) = 1, for every
v � {0, 1}n .

Proof.

p is a tautology 	 � � : �̂(p) = 1

	 � v � {0, 1}n : �̂v (p) = 1

	 � v � {0, 1}n : Bp(v) = 1 .

33 / 57

what about a satis�able formula?

Claim

A Boolean formula p is a satis�able if and only if the Boolean
function Bp is not identically zero, i.e., there exists a vector
v � {0, 1}n such that Bp(v) = 1.

Proof.

p is a satis�able 	
 � : �̂(p) = 1

	
 v � {0, 1}n : �̂v (p) = 1

	
 v � {0, 1}n : Bp(v) = 1 .

34 / 57

equivalent formulas

Claim

Two Boolean formulas p and q are logically equivalent if and only
if the Boolean functions Bp and Bq are identical, i.e.,
Bp(v) = Bq(v), for every v � {0, 1}n .

Proof.

p and q are logically equivalent

	 � � : �̂(p) = �̂(q)

	 � v � {0, 1}n : �̂v (p) = �̂v (q)

	 � v � {0, 1}n : Bp(v) = Bq(v) .

35 / 57

