Digital Logic Design: a rigorous approach © Chapter 6: Propositional Logic

School of Electrical Engineering Tel-Aviv Univ.

March 29, 2020

Book Homepage: http://www.eng.tau.ac.il/~guy/Even-Medina

If
$$\varphi = (\alpha_1 \text{ AND } \alpha_2)$$
, then

$$\begin{split} B_{\varphi}(\mathbf{v}) &= \hat{\tau}_{\mathbf{v}}(\varphi) \\ &= \hat{\tau}_{\mathbf{v}}(\alpha_1 \text{ AND } \alpha_2) \\ &= B_{\text{AND}}(\hat{\tau}_{\mathbf{v}}(\alpha_1), \hat{\tau}_{\mathbf{v}}(\alpha_2)) \\ &= B_{\text{AND}}(B_{\alpha_1}(\mathbf{v}), B_{\alpha_2}(\mathbf{v})). \end{split}$$

Thus, we can express complicated Boolean functions by composing long Boolean formulas. Υ

Lemma

If $\varphi = \alpha_1 \circ \alpha_2$ for a binary connective \circ , then $\forall v \in \{0,1\}^n : B_{\varphi}(v) = B_{\circ}(B_{\alpha_1}(v), B_{\alpha_2}(v)).$

Claim

Two Boolean formulas p and q are logically equivalent if and only if the formula $(p \leftrightarrow q)$ is a tautology.

$$p \log equiv q \iff \forall \tau : \hat{\tau}(p) = \hat{\tau}(q)$$

$$\ll \forall \tau : B_{t}(\hat{\tau}(p), \hat{\tau}(q)) = |$$

$$\iff \forall v : B_{t}(B_{p}(v), B_{t}(v)) = |$$

$$\ll \forall v : B_{pHq}(v) = |$$

$$\iff p \notin q \quad TAUT.$$

38 / 57

Substitution is used to compose large formulas from smaller ones. For simplicity, we deal with substitution in formulas over two variables; the generalization to formulas over any number of variables is straightforward.

- $\ \, \bullet \in \mathcal{BF}(\{X_1,X_2\},\mathcal{C}),$
- $a_1, \alpha_2 \in \mathcal{BF}(U, \mathcal{C}).$
- **(** $G_{\varphi}, \pi_{\varphi}$ **)** denotes the parse tree of φ .

Definition

Substitution of α_i in φ yields the Boolean formula $\varphi(\alpha_1, \alpha_2) \in \mathcal{BF}(U, \mathcal{C})$ that is generated by the parse tree (G, π) defined as follows. For every leaf of $v \in G_{\varphi}$ that is labeled by a variable X_i , replace the leaf v by a new copy of $(G_{\alpha_i}, \pi_{\alpha_i})$.

example: substitution

Figure: φ , α_1 , α_2 , $\varphi(\alpha_1, \alpha_2)$

more on substitution

Substitution can be obtain by applying a simple "find-and-replace", where each instance of variable X_i is replaced by a copy of the formula α_i , for $i \in \{1, 2\}$. One can easily generalize substitution to formulas $\varphi \in \mathcal{BF}(\{X_1, \dots, X_k\}, \mathcal{C})$ for any k > 2. In this case, $\varphi(\alpha_1, \dots, \alpha_k)$ is obtained by replacing every instance of X_i by α_i .

+ (d. d.)

Lemma

For every assignment $\tau : U \rightarrow \{0, 1\}$,

$$\hat{\tau}(\varphi(\alpha_1, \alpha_2)) = B_{\varphi}(\hat{\tau}(\alpha_1), \hat{\tau}(\alpha_2)).$$

(1)

 $\forall \tau: \hat{\tau} (\gamma(\alpha'_1, \alpha'_2)) = \mathcal{B}_{\gamma}(\hat{\tau}(\alpha_1), \hat{\tau}(\alpha_2))$ proof comp. ind. on #vertices in parse (called: "size" of Y) tree of P. $\forall \in \{ \stackrel{\circ}{9}, \stackrel{\circ}{}, \stackrel{\circ}{\lambda}_1, \stackrel{\times}{\lambda}_2 \}$ base : # vertices = 1 : $\varphi = 0$: $\varphi(\alpha, \alpha_2) = 0$ & By const O $2HS: \hat{\tau}(0)=0$ Try to prove for q=1 $RHS: B_{p}(\cdots) = 0$ $\varphi = \chi_1$ $\varphi(\alpha_1, \alpha_2) = \alpha_1 \quad \& \quad \mathcal{B}_{\varphi}(b_1, b_2) = b_1$ $LHS: \hat{\tau}(\gamma(\alpha_1,\alpha_2)) = \hat{\tau}(\alpha_1) \qquad \int \hat{Q}_{i} \varphi = x_2$ $RHS: B_{\varphi}(\hat{\tau}(\alpha, \beta), \hat{\tau}(\alpha_{2})) = \hat{\tau}(\alpha, \beta)$

ind hyp: # \$: #vert. in parse tree & n claim holds. step: consider & s.t. #vertices = n+1. 2 cases: \$\$ = not(\$,) (exercise)

q = P, × P2 bin. connective

 $\varphi = \varphi_1 \neq \varphi_2$ Suppose ind. hyp. $\hat{c}(\varphi_i(\alpha_1,\alpha_2)) = B_{\varphi_i}(\hat{c}(\alpha_1),\hat{c}(\alpha_2))$ $\hat{\tau}(\gamma(\alpha', \gamma \alpha_2)) = B_{\ast}(\hat{\tau}(\gamma, (\alpha', \alpha'_2)), \hat{\tau}(\gamma, (\alpha', \alpha'_2)))$ $= \mathcal{B}_{\varphi} \left(\mathcal{B}_{\varphi_{1}}(\widehat{\tau}(\alpha_{1}), \widehat{\tau}(\alpha_{2})), \mathcal{B}_{\varphi_{2}}(\widehat{\tau}(\alpha_{2}), \widehat{\tau}(\alpha_{2})) \right)$ $= \mathcal{B}_{\varphi_1 \ast \varphi_2} \left(\begin{array}{c} \hat{c} (\alpha'_1) \\ \hat{c} (\alpha'_2) \end{array} \right)$ Ŋ

substitution preserves logical equivalence

Let

•
$$\varphi \in \mathcal{BF}(\{X_1, X_2\}, \mathcal{C}),$$

• $\alpha_1, \alpha_2 \in \mathcal{BF}(U, \mathcal{C}),$
• $\tilde{\varphi} \in \mathcal{BF}(\{X_1, X_2\}, \tilde{\mathcal{C}}),$
• $\tilde{\alpha}_1, \tilde{\alpha}_2 \in \mathcal{BF}(U, \tilde{\mathcal{C}}).$

Corollary

If α_i and $\tilde{\alpha}_i$ are logically equivalent, and φ and $\tilde{\varphi}$ are logically equivalent, then $\varphi(\alpha_1, \alpha_2)$ and $\tilde{\varphi}(\tilde{\alpha}_1, \tilde{\alpha}_2)$ are logically equivalent.

Example

example: changing connectives

Let $C = \{AND, XOR\}$. We wish to find a formula $\tilde{\beta} \in \mathcal{BF}(\{X, Y, Z\}, \mathcal{C})$ that is logically equivalent to the formula

$$\beta \stackrel{\scriptscriptstyle \triangle}{=} (X \cdot Y) + Z.$$

a.

 $\varphi = x_1 + x_2$

Parse β : $\varphi(\alpha_1, \alpha_2)$ with $\alpha_1 = (X \cdot Y)$ and $\alpha_2 = Z$. Find $\tilde{\varphi} \in \mathcal{BF}(\{X_1, X_2\}, \mathcal{C})$ that is logically equivalent to $\varphi \stackrel{\triangle}{=} (X_1 + X_2).$ $ilde{arphi} \stackrel{ riangle}{=} X_1 \oplus X_2 \oplus (X_1 \cdot X_2).$ $a_1 = \chi \cdot \chi = \widetilde{a_1}$ $a_2 = 2 = \widetilde{a_2}$

Apply substitution to define $\tilde{\beta} \stackrel{\triangle}{=} \tilde{\varphi}(\alpha_1, \alpha_2)$, thus

Indeed $\hat{\beta}$ is logically equivalent to β .

 $\Upsilon(\alpha_1, \alpha_2) \iff \widetilde{\Upsilon}(\widehat{\alpha}_1, \widehat{\mathcal{A}}_2)$ proof: suffice to prove $\forall v \in \{0, 1\}^{|U|}$; $\hat{\tau}_{v}(\forall(\alpha, \alpha_{v})) = \hat{\tau}_{v}(\hat{\forall}(\hat{\alpha}, \hat{\alpha}_{v}))$ indeed : $\hat{\tau}_{v}(\gamma(\alpha_{1},\alpha_{2})) = B_{v}(\hat{\tau}_{v}(\alpha_{1}),\hat{\tau}(\alpha_{2}))$ $= B_{\varphi} \left(\hat{\tau}_{v} \left(\tilde{\varkappa}_{,} \right)_{,} \hat{\tau} \left(\tilde{\varkappa}_{z} \right) \right)$ $= \hat{\tau}_{j} \left(\tilde{\varphi} \left(\widetilde{\alpha}_{i}, \widetilde{\alpha}_{j} \right) \right)$

Complete Sets of Connectives

Every Boolean formula can be interpreted as Boolean function. In this section we deal with the following question: Which sets of connectives enable us to express every Boolean function?

Definition

A Boolean function $B : \{0,1\}^n \to \{0,1\}$ is expressible by $\mathcal{BF}(\{X_1,\ldots,X_n\},\mathcal{C})$ if there exists a formula $p \in \mathcal{BF}(\{X_1,\ldots,X_n\},\mathcal{C})$ such that $B = B_p$.

Definition

A set C of connectives is complete if every Boolean function $B: \{0,1\}^n \to \{0,1\}$ is expressible by $\mathcal{BF}(\{X_1,\ldots,X_n\},C)$.

HB Jp: B=Bp

Completeness of $\{\neg, AND, OR\}$

Theorem

The set $C = \{\neg, AND, OR\}$ is a complete set of connectives.

Proof Outline: Induction on n (the arity of Boolean function).

- Induction basis for n = 1. (extrc: \mathfrak{L})
- **2** Induction step for $B : \{0,1\}^n \to \{0,1\}$ define:

$$\mathfrak{H}_{\mathcal{N}} \xrightarrow{h_{1}} \{\mathfrak{s}_{\mathcal{N}} \xrightarrow{h_{1}} \{\mathfrak{s}_{\mathcal{N}} \xrightarrow{h_{1}} \mathfrak{s}_{\mathcal{N}} \xrightarrow{h_{1}} \xrightarrow{h_{1}} \mathfrak{s}_{\mathcal{N}} \xrightarrow{h_{1}} \xrightarrow{h_{1}} \mathfrak{s}_{\mathcal{N}} \xrightarrow{h_{1}} \xrightarrow{h_{1}} \mathfrak{s}_{\mathcal{N}} \xrightarrow{h_{1}} \xrightarrow{$$

Solution hyp. $\exists r, q \in \mathcal{BF}(\{X_1, \dots, X_{n-1}\}, \mathcal{C}) : \bigoplus_{h=B_r \text{ and } B_q = g} \overline{X} \bigoplus_{g \in \mathcal{B}_r} \overline$

• Prove that $B_p = B$ for the formula p defined by

$$p\stackrel{\scriptscriptstyle riangle}{=} (q\cdot \bar{X_n}) + (r\cdot X_n)$$

Xn=0

B(v1,-,v,-,0)

B (V1, ..., V1,

Theorem

If the Boolean functions in {NOT, AND, OR} are expressible by formulas in $\mathcal{BF}(\{X_1, X_2\}, \tilde{\mathcal{C}})$, then $\tilde{\mathcal{C}}$ is a complete set of connectives.

Proof Outline:

- Express β ∈ BF({X₁,...,X_n},C) by a logically equivalent formula β̃ ∈ BF({X₁,...,X_n},C̃).
- **2** How? induction on the parse tree that generates β .

THM: BNOT, BOR, BAND express. in BF((x, x_), C) comp of [7,0R, AND] => a complete set of connec. proof; & func B BBE BF({x:3; , {NOT, OR, AND3) s.t. $B = B_{\beta}$. goal: fand \$=>p where \$EBF({X;3;,C). how? Vind. on size v of parse tree of \$ (#verd.) base: n=1 (exercise). BEfoil, X; 3 hjp: holds if size < n. step: $\beta = \alpha_1 \wedge \alpha_2$. ~; <=> ~; (ind. hyp.) let ≈ ∈ BF({x:3:, č) s.t $\chi_1 \cdot \chi_2 \stackrel{(=)}{=} \gamma_{AND}$ $\gamma_{AND} (\tilde{\gamma}_1, \tilde{\gamma}_2) \cdot \begin{bmatrix} NOT, \\ OR, \\ eX. \end{bmatrix}$ let PANDE BF ({X;3:, 2) s.t. $\beta = \alpha_1 \wedge \alpha_2 \iff$ 30:

Important Tautologies

Theorem

The following Boolean formulas are tautologies.

- **1** Iaw of excluded middle: $X + \overline{X}$
- **2** double negation: $X \leftrightarrow (\neg \neg X)$
- 3 modus ponens: $(((X \rightarrow Y) \cdot X) \rightarrow Y)$
- contrapositive: $(X \to Y) \leftrightarrow (\bar{Y} \to \bar{X})$
- Something implication: $(X \to Y) \leftrightarrow (\bar{X} + Y)$.
- **o** distribution: $X \cdot (Y + Z) \leftrightarrow (X \cdot Y + X \cdot Z)$.

Substitution in Tautologies

Recall the lemma:

$$\begin{array}{c}
\langle \tau_{A}\tau' \rangle, \quad (A \cup t)\\
\beta_{e} \equiv l
\end{array}$$
Lemma
For every assignment $\tau: U \to \{0, 1\},$
 $\hat{\tau}(\varphi(\alpha_{1}, \alpha_{2})) = B_{e}(\hat{\tau}(\alpha_{1}), \hat{\tau}(\alpha_{2})),$
(2)

VIJ TRUT

question

Let α_1 and α_2 be any Boolean formulas.

- Consider the Boolean formula $\varphi \stackrel{\triangle}{=} \alpha_1 + \text{NOT}(\alpha_1)$. Prove or refute that φ is a tautology.
- Consider the Boolean formula $\varphi \stackrel{\scriptscriptstyle \Delta}{=} (\alpha_1 \to \alpha_2) \leftrightarrow (\text{NOT}(\alpha_1) + \alpha_2)$. Prove or refute that φ is a tautology.

Theorem (De Morgan's Laws)

The following two Boolean formulas are tautologies:

$$(\neg (X + Y)) \leftrightarrow (\bar{X} \cdot \bar{Y}).$$

$$(\neg (X \cdot Y)) \leftrightarrow (\bar{X} + \bar{Y}).$$