
Digital Logic Design: a rigorous approach c�
Chapter 6: Propositional Logic

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

April 5, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1 / 57



De Morgan’s Laws

Theorem (De Morgan’s Laws)

The following two Boolean formulas are tautologies:

1 (¬(X + Y )) � (X̄ · Ȳ ).

2 (¬(X · Y )) � (X̄ + Ȳ ).

50 / 57



De Morgan Dual

Given a Boolean Formula � � BF(U, {�,�,¬}), apply the
following “replacements”:

Xi 7� ¬Xi

¬Xi 7� Xi

� 7� �

� 7� �

What do you get?

Example

� = (X1 + ¬X2) · (¬X2 + X3)

is replaced by

dual(�) = (¬X1 · X2) + (X2 · ¬X3).

What is the relation between � and dual(�)?

51 / 57



De Morgan Dual

We de�ne the De Morgan Dual using a recursive algorithm.

52 / 57



Algorithm 3 DM(�) - An algorithm for computing the De Morgan
dual of a Boolean formula � � BF({X1, . . . ,Xn}, {¬,or,and}).

1 Base Cases:
1 If � = 0, then return 1. If � = 1, then return 0.
2 If � = (¬0), then return 0. If � = (¬1), then return 1.
3 If � = Xi , then return (¬Xi ).
4 If � = (¬Xi ), then return Xi .

2 Reduction Rules:
1 If � = (¬�1), then return (¬DM(�1)).
2 If � = (�1 · �2), then return (DM(�1) + DM(�2)).
3 If � = (�1 + �2), then return (DM(�1) · DM(�2)).

Example

DM(X · (¬Y )).





De Morgan Dual

Exercise

Prove that DM(�) � BF .

The dual can be obtained by applying replacements to the labels in
the parse tree of � or directly to the “characters” of the string �.

Theorem

For every Boolean formula �, DM(�) is logically equivalent to
(¬�).

Corollary

For every Boolean formula �, DM(DM(�)) is logically equivalent
to �.

Nice trick, but is it of any use?!

54 / 57







Negation Normal Form

A formula is in negation normal form if negation is applied only
directly to variables or constants. (¬0 = 1, ¬1 = 0, so we can
easily eliminate negations of constants)

De�nition

A Boolean formula � � BF({X1, . . . ,Xn}, {¬,or,and}) is in
negation normal form if the parse tree (G ,�) of � satis�es the
following condition. If a vertex in G is labeled by negation (i.e.,
�(v) = ¬), then v is a parent of a leaf.

Example

¬(X1 + X2) and (¬X1 · ¬X2).

¬(X1 · ¬X2) and (¬X1 + X2).

55 / 57



Negation Normal Form

De�nition

A Boolean formula � � BF({X1, . . . ,Xn}, {¬,or,and}) is in
negation normal form if the parse tree (G ,�) of � satis�es the
following condition. If a vertex in G is labeled by negation (i.e.,
�(v) = ¬), then v is a parent of a leaf.

Lemma

If � is in negation normal form, then so is DM(�).

We present an algorithm NNF (�) that transforms a Boolean
formula � into a logically equivalent formula in negation normal
form.

56 / 57



Algorithm 4 NNF(�) - An algorithm for comput-
ing the negation normal form of a Boolean formula
� � BF({X1, . . . ,Xn}, {¬,or,and}).

1 Base Cases: If � � {0, 1,Xi , (¬Xi),¬0,¬1}, then return �.
2 Reduction Rules:

1 If � = (¬�1), then return DM(NNF(�1)).
2 If � = (�1 · �2), then return (NNF(�1) · NNF(�2)).
3 If � = (�1 + �2), then return (NNF(�1) + NNF(�2)).

Theorem

Let � � BF({X1, . . . ,Xn}, {¬,or,and}). Then, NNF (�) is
logically equivalent to � and in negation normal form.








