Digital Logic Design: a rigorous approach © Chapter 6: Propositional Logic

School of Electrical Engineering Tel-Aviv Univ.

March 29, 2020

Book Homepage: http://www.eng.tau.ac.il/~guy/Even-Medina

- Syntax grammatic rules that govern the construction of Boolean formulas (rules: parse trees + inorder traversal)
- Semantics functional interpretation of a formula

Syntax has a purpose: to provide well defined semantics!

TABLE

Logical connectives have two roles:

- Syntax: building block for Boolean formulas ("glue").
- Semantics: define a truth value based on a Boolean function.

To emphasize the semantic role: given a k-ary connective *, we denote the semantics of * by a Boolean function

$$B_*: \{0,1\}^k \to \{0,1\}$$

Example

• $B_{AND}(b_1, b_2) = b_1 \cdot b_2$.

•
$$B_{\rm NOT}(b) = 1 - b$$
.

Semantics of Variables and Constants

- The function B_X associated with a variable X is the identity function $B_X(b) = b$.
- The function B_{σ} associated with a constant $\sigma \in \{0, 1\}$ is the constant function $B_{\sigma}(b) = \sigma$.

$$B_{0}(\Lambda) = O$$
$$B_{1}(O) = \Box$$

truth assignments

A = "today is Monday" B = "this is written in blue" Z(A) = 1, Z(B) = 0

Let U denote the set of variables.

Definition

A truth assignment is a function $\tau : U \to \{0, 1\}$.

Our goal is to extend every assignment $\tau: U \to \{0,1\}$ to a function

$$\hat{\tau}:\mathcal{BF}(U,\mathcal{C})
ightarrow \{0,1\}$$

Thus, a truth assignment to variables, actually induces truth values to every Boolean formula.

$$\hat{\tau}(A \vee B) = 1$$
, $\hat{\tau}(A \wedge B) = 0$, $\hat{\tau}(B) =$

extending truth assignments to formulas

The extension $\hat{\tau} : \mathcal{BF} \to \{0,1\}$ of an assignment $\tau : U \to \{0,1\}$ is defined as follows.

Definition

Let $p \in \mathcal{BF}$ be a Boolean formula generated by a parse tree $(G,\pi).$ Then,

$$\hat{\tau}(\boldsymbol{p}) \stackrel{\scriptscriptstyle \Delta}{=} \mathsf{EVAL}(\boldsymbol{G}, \pi, \tau),$$

where EVAL is listed in the next slide.

EVAL is also an algorithm that also employs inorder traversal over the parse tree!

Algorithm 2 EVAL (G, π, τ) - evaluate the truth value of the Boolean formula generated by the parse tree (G, π) , where (i) G = (V, E) is a rooted tree with in-degree at most 2, (ii) $\pi : V \rightarrow \{0,1\} \cup U \cup C$, and (iii) $\tau : U \rightarrow \{0,1\}$ is an assignment.

- Base Case: If |V| = 1 then
 - Let $v \in V$ be the only node in V.
 - **2** $\pi(v)$ is a constant: If $\pi(v) \in \{0,1\}$ then return $(\pi(v))$.
 - **③** $\pi(v)$ is a variable: return $(\tau(\pi(v)))$.
- Q Reduction Rule:
 - If $deg_{in}(r(G)) = 1$, then (in this case $\pi(r(G)) = NOT$)
 - Let $G_1 = (V_1, E_1)$ denote the rooted tree hanging from r(G).
 - **2** Let π_1 denote the restriction of π to V_1 .

 - Return (NOT(σ)).
 - 2 If $deg_{in}(r(G)) = 2$, then
 - Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ denote the rooted subtrees hanging from r(G).
 - **2** Let π_i denote the restriction of π to V_i .

 - **3** Return $(B_{\pi(r(G))}(\sigma_1, \sigma_2))$.

omitted TT EVAL(G, Z)on purpose base: truth parse tree assirgn × ->> Z(X) E{0,13 reduction: NOT $NOT(EVAL(G, \tau))$ @ 50,13 640,13 AND (SEVAL(G, , Z))EVAL(G, , Z) G, E10,13

Evaluations vs. Representing a Function

Evaluation:

- Fix a truth assignment $\tau : U \rightarrow \{0,1\}$.
- Extended τ to every Boolean formula $p \in \mathcal{BF}$.

Formula as a function:

- Fix a Boolean formula p.
- Consider all possible truth assignments $\tau: U \to \{0, 1\}$.

(parse tree

fixed T

EVA

Definition

Let p denote a Boolean formula.

- p is satisfiable if there exists an assignment τ such that $\hat{\tau}(p) = 1$.
- **2** p is a tautology if $\hat{\tau}(p) = 1$ for every assignment τ .

Definition

Two formulas p and q are logically equivalent if $\hat{\tau}(p) = \hat{\tau}(q)$ for every assignment τ .

$$\overline{\tau}(X) = 0$$

$$\overline{\tau}(Y) = 1$$
Show that $\varphi \triangleq (X \oplus Y)$ is satisfiable.
$$\overline{\tau}(Y) = 1$$

$$\widehat{\tau}(Y) = 1$$

$$\widehat{\tau}(X) = 1$$

"NOT TO BE"

Let $\varphi \stackrel{\triangle}{=} (X \oplus Y)$, and let $\psi \stackrel{\triangle}{=} (\bar{X} \cdot Y + X \cdot \bar{Y})$. Show that φ and ψ are equivalent.

We show that $\hat{\tau}(\varphi) = \hat{\tau}(\psi)$ for every assignment τ . We do that by enumerating all the $2^{|U|}$ assignments.

$\tau(X)$	$\tau(Y)$	AND(NOT($\tau(X)$), $\tau(Y)$)	$AND(\tau(X), NOT(\tau(Y)))$	$\hat{\tau}(\varphi)$	$\hat{\tau}(\psi)$
0	0	0	0	0	0
1	0	0	1	1	1
0	1	1	0	1	1
1	1	0	0	0	0

Table: There are two variables, hence the enumeration consists of $2^2 = 4$ assignments. The columns that correspond to $\hat{\tau}(\varphi)$ and $\hat{\tau}(\psi)$ are identical, hence φ and ψ are equivalent.

Lemma

Let $\varphi \in \mathcal{BF}$, then

 φ is satisfiable \Leftrightarrow $(\neg \varphi)$ is not a tautology .

Proof.

All the transitions in the proof are "by definition".

$$\varphi \text{ is satisfiable } \Leftrightarrow \exists \tau : \hat{\tau}(\varphi) = 1 \qquad / \text{Nof} \\ \Leftrightarrow \exists \tau : \text{NOT}(\hat{\tau}(\varphi)) = 0 \qquad \text{by def} \\ \Leftrightarrow \exists \tau : \hat{\tau}(\neg(\varphi)) = 0 \qquad \text{Eval} \\ \Leftrightarrow (\neg\varphi) \text{ is not a tautology } . \downarrow \text{ by def} \\ of TAUT \\ \Box$$

Every Boolean String Represents an Assignment

Assume that $U = \{X_1, \ldots, X_n\}$.

Definition

Given a binary vector $v = (v_1, \ldots, v_n) \in \{0, 1\}^n$, the assignment $\tau_v : \{X_1, \ldots, X_n\} \to \{0, 1\}$ is defined by $\tau_v(X_i) \stackrel{\scriptscriptstyle \triangle}{=} v_i$.

Example

Let n = 3. $\mathcal{U} \in \{X_{1}, X_{2}, X_{3}\}$ v[1:3] = 011 $\tau_{v}(X_{1}) = v[1] = 0$ $\tau_{v}(X_{2}) = v[2] = 1$ $\tau_{v}(X_{3}) = v[3] = 1$

 $v \mapsto \tau_v$ is a bijection from $\{0,1\}^n$ to truth assignments $\{\tau \mid \tau : \{X_1, \dots, X_n\} \to \{0,1\}\}$.

QX V

Every Boolean Formula Represents a Function

Assume that
$$U = \{X_1, \ldots, X_n\}$$
.

Definition

A Boolean formula p over the variables $U = \{X_1, \ldots, X_n\}$ defines the Boolean function $B_p : \{0, 1\}^n \to \{0, 1\}$ by $v \stackrel{\bullet}{=} (v_1, \ldots, v_n)$

$$B_p(v_1,\ldots v_n) \stackrel{\scriptscriptstyle riangle}{=} \hat{\tau}_v(p).$$

Example

$$p = X_1 \lor X_2$$

$$B_p(0,0) = 0, \quad B_p(0,1) = 1, \dots$$

$$\tau(X_p = 0, \quad \tau(X_p) = 0, \quad \tau(X_p)$$

Assume that
$$U = \{X_1, \ldots, X_n\}$$
.

Definition

A Boolean formula p over the variables $U = \{X_1, \ldots, X_n\}$ defines the Boolean function $B_p : \{0, 1\}^n \to \{0, 1\}$ by

$$B_p(v_1,\ldots,v_n)\stackrel{\scriptscriptstyle riangle}{=} \hat{\tau}_v(p).$$

The mapping $p \mapsto B_p$ is a function from $\mathcal{BF}(U, \mathcal{C})$ to set of Boolean functions $\{0, 1\}^{(\{0,1\}^n)}$. Is this mapping one-to-one? is it onto? $\forall f \exists p: p \mapsto f$ $(B_p = f)$ $p_i \neq p_2$ $p_i \neq f_2$ $p_i \neq f_2$

Every Tautology Induces a Constant Function

$$B_{p}(v) \stackrel{\circ}{=} \hat{\tau}(p)$$

Claim

A Boolean formula p is a tautology if and only if the Boolean function B_p is identically one, i.e., $B_p(v) = 1$, for every $v \in \{0,1\}^n$.

Claim

A Boolean formula p is a satisfiable if and only if the Boolean function B_p is not identically zero, i.e., there exists a vector $v \in \{0,1\}^n$ such that $B_p(v) = 1$.

Proof.

$$\begin{array}{ll} p \text{ is a satisfiable} & \Leftrightarrow & \exists \ \tau : \hat{\tau}(p) = 1 \\ & \Leftrightarrow & \exists \ v \in \{0,1\}^n : \hat{\tau}_v(p) = 1 \\ & \Leftrightarrow & \exists \ v \in \{0,1\}^n : B_p(v) = 1 \ . \end{array}$$

B, (v) = 7 (p)

$B_p(v) = \hat{z}(p)$

Claim

Two Boolean formulas p and q are logically equivalent if and only if the Boolean functions B_p and B_q are identical, i.e., $B_p(v) = B_q(v)$, for every $v \in \{0,1\}^n$.

Proof.

p and q are logically equivalent

$$\begin{array}{ll} \Leftrightarrow & \forall \ \tau : \hat{\tau}(p) = \hat{\tau}(q) \\ \Leftrightarrow & \forall \ v \in \{0,1\}^n : \hat{\tau}_v(p) = \hat{\tau}_v(q) \\ \Leftrightarrow & \forall \ v \in \{0,1\}^n : B_p(v) = B_q(v) \ . \end{array}$$