Digital Logic Design: a rigorous approach ©

Chapter 6: Propositional Logic

School of Electrical Engineering Tel-Aviv Univ.
March 29, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

Example: Composition of Boolean formulas

If $\varphi=\left(\alpha_{1}\right.$ AND $\left.\alpha_{2}\right)$, then

$$
\begin{aligned}
B_{\varphi}(v) & =\hat{\tau}_{v}(\varphi) \\
& =\hat{\tau}_{v}\left(\alpha_{1} \text { AND } \alpha_{2}\right) \\
& =B_{\mathrm{AND}}\left(\hat{\tau}_{v}\left(\alpha_{1}\right), \hat{\tau}_{v}\left(\alpha_{2}\right)\right) \\
& =B_{\mathrm{AND}}\left(B_{\alpha_{1}}(v), B_{\alpha_{2}}(v)\right) .
\end{aligned}
$$

Thus, we can express complicated Boolean functions by composing long Boolean formulas.

Composition of Boolean formulas

Lemma

If $\varphi=\alpha_{1} \circ \alpha_{2}$ for a binary connective \circ, then

$$
\forall v \in\{0,1\}^{n}: \quad B_{\varphi}(v)=B_{\circ}\left(B_{\alpha_{1}}(v), B_{\alpha_{2}}(v)\right)
$$

equivalence and tautology

Claim
Two Boolean formulas p and q are logically equivalent if and only if the formula $(p \leftrightarrow q)$ is a tautology.

$$
\begin{aligned}
p \text { log. equiv } q & \Leftrightarrow \forall \tau: \hat{\tau}(p)=\hat{c}(q) \\
& \Leftrightarrow \forall \tau: B_{\leftrightarrow}(\hat{\tau}(p), \hat{c}(q))=1 \\
& \Leftrightarrow \forall v: B_{\&}\left(B_{p}(v), B_{q}(v)\right)=1 \\
& \Leftrightarrow \forall v: B_{p \leftrightarrow q}(v)=1 \\
& \Leftrightarrow p \leftrightarrow q \text { TAUT. }^{\otimes}
\end{aligned}
$$

substitution

Substitution is used to compose large formulas from smaller ones. For simplicity, we deal with substitution in formulas over two variables; the generalization to formulas over any number of variables is straightforward.
(1) $\varphi \in \mathcal{B F}\left(\left\{X_{1}, X_{2}\right\}, \mathcal{C}\right)$,
(2) $\alpha_{1}, \alpha_{2} \in \mathcal{B} \mathcal{F}(U, \mathcal{C})$.
(3) $\left(G_{\varphi}, \pi_{\varphi}\right)$ denotes the parse tree of φ.

Definition

Substitution of α_{i} in φ yields the Boolean formula $\varphi\left(\alpha_{1}, \alpha_{2}\right) \in \mathcal{B} \mathcal{F}(U, \mathcal{C})$ that is generated by the parse tree (G, π) defined as follows.
For every leaf of $v \in G_{\varphi}$ that is labeled by a variable X_{i}, replace the leaf v by a new copy of $\left(G_{\alpha_{i}}, \pi_{\alpha_{i}}\right)$.
example: substitution

Figure: $\varphi, \alpha_{1}, \alpha_{2}, \varphi\left(\alpha_{1}, \alpha_{2}\right)$

more on substitution

Substitution can be obtain by applying a simple "find-and-replace", where each instance of variable X_{i} is replaced by a copy of the formula α_{i}, for $i \in\{1,2\}$.
One can easily generalize substitution to formulas $\varphi \in \mathcal{B} \mathcal{F}\left(\left\{X_{1}, \ldots, X_{k}\right\}, \mathcal{C}\right)$ for any $k>2$. In this case, $\varphi\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ is obtained by replacing every instance of X_{i} by α_{i}.

Lemma

For every assignment $\tau: U \rightarrow\{0,1\}$,

$$
\begin{equation*}
\hat{\tau}\left(\varphi\left(\alpha_{1}, \alpha_{2}\right)\right)=B_{\varphi}\left(\hat{\tau}\left(\alpha_{1}\right), \hat{\tau}\left(\alpha_{2}\right)\right) \tag{1}
\end{equation*}
$$

$\forall \tau: \quad \hat{\tau}\left(\varphi\left(\alpha_{1}, \alpha_{2}\right)\right)=B_{\varphi}\left(\hat{\tau}\left(\alpha_{1}\right), \hat{\tau}\left(\alpha_{2}\right)\right)$
proof comp. ind. on \#vertices in parse tree of φ. (called: "size" of φ)
base : \#vertices $=1: \quad \varphi \in\left\{0,1, x_{1}, x_{2}\right\}$
$\varphi=0: \varphi\left(\alpha_{1}, \alpha_{2}\right)=0$ \& B_{φ} const 0
LAS: $\hat{c}(0)=0$
Try to prove
RHS: $B_{p}(\cdots)=0$ for $\varphi=1$

$$
\varphi=x_{1} \quad \varphi\left(\alpha_{1}, \alpha_{2}\right)=\alpha_{1} \quad \& \quad \beta_{\varphi}\left(b_{1}, b_{2}\right)=b_{1}
$$

LHS: $\hat{c}\left(\varphi\left(\alpha_{1}, \alpha_{2}\right)\right)=\hat{z}\left(\alpha_{1}\right)$
$Q_{: 1}=x_{2}$
RHO: $\beta_{p}\left(\hat{c}\left(\alpha_{1}\right), \hat{c}\left(\alpha_{2}\right)\right)=\hat{\tau}\left(\alpha_{1}\right)$
ind hyp: $\forall \varphi: ~ \# v e r t$ in parse tree $\leq n$ claim holds.
step: consider φ st. \#vertices $=n+1$.
2 cases: $\varphi=\operatorname{not}\left(\varphi_{1}\right)$ (exercise)

$$
\varphi=\begin{array}{r}
\varphi_{1} * \varphi_{2} \\
\quad \operatorname{bin} . \text { connective }
\end{array}
$$

suppose $\varphi=\varphi_{1} * \varphi_{2}$
ind. hyp. $\hat{c}\left(\varphi_{i}\left(\alpha_{1}, \alpha_{2}\right)\right)=\beta_{\varphi_{i}}\left(\hat{c}\left(\alpha_{1}\right), \hat{\tau}\left(\alpha_{2}\right)\right)$

$$
\begin{aligned}
& \hat{c}\left(\varphi\left(\alpha_{1}, \alpha_{2}\right)\right)=B_{*}\left(\hat{\tau}\left(\varphi_{1}\left(\alpha_{1}, \alpha_{2}\right)\right), \frac{\hat{\tau}}{\tau}\left(\varphi_{2}\left(\alpha_{1}, \alpha_{2}\right)\right)\right. \\
&= B_{*}\left(B_{\varphi_{1}}\left(\hat{\tau}\left(\alpha_{1}\right), \hat{\tau}\left(\alpha_{2}\right)\right), B_{\varphi_{2}}\left(\frac{\hat{c}}{c}\left(\alpha_{2}\right), \hat{\tau}\left(\alpha_{2}\right)\right)\right) \\
&=B_{\varphi_{1} * \varphi_{2}}\left(\frac{\alpha}{c}\left(\alpha_{1}\right), \hat{c}\left(\alpha_{2}\right)\right)
\end{aligned}
$$

substitution preserves logical equivalence

Let

- $\varphi \in \mathcal{B} \mathcal{F}\left(\left\{X_{1}, X_{2}\right\}, \mathcal{C}\right)$,
- $\alpha_{1}, \alpha_{2} \in \mathcal{B F}(U, \mathcal{C})$,
- $\tilde{\varphi} \in \mathcal{B} \mathcal{F}\left(\left\{X_{1}, X_{2}\right\}, \tilde{\mathcal{C}}\right)$,
- $\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{B} \mathcal{F}(U, \tilde{\mathcal{C}})$.

Corollary

If α_{i} and $\tilde{\alpha}_{i}$ are logically equivalent, and φ and $\tilde{\varphi}$ are logically equivalent, then $\varphi\left(\alpha_{1}, \alpha_{2}\right)$ and $\tilde{\varphi}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}\right)$ are logically equivalent.

Example

$$
\begin{aligned}
\varphi & =\neg\left(X_{1} \cdot X_{2}\right) & & \tilde{\varphi}=\bar{X}_{1}+\bar{X}_{2} \\
\alpha_{1} & =A \rightarrow B & & \tilde{\alpha}_{1}=\bar{A}+B \\
\alpha_{2} & =C \leftrightarrow D & & \tilde{\alpha}_{2}=\neg(C \oplus D) \\
\varphi\left(\alpha, \alpha_{2}\right) & =\neg((A \rightarrow B) \cdot(C \leftrightarrow D)) & & \tilde{\varphi}\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}\right)=\overline{(\bar{A}+B)}+\neg(C O D)
\end{aligned}
$$

example: changing connectives

Let $\mathcal{C}=\{$ AND, XOR $\}$. We wish to find a formula
$\tilde{\beta} \in \mathcal{B} \mathcal{F}(\{X, Y, Z\}, \mathcal{C})$ that is logically equivalent to the formula

$$
\beta \triangleq(X \cdot Y)+Z
$$

Parse β : $\varphi\left(\alpha_{1}, \alpha_{2}\right)$ with $\alpha_{1}=(X \cdot Y)$ and $\alpha_{2}=Z$.
Find $\tilde{\varphi} \in \mathcal{B} \mathcal{F}\left(\left\{X_{1}, X_{2}\right\}, \mathcal{C}\right)$ that is logically equivalent to
 $\varphi \triangleq\left(X_{1}+X_{2}\right)$.

$$
\tilde{\varphi} \triangleq X_{1} \oplus X_{2} \oplus\left(X_{1} \cdot X_{2}\right)
$$

$$
\begin{aligned}
& \varphi=x_{1}+x_{2} \\
& \alpha_{1}=x \cdot \gamma^{2}=\widetilde{\alpha}_{1}
\end{aligned}
$$

Apply substitution to define $\tilde{\beta} \triangleq \tilde{\varphi}\left(\alpha_{1}, \alpha_{2}\right)$, thus

$$
\begin{aligned}
\tilde{\beta} & \triangleq \tilde{\varphi}\left(\alpha_{1}, \alpha_{2}\right) \\
& =\alpha_{1} \oplus \alpha_{2} \oplus\left(\alpha_{1} \cdot \alpha_{2}\right) \\
& =(X \cdot Y) \oplus Z \oplus((X \cdot Y) \cdot Z)
\end{aligned}
$$

Indeed $\tilde{\beta}$ is logically equivalent to β.

CORD: $\varphi \Leftrightarrow \tilde{\varphi}, \alpha_{i} \Leftrightarrow \tilde{\alpha}_{i} \Rightarrow \varphi\left(\alpha_{1}, \alpha_{2}\right) \Leftrightarrow \tilde{\varphi}\left(\alpha_{1}, \tilde{\alpha}_{2}\right)$
proof: suffice to prove

$$
\forall v \in\{0,1\}^{|u|}: \quad \hat{c}_{v}\left(\varphi\left(\alpha_{1}, \alpha_{2}\right)\right)=\hat{\tau}_{v}\left(\tilde{\varphi}\left(\tilde{\alpha}_{1}, \hat{\alpha}_{2}\right)\right)
$$

indeed:

$$
\begin{aligned}
\hat{\tau}_{v}\left(\varphi\left(\alpha_{1}, \alpha_{2}\right)\right) & =B_{\varphi}\left(\hat{\tau}_{v}\left(\alpha_{1}\right), \hat{\tau}\left(\alpha_{2}\right)\right) \\
& =B_{\tilde{\varphi}}\left(\hat{\tau}_{v}\left(\tilde{\alpha}_{1}\right), \hat{\tau}\left(\tilde{\alpha}_{2}\right)\right) \\
& =\hat{\tau}_{v}\left(\tilde{\varphi}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}\right)\right)
\end{aligned}
$$

Complete Sets of Connectives

$$
p \text { formula } \longmapsto B_{p} \text { Boolean func. }
$$

Every Boolean formula can be interpreted as Boolean function. In this section we deal with the following question: Which sets of connectives enable us to express every Boolean function?

Definition

A Boolean function $B:\{0,1\}^{n} \rightarrow\{0,1\}$ is expressible by $\mathcal{B} \mathcal{F}\left(\left\{X_{1}, \ldots, X_{n}\right\}, \mathcal{C}\right)$ if there exists a formula $p \in \mathcal{B F}\left(\left\{X_{1}, \ldots, X_{n}\right\}, \mathcal{C}\right)$ such that $B=B_{p}$.

Definition

A set \mathcal{C} of connectives is complete if every Boolean function $B:\{0,1\}^{n} \rightarrow\{0,1\}$ is expressible by $\mathcal{B} \mathcal{F}\left(\left\{X_{1}, \ldots, X_{n}\right\}, \mathcal{C}\right)$.

$$
\forall B \exists p: \quad B=B_{p}
$$

Completeness of $\{\neg$, AND, OR $\}$

Theorem

The set $\mathcal{C}=\{\neg, \mathrm{AND}, \mathrm{OR}\}$ is a complete set of connectives.
Proof Outline: Induction on n (the arity of Boolean function).
(1) Induction basis for $n=1$. (exercise)
(2) Induction step for $B:\{0,1\}^{n} \rightarrow\{0,1\}$ define:

$$
x_{n}=0
$$

$$
B\left(v_{1,}, v_{m-1}, 0\right)
$$

$g, h:\{0,1\}^{n-1} \rightarrow\{0,1\} \quad g\left(v_{1}, \ldots, v_{n-1}\right) \triangleq B\left(v_{1}, \ldots, v_{n-1}, 0\right), \quad\left\{\begin{array}{l}h\left(v_{1}, \ldots, v_{n-1}\right) \triangleq B\left(v_{1}, \ldots, v_{n-1}, 1\right) .\end{array}\right.$
(3) By induction hyp. $\exists r, q \in \mathcal{B} \mathcal{F}\left(\left\{X_{1}, \ldots, X_{n-1}\right\}, \mathcal{C}\right)$: $h=B_{r}$ and $B_{q}=g$
(9) Prove that $B_{p}=B$ for the formula p defined by

$$
B_{q}=g \quad B_{r}=h
$$

$$
p \triangleq\left(q \cdot \bar{X}_{n}\right)+\left(r \cdot X_{n}\right)
$$

Theorem

If the Boolean functions in $\{$ NOT, $\mathrm{AND}, \mathrm{OR}\}$ are expressible by formulas in $\mathcal{B F}\left(\left\{X_{1}, X_{2}\right\}, \tilde{\mathcal{C}}\right)$, then $\tilde{\mathcal{C}}$ is a complete set of connectives.

Proof Outline:
(1) Express $\beta_{\tilde{\beta}} \in \mathcal{B} \mathcal{F}\left(\left\{X_{1}, \ldots, X_{n}\right\}, \mathcal{C}\right)$ by a logically equivalent formula $\tilde{\beta} \in \mathcal{B} \mathcal{F}\left(\left\{X_{1}, \ldots, X_{n}\right\}, \tilde{\mathcal{C}}\right)$.
(2) How? induction on the parse tree that generates β.

THM: $B_{\text {NOT }}, B_{O R}, B_{A N D}$ express. in $B F\left(\left(x_{1}, x_{2}\right), \tilde{c}\right)$
$\Rightarrow \underset{\sim}{\widetilde{C}} \underset{\{T, O R, A N D\}}{ } \Rightarrow$ is complete set of conned.
proof: \forall fund $B \quad \exists \beta \in B F\left(\left\{x_{i} 3_{i},\{\right.\right.$ not, OR, and $\left.\}\right)$
st. $\quad B=B_{\beta}$.
goal: fond $\tilde{\beta} \Leftrightarrow \beta$ where $\tilde{\beta} \in B F\left(\left\{x_{i} 3_{i}, \tilde{c}\right)\right.$ how? ${ }^{\text {coup }}$ ind. on sizer of parse thee of β (\#verl.)
base: $n=1$ (exercise). $\beta \in\left\{0,1, x_{i}\right\}$
hyp: holds if $\underset{\beta}{ } \quad$ size $\leqslant n$.
step: $\beta=\alpha_{1} \wedge \alpha_{2}$.
let $\tilde{\alpha}_{i} \in B F\left(\left\{x_{i}\right\}_{i}, \tilde{c}\right)$ s.t $\quad \alpha_{i} \Leftrightarrow \tilde{\alpha}_{i}$. (ind. $\left.\begin{array}{c}\text { ind. } \\ h y p .\end{array}\right)$
let $\varphi_{A N D} \in B F\left(\left\{x_{i}\right\}_{i}, \tilde{c}\right)$ sit. $\quad x_{1} \cdot x_{2} \Leftrightarrow \varphi_{A N D}$
so: $\quad \beta=\alpha_{1} \wedge \alpha_{2} \Longleftrightarrow \varphi_{\text {AND }}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}\right)$. ord. $_{\text {ex. }}$.

Important Tautologies
φ TAUT: $\forall \tau: \quad \hat{c}(\varphi)=1$
truth
assign.
Theorem
The following Boolean formulas are tautologies.
(1) law of excluded middle: $X+\bar{X}$
(2) double negation: $X \leftrightarrow(\neg \neg X)$
(3) modus ponens: $(((X \rightarrow Y) \cdot X) \rightarrow Y)$
(3) contrapositive: $(X \rightarrow Y) \leftrightarrow(\bar{Y} \rightarrow \bar{X})$
(5) material implication: $(X \rightarrow Y) \leftrightarrow(\bar{X}+Y)$.
distribution: $X \cdot(Y+Z) \leftrightarrow(X \cdot Y+X \cdot Z)$.
how can we verify that these are tautologies?

Substitution in Tautologies

Recall the lemma:

$$
x_{1}+\bar{x}_{1} \text { TAUT }
$$

$$
\varphi \text { TAUT } \Leftrightarrow \quad B_{\varphi} \equiv 1
$$

Lemma

For every assignment $\tau: U \rightarrow\{0,1\}$,

$$
\begin{equation*}
\hat{\tau}\left(\varphi\left(\alpha_{1}, \alpha_{2}\right)\right)=B_{\varphi}\left(\hat{\tau}\left(\alpha_{1}\right), \hat{\tau}\left(\alpha_{2}\right)\right) \tag{2}
\end{equation*}
$$

question

Let α_{1} and α_{2} be any Boolean formulas.
(1) Consider the Boolean formula $\varphi \triangleq \alpha_{1}+\operatorname{NOT}\left(\alpha_{1}\right)$. Prove or refute that φ is a tautology.
(2) Consider the Boolean formula $\varphi \triangleq\left(\alpha_{1} \rightarrow \alpha_{2}\right) \leftrightarrow\left(\operatorname{NOT}\left(\alpha_{1}\right)+\alpha_{2}\right)$. Prove or refute that φ is a tautology.

De Morgan's Laws

Theorem (De Morgan's Laws)
The following two Boolean formulas are tautologies:
(1) $(\neg(X+Y)) \leftrightarrow(\bar{X} \cdot \bar{Y})$.
(2) $(\neg(X \cdot Y)) \leftrightarrow(\bar{X}+\bar{Y})$.
proof of de Morgan Law (for sets!)

$$
\begin{aligned}
& \overline{A \cup B}=\bar{A} \cap \bar{B} \\
& x \in \overline{A \cup B} \Leftrightarrow \quad x \notin A \cup B \\
& \Leftrightarrow \operatorname{not}(x \in A \cup B) \\
& \Leftrightarrow \operatorname{not}(\underbrace{(x \in A}_{Y \cong}) \text { or } \underbrace{(x \in B)}_{Z \doteq}) \\
& \Leftrightarrow \operatorname{not}(Y+Z) \\
& \Leftrightarrow \bar{Y} \wedge \bar{Z} \\
& \Longleftrightarrow \operatorname{not}(x \in A) \text { a } \operatorname{not}(x \in B) \\
& \Leftrightarrow \quad x \in \bar{A} \quad x \quad x \in \bar{B} \\
& \Leftrightarrow \quad x \in \bar{A} \cap \bar{B}
\end{aligned}
$$

