Digital Logic Design: a rigorous approach © Chapter 6: Propositional Logic

School of Electrical Engineering Tel-Aviv Univ.

April 5, 2020

Book Homepage: http://www.eng.tau.ac.il/~guy/Even-Medina

Theorem (De Morgan's Laws)

The following two Boolean formulas are tautologies:

$$(\neg (X + Y)) \leftrightarrow (\bar{X} \cdot \bar{Y}).$$
$$(\neg (X \cdot Y)) \leftrightarrow (\bar{X} + \bar{Y}).$$

De Morgan Dual

Given a Boolean Formula $\varphi \in \mathcal{BF}(U, \{\lor, \land, \neg\})$, apply the following "replacements":

- $X_i \mapsto \neg X_i$
- $\neg X_i \mapsto X_i$
- $\bullet \ \lor \mapsto \land$
- $\bullet \ \land \mapsto \lor$

What do you get?

Example

$$\varphi = (X_1 + \neg X_2) \cdot (\neg X_2 + X_3)$$

is replaced by

dual
$$(\varphi) = (\neg X_1 \cdot X_2) + (X_2 \cdot \neg X_3)$$

semartic
Vhat is the relation between φ and dual (φ) ?

We define the De Morgan Dual using a recursive algorithm.

Algorithm 3 DM(φ) - An algorithm for computing the De Morgan dual of a Boolean formula $\varphi \in \mathcal{BF}(\{X_1, \ldots, X_n\}, \{\neg, \text{OR}, \text{AND}\}).$

Base Cases:

() If
$$\varphi = 0$$
, then return 1. If $\varphi = 1$, then return 0.

2 If
$$\varphi = (\neg 0)$$
, then return 0. If $\varphi = (\neg 1)$, then return 1.

③ If
$$\varphi = X_i$$
, then return $(\neg X_i)$.

• If
$$\varphi = (\neg X_i)$$
, then return X_i .

Reduction Rules:

• If
$$\varphi = (\neg \varphi_1)$$
, then return $(\neg \mathsf{DM}(\varphi_1))$.

2 If
$$\varphi = (\varphi_1 \cdot \varphi_2)$$
, then return $(\mathsf{DM}(\varphi_1) + \mathsf{DM}(\varphi_2))$.

So If
$$\varphi = (\varphi_1 + \varphi_2)$$
, then return $(\mathsf{DM}(\varphi_1) \cdot \mathsf{DM}(\varphi_2))$.

Example

 $\mathsf{DM}(X \cdot (\neg Y)).$

$$DM(X \cdot \overline{Y}) \qquad Dm((\overline{Y}, \overline{Y}_{2}) = Dm((\overline{Y}) + Dm((\overline{Y}_{2}) = Dm((\overline{Y}) + Dm((\overline{Y}_{2})) + Dm((\overline{Y}_{2})) + Dm((\overline{Y}_{2})) = Dm((\overline{Y}_{2})) = Dm((\overline{Y}_{2}) = \overline{Y} + \overline{Y} \qquad Dm((\overline{Y}) = \overline{Y} + \overline{Y} + \overline{Y} = Dm((\overline{Y})) + Dm((\overline{Y}) = Dm((\overline{Y})) + Dm((\overline{Y}) + Dm((\overline{Y}))) = Dm((\overline{Y}_{2}) + Dm((\overline{Y}_{2})) + Dm((\overline{Y}_{2})) = Dm((\overline{Y}_{2})) = Dm((\overline{Y}_{2}) + Dm((\overline{Y}_{2})) = Dm((\overline{Y}_{2}) + Dm((\overline{Y}_{2})) = Dm((\overline{Y}_{2}) + Dm((\overline{Y}_{2}))) = Dm((\overline{Y}_{2}) + Dm((\overline{Y}_{2})) = Dm((\overline{Y}_{2})) = Dm((\overline{Y}_{2})) = Dm((\overline{Y}_{2}) = Dm((\overline{Y}_{2})) = Dm((\overline{Y}_{2})) = Dm((\overline{Y}_{2}) = \overline{X}$$

Exercise

Prove that $\mathsf{DM}(\varphi) \in \mathcal{BF}$.

The dual can be obtained by applying replacements to the labels in the parse tree of φ or directly to the "characters" of the string φ .

Theorem

For every Boolean formula φ , $DM(\varphi)$ is logically equivalent to $(\neg \varphi)$.

Corollary

For every Boolean formula φ , $DM(DM(\varphi))$ is logically equivalent to φ .

Nice trick, but is it of any use?!

 $\times \leftarrow \gamma (\gamma (\chi))$

THM:
$$DM(P) \ll 7p$$

proof complete ind. on size n of parse tree.
basis $N = 1,2$: $P \in \{0, 1, \times; not(x_i)\}$
check! $not(0), not(n)$
hyp: Size of parse tree of $P \ll N$
 $\implies DM(P) \ll 7p$
Step: $P \in \{7P, 9, 9, 4 + P_2, 9, 9_2\}$
 $P = P_1 + P_2$: $DM(P) = DM(P_1) \cdot DM(P_2)$
(ind hyp + substitution) $\ll 5$ $P_1 \cdot P_2$
 $(ele-Morgan TAUT) \iff not(P_1 + P_2)$
 $= 7P$

P= P1. P2 exercise

9=79

$DM(Y) = TDM(Y_{1})$ $= Subst', \quad \langle = \rangle \quad \neg (\gamma Y_{1})$ $= \gamma Y$

N

A formula is in negation normal form if negation is applied only directly to variables or constants. ($\neg 0 = 1$, $\neg 1 = 0$, so we can easily eliminate negations of constants)

Definition

A Boolean formula $\varphi \in \mathcal{BF}(\{X_1, \ldots, X_n\}, \{\neg, \text{OR}, \text{AND}\})$ is in negation normal form if the parse tree (G, π) of φ satisfies the following condition. If a vertex in G is labeled by negation (i.e., $\pi(v) = \neg$), then v is a parent of a leaf.

Example

Definition

A Boolean formula $\varphi \in \mathcal{BF}(\{X_1, \ldots, X_n\}, \{\neg, \text{OR}, \text{AND}\})$ is in negation normal form if the parse tree (G, π) of φ satisfies the following condition. If a vertex in G is labeled by negation (i.e., $\pi(v) = \neg$), then v is a parent of a leaf.

Lemma

If φ is in negation normal form, then so is $DM(\varphi)$.

We present an algorithm $NNF(\varphi)$ that transforms a Boolean formula φ into a logically equivalent formula in negation normal form.

exercise

Algorithm 4 NNF(φ) - An algorithm for computing the negation normal form of a Boolean formula $\varphi \in \mathcal{BF}(\{X_1, \ldots, X_n\}, \{\neg, \operatorname{OR}, \operatorname{AND}\}).$

3 Base Cases: If $\varphi \in \{0, 1, X_i, (\neg X_i), \neg 0, \neg 1\}$, then return φ .

2 Reduction Rules:

• If
$$\varphi = (\neg \varphi_1)$$
, then return DM(NNF(φ_1)).
• If $\varphi = (\varphi_1 \cdot \varphi_2)$, then return (NNF(φ_1) \cdot NNF(φ_2)).
• If $\varphi = (\varphi_1 + \varphi_2)$, then return (NNF(φ_1) + NNF(φ_2)).

Theorem

Let $\varphi \in \mathcal{BF}(\{X_1, \ldots, X_n\}, \{\neg, \text{OR}, \text{AND}\})$. Then, $NNF(\varphi)$ is logically equivalent to φ and in negation normal form.

THM: $NNF(e) \iff 0$ and NNF(e) in NNF. proof by comp. ind. on n size of parse tree of q. Fill details by yourself: basis: $N \in \{1, 2\}$ hyp: ... $step: \gamma \in \{ not(\gamma_1), \gamma_1 + \gamma_2, \gamma_2, \gamma_2 \}$ cases: $p = p_1 \cdot p_2 \dots$, $p = p_1 + p_2 \dots$ $\begin{aligned} \varphi = \gamma \varphi_{i} : & NNF(\varphi) = DM(NNF(\varphi_{i})) \\ & \text{ind. hyp. + subst.} \iff DM(\varphi_{i}) \\ & \Leftarrow \gamma \varphi_{i} \end{aligned}$

prove that NNF(4) is NNF: $\varphi = \neg \varphi$. $NNF(\gamma) = DM(NNF(\gamma, \gamma))$ NNF(P,) is NNF (ind. hyp.) DM(NNF(Y,)) is NNF (DM preserves) NNF

 \square