Digital Logic Design: a rigorous approach (C)

Chapter 6: Propositional Logic

School of Electrical Engineering Tel-Aviv Univ.

March 29, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

Syntax vs. Semantics

- Syntax - grammatic rules that govern the construction of Boolean formulas (rules: parse trees + inorder traversal)
- Semantics - functional interpretation of a formula

Syntax has a purpose: to provide well defined semantics!

Syntax vs. Semantics

TABLE

Logical connectives have two roles:

- Syntax: building block for Boolean formulas ("glue").
- Semantics: define a truth value based on a Boolean function.

To emphasize the semantic role: given a k-ary connective $*$, we denote the semantics of $*$ by a Boolean function

$$
B_{*}:\{0,1\}^{k} \rightarrow\{0,1\}
$$

Example

- $B_{\mathrm{AND}}\left(b_{1}, b_{2}\right)=b_{1} \cdot b_{2}$.
- $B_{\mathrm{NOT}}(b)=1-b$.

Syntax vs. Semantics

Semantics of Variables and Constants

- The function B_{X} associated with a variable X is the identity function $B_{X}(b)=b$.
- The function B_{σ} associated with a constant $\sigma \in\{0,1\}$ is the constant function $B_{\sigma}(b)=\sigma$.

$$
\begin{aligned}
& B_{0}(1)=0 \\
& B_{1}(0)=1
\end{aligned}
$$

truth assignments
$A=$ "today is Monday"
$B=$ "this is written in blue"
Let U denote the set of variables.

$$
\quad \tau(A)=1, \quad \tau(B)=0
$$

Definition
A truth assignment is a function $\tau: U \rightarrow\{0,1\}$.
Our goal is to extend every assignment $\tau: U \rightarrow\{0,1\}$ to a function

$$
\hat{\tau}: \mathcal{B F}(U, \mathcal{C}) \rightarrow\{0,1\}
$$

Thus, a truth assignment to variables, actually induces truth values to every Boolean formula.

$$
\hat{c}(A \vee B)=1, \quad \hat{\tau}(A \wedge B)=0, \quad \hat{\tau}(\bar{B})=1
$$

extending truth assignments to formulas

The extension $\hat{\tau}: \mathcal{B} \mathcal{F} \rightarrow\{0,1\}$ of an assignment $\tau: U \rightarrow\{0,1\}$ is defined as follows.

Definition

Let $p \in \mathcal{B F}$ be a Boolean formula generated by a parse tree (G, π). Then,

$$
\hat{\tau}(p) \triangleq \operatorname{EVAL}(G, \pi, \tau)
$$

where EVAL is listed in the next slide.
EVAL is also an algorithm that also employs inorder traversal over the parse tree!

Algorithm $2 \operatorname{EVAL}(G, \pi, \tau)$ - evaluate the truth value of the Boolean formula generated by the parse tree (G, π), where (i) $G=$ (V, E) is a rooted tree with in-degree at most 2 , (ii) $\pi: V \rightarrow$ $\{0,1\} \cup \cup \cup \mathcal{C}$, and (iii) $\tau: U \rightarrow\{0,1\}$ is an assignment.
(1) Base Case: If $|V|=1$ then
(1) Let $v \in V$ be the only node in V.
(2) $\pi(v)$ is a constant: If $\pi(v) \in\{0,1\}$ then return $(\pi(v))$.
(3) $\pi(v)$ is a variable: return $(\tau(\pi(v))$.
(2) Reduction Rule:
(1) If $\operatorname{deg}_{i n}(r(G))=1$, then (in this case $\pi(r(G))=$ NOT)
(1) Let $G_{1}=\left(V_{1}, E_{1}\right)$ denote the rooted tree hanging from $r(G)$.
(2) Let π_{1} denote the restriction of π to V_{1}.
(3) $\sigma \leftarrow \operatorname{EVAL}\left(G_{1}, \pi_{1}, \tau\right)$.
(9) Return $(\operatorname{NOT}(\sigma))$.
(2) If $\operatorname{deg}_{\text {in }}(r(G))=2$, then
(1) Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ denote the rooted subtrees hanging from $r(G)$.
(2) Let π_{i} denote the restriction of π to V_{i}.
(3) $\sigma_{1} \leftarrow \operatorname{EVAL}\left(G_{1}, \pi_{1}, \tau\right)$.
(4) $\sigma_{2} \leftarrow \operatorname{EVAL}\left(G_{2}, \pi_{2}, \tau\right)$.
(5) Return $\left(B_{\pi(r(G))}\left(\sigma_{1}, \sigma_{2}\right)\right)$.

reduction:
NOT

$$
\hat{G_{n}} \longmapsto \operatorname{NOT}(\underbrace{\operatorname{ErAL}\left(G_{1}, \tau\right)}_{\in\{0.1\}})
$$

Evaluation:

- Fix a truth assignment $\tau: U \rightarrow\{0,1\}$.
- Extended τ to every Boolean formula $p \in \mathcal{B F}$.

Formula as a function:

- Fix a Boolean formula p.
- Consider all possible truth assignments $\tau: U \rightarrow\{0,1\}$.

satisfiability and logical equivalence

Definition

Let p denote a Boolean formula.
(1) p is satisfiable if there exists an assignment τ such that $\hat{\tau}(p)=1$.
(2) p is a tautology if $\hat{\tau}(p)=1$ for every assignment τ.

Definition

Two formulas p and q are logically equivalent if $\hat{\tau}(p)=\hat{\tau}(q)$ for every assignment τ.

Examples
(1) Show that $\varphi \triangleq(X \oplus Y)$ is satisfiable.

$$
\begin{aligned}
& \tau(X)=0 \\
& \tau(Y)=1
\end{aligned}
$$

(2) Let $\varphi \triangleq(X \vee \neg X)$. Show that φ is a tautology. $\hat{c}\left(\begin{array}{ll}X & \oplus Y \\ 0 & \oplus\end{array}\right)=1$

OR
"NOT TO BE"

Let $\psi_{0} \triangleq \hat{\bar{i}=a n}(X \oplus Y)$, and let $\psi \triangleq(\bar{X} \cdot Y+X \cdot \bar{Y})$. Show that φ and ψ are equivalent.
We show that $\hat{\tau}(\varphi)=\hat{\tau}(\psi)$ for every assignment τ. We do that by enumerating all the $2^{|U|}$ assignments.

$\tau(X)$	$\tau(Y)$	$\operatorname{AND}(\operatorname{NOT}(\tau(X)), \tau(Y))$	$\operatorname{AND}(\tau(X), \operatorname{NOT}(\tau(Y)))$	$\hat{\tau}(\varphi)$	$\hat{\tau}(\psi)$
0	0	0	0	0	0
1	0	0	1	1	1
0	1	1	0	1	1
1	1	0	0	0	0

Table: There are two variables, hence the enumeration consists of $2^{2}=4$ assignments. The columns that correspond to $\hat{\tau}(\varphi)$ and $\hat{\tau}(\psi)$ are identical, hence φ and ψ are equivalent.

Satisfiability and Tautologies

Lemma

Let $\varphi \in \mathcal{B F}$, then
φ is satisfiable $\Leftrightarrow(\neg \varphi)$ is not a tautology.

Proof.

All the transitions in the proof are "by definition".

$$
\begin{aligned}
& \varphi \text { is satisfiable } \Leftrightarrow \exists \tau: \hat{\tau}(\varphi)=1 \\
& \Leftrightarrow \exists \tau: \operatorname{NOT}(\hat{\tau}(\varphi))=0, \text { DOT def } \\
& \Leftrightarrow \exists \tau: \hat{\tau}(\neg(\varphi))=0 \text { EVA } \\
& \Leftrightarrow(\neg \varphi) \text { is not a tautology. Dy def } \\
& \text { of TAUT }
\end{aligned}
$$

Every Boolean String Represents an Assignment

Assume that $U=\left\{X_{1}, \ldots, X_{n}\right\}$.

Definition

Given a binary vector $v=\left(v_{1}, \ldots, v_{n}\right) \in\{0,1\}^{n}$, the assignment $\tau_{v}:\left\{X_{1}, \ldots, X_{n}\right\} \rightarrow\{0,1\}$ is defined by $\tau_{v}\left(X_{i}\right) \triangleq v_{i}$.

Example

$$
\begin{aligned}
& \text { Let } n=3 . \quad U=\left\{x_{1}, x_{2}, x_{3}\right\} \\
& v[1: 3]=011 \\
& \tau_{v}\left(X_{1}\right)=v[1]=0 \\
& \tau_{v}\left(X_{2}\right)=v[2]=1 \\
& \tau_{v}\left(X_{3}\right)=v[3]=1
\end{aligned}
$$

$v \mapsto \tau_{v}$ is a bijection from $\{0,1\}^{n}$ to truth assignments ex ${ }_{0}^{\nabla}$

$$
\left\{\tau \mid \tau:\left\{X_{1}, \ldots, X_{n}\right\} \rightarrow\{0,1\}\right\}
$$

Every Boolean Formula Represents a Function

syntax

Assume that $U=\left\{X_{1}, \ldots, X_{n}\right\}$.

Definition

A Boolean formula p over the variables $U=\left\{X_{1}, \ldots, X_{n}\right\}$ defines the Boolean function $B_{p}:\{0,1\}^{n} \rightarrow\{0,1\}$ by

$$
v^{\Delta}=\left(v_{1}, \ldots, v_{n}\right)
$$

$$
B_{p}\left(v_{1}, \ldots v_{n}\right) \triangleq \hat{\tau}_{v}(p)
$$

Example

$$
\begin{aligned}
& p=X_{1} \vee X_{2} \\
& B_{p}(0,0)=0, \quad B_{p}(0,1)=1, \ldots \\
& \tau\left(X_{1}\right)=0 \quad \tau\left(X_{2}\right)=0 \quad \underbrace{\tau\left(x_{2}\right)=1}_{\tau\left(X_{1}\right)=0}
\end{aligned}
$$

Every Boolean Formula Represents a Function (cont)

Assume that $U=\left\{X_{1}, \ldots, X_{n}\right\}$.

Definition

A Boolean formula p over the variables $U=\left\{X_{1}, \ldots, X_{n}\right\}$ defines the Boolean function $B_{p}:\{0,1\}^{n} \rightarrow\{0,1\}$ by

$$
B_{p}\left(v_{1}, \ldots v_{n}\right) \triangleq \hat{\tau}_{v}(p)
$$

The mapping $p \mapsto B_{p}$ is a function from $\mathcal{B F}(U, \mathcal{C})$ to set of Boolean functions $\{0,1\}^{\left(\{0,1\}^{n}\right)}$. Is this mapping one-to-one? is it onto?
\bar{R}
$\forall p: p \longmapsto f$
$\left(B_{p}=f\right)$

Every Tautology Induces a Constant Function

$$
B_{p}(v)=\hat{\tau}_{v}(p)
$$

Claim

A Boolean formula p is a tautology if and only if the Boolean function B_{p} is identically one, i.e., $B_{p}(v)=1$, for every $v \in\{0,1\}^{n}$.

Proof.

$$
\forall \tau \exists v
$$

p is a tautology $\Leftrightarrow \forall \tau: \hat{\tau}(p)=1$

$$
\begin{aligned}
& \Leftrightarrow \quad \forall v \in\{0,1\}^{n}: \hat{\tau}_{v}(p)=1 \\
& \Leftrightarrow \quad \forall v \in\{0,1\}^{n}: B_{p}(v)=1 .
\end{aligned}
$$

what about a satisfiable formula?

$$
B_{p}(v) \cong \hat{\tau}_{v}(p)
$$

Claim

A Boolean formula p is a satisfiable if and only if the Boolean function B_{p} is not identically zero, i.e., there exists a vector $v \in\{0,1\}^{n}$ such that $B_{p}(v)=1$.

Proof.

$$
p \text { is a satisfiable } \Leftrightarrow \exists \tau: \hat{\tau}(p)=1
$$

$$
\begin{aligned}
& \Leftrightarrow \quad \exists v \in\{0,1\}^{n}: \hat{\tau}_{v}(p)=1 \\
& \Leftrightarrow \quad \exists v \in\{0,1\}^{n}: B_{p}(v)=1 .
\end{aligned}
$$

equivalent formulas

$$
B_{p}(v) \stackrel{\varrho}{\cong} \hat{\tau}_{v}(p)
$$

Claim

Two Boolean formulas p and q are logically equivalent if and only if the Boolean functions B_{p} and B_{q} are identical, ie., $B_{p}(v)=B_{q}(v)$, for every $v \in\{0,1\}^{n}$.

Proof.

p and q are logically equivalent

$$
\begin{aligned}
& \Leftrightarrow \quad \forall \tau: \hat{\tau}(p)=\hat{\tau}(q) \\
& \Leftrightarrow \quad \forall v \in\{0,1\}^{n}: \hat{\tau}_{v}(p)=\hat{\tau}_{v}(q) \\
& \Leftrightarrow \quad \forall v \in\{0,1\}^{n}: B_{p}(v)=B_{q}(v) .
\end{aligned}
$$

