Digital Logic Design: a rigorous approach ©

Chapter 6: Propositional Logic

School of Electrical Engineering Tel-Aviv Univ.

$$
\text { April 5, } 2020
$$

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

De Morgan's Laws

Theorem (De Morgan's Laws)

The following two Boolean formulas are tautologies:
(1) $(\neg(X+Y)) \leftrightarrow(\bar{X} \cdot \bar{Y})$.
(2) $(\neg(X \cdot Y)) \leftrightarrow(\bar{X}+\bar{Y})$.

De Morgan Dual

Given a Boolean Formula $\varphi \in \mathcal{B} \mathcal{F}(U,\{\vee, \wedge, \neg\})$, apply the following "replacements":

- $X_{i} \mapsto \neg X_{i}$
- $\neg X_{i} \mapsto X_{i}$
- $\vee \mapsto \wedge$
- $\wedge \mapsto \vee$

What do you get?

Example

$$
\varphi=\left(X_{1}+\neg X_{2}\right) \cdot\left(\neg X_{2}+X_{3}\right)
$$

is replaced by

$$
\operatorname{dual}(\varphi)=\left(\neg X_{1} \cdot X_{2}\right)+\left(X_{2} \neg X_{3}\right)
$$

semantic
What is thelrelation between φ and dual (φ) ?

De Morgan Dual

We define the De Morgan Dual using a recursive algorithm.

Algorithm $3 \mathrm{DM}(\varphi)$ - An algorithm for computing the De Morgan dual of a Boolean formula $\varphi \in \mathcal{B F}\left(\left\{X_{1}, \ldots, X_{n}\right\},\{\neg\right.$, OR, AND $\left.\}\right)$.
(1) Base Cases:
(1) If $\varphi=0$, then return 1 . If $\varphi=1$, then return 0 .
(2) If $\varphi=(\neg 0)$, then return 0 . If $\varphi=(\neg 1)$, then return 1 .
(3) If $\varphi=X_{i}$, then return $\left(\neg X_{i}\right)$.
(1) If $\varphi=\left(\neg X_{i}\right)$, then return X_{i}.
(2) Reduction Rules:
(1) If $\varphi=\left(\neg \varphi_{1}\right)$, then return $\left(\neg \mathrm{DM}\left(\varphi_{1}\right)\right)$.
(2) If $\varphi=\left(\varphi_{1} \cdot \varphi_{2}\right)$, then return $\left(\operatorname{DM}\left(\varphi_{1}\right)+\operatorname{DM}\left(\varphi_{2}\right)\right)$.
(3) If $\varphi=\left(\varphi_{1}+\varphi_{2}\right)$, then return $\left(\operatorname{DM}\left(\varphi_{1}\right) \cdot \operatorname{DM}\left(\varphi_{2}\right)\right)$.

Example

$\operatorname{DM}(X \cdot(\neg Y))$.

$$
\begin{aligned}
& \operatorname{DM}(X \cdot \bar{Y}) \quad \operatorname{DM}\left(\varphi_{1} \cdot \varphi_{2}\right)=\operatorname{DM}\left(\varphi_{1}\right) \\
& =\operatorname{DM}(X)+\operatorname{DM}(\bar{Y}) \\
& +\operatorname{DM}\left(\varphi_{2}\right) \\
& =\bar{x}+Y) \begin{array}{l}
\operatorname{Dm}(x)=\bar{x} \\
\operatorname{Dm}(\bar{y})=y
\end{array} \\
& \operatorname{DM}(\operatorname{not}(x+Y))) \quad \operatorname{DM}(\neg \varphi)=\operatorname{DM}(\varphi) \\
& =\operatorname{not}((\operatorname{DM}(x+y))) \quad \operatorname{DM}\left(\varphi_{1}+\varphi_{1}\right)=\operatorname{DM}\left(\varphi_{1}\right) \\
& =\operatorname{not}(\operatorname{DM}(X) \cdot \operatorname{DM}(Y))^{\operatorname{DM}\left(\varphi_{1}+\varphi_{1}\right)=\operatorname{DM}\left(\varphi_{1}\right)} \cdot \operatorname{DM}\left(Y_{2}\right) \\
& =\operatorname{not}(\bar{x} \cdot \bar{Y})) \operatorname{Dm}(x)=\bar{x}
\end{aligned}
$$

De Morgan Dual

Exercise

Prove that $\mathrm{DM}(\varphi) \in \mathcal{B} \mathcal{F}$.
The dual can be obtained by applying replacements to the labels in the parse tree of φ or directly to the "characters" of the string φ.

Theorem

For every Boolean formula $\varphi, D M(\varphi)$ is logically equivalent to $(\neg \varphi)$.

Corollary

For every Boolean formula $\varphi, D M(D M(\varphi))$ is logically equivalent to φ.

Nice trick, but is it of any use?!

$$
x \Leftrightarrow \cap(n(x))
$$

THY: $\operatorname{DM}(\varphi) \Leftrightarrow \neg \varphi$
proof complete ind. on size n of parse tree.
basis $n=1,2: \quad \varphi \in\left\{0,1, x_{i}, \operatorname{not}\left(x_{i}\right)\right\}$
check! not (0), not (1)
hyp: size of parse tree of $\varphi \leq n$

$$
\Rightarrow \quad D M(\varphi) \Leftrightarrow \neg \varphi
$$

Step: $\varphi \in\left\{\neg \varphi_{1}, \varphi_{1}+\varphi_{2}, \varphi_{1} \cdot \varphi_{2}\right\}$

$$
\begin{aligned}
\varphi=\varphi_{1}+\varphi_{2}: \operatorname{DM}(\varphi) & =\operatorname{DM}\left(\varphi_{1}\right) \cdot \operatorname{DM}\left(\varphi_{2}\right) \\
\text { (ind. hyp }+ \text { substitution }) & \Leftrightarrow \bar{\varphi}_{1} \cdot \bar{\varphi}_{2} \\
\binom{\text { de-Morgan TAVT }}{\text { substitution }} \Leftrightarrow & \operatorname{not}\left(\varphi_{1}+\varphi_{2}\right) \\
& =1 \varphi
\end{aligned}
$$

$$
\begin{aligned}
& \varphi=\varphi_{1} \cdot \varphi_{2} \text { exercise!. } \\
& \varphi=\neg \varphi_{1} \\
& \operatorname{DM}(\varphi)=\neg \operatorname{DM}\left(\varphi_{1}\right) \\
& \begin{array}{c}
\text { ind.hyp } \\
+ \text { subst:. }
\end{array} \Longleftrightarrow \neg\left(\neg \varphi_{1}\right) \\
& =\neg \varphi
\end{aligned}
$$

Negation Normal Form

A formula is in negation normal form if negation is applied only directly to variables or constants. $(\neg 0=1, \neg 1=0$, so we can easily eliminate negations of constants)

Definition

A Boolean formula $\varphi \in \mathcal{B F}\left(\left\{X_{1}, \ldots, X_{n}\right\},\{\neg\right.$, OR, AND $\left.\}\right)$ is in negation normal form if the parse tree (G, π) of φ satisfies the following condition. If a vertex' in G is labeled by negation (i.e., $\pi(v)=\neg)$, then v is a parent of a leaf.

Example

$$
\begin{aligned}
& -\neg\left(X_{1}+X_{2}\right) \text { and }\left(\neg X_{1} \cdot \neg X_{2}\right) . \\
& -\neg\left(X_{1} \cdot \neg X_{2}\right) \text { and }\left(\neg X_{1}+X_{2}\right) .
\end{aligned}
$$

Negation Normal Form

Definition

A Boolean formula $\varphi \in \mathcal{B F}\left(\left\{X_{1}, \ldots, X_{n}\right\},\{\neg\right.$, OR, AND $\left.\}\right)$ is in negation normal form if the parse tree (G, π) of φ satisfies the following condition. If a vertex in G is labeled by negation (i.e., $\pi(v)=\neg)$, then v is a parent of a leaf.

Lemma

If φ is in negation normal form, then so is $D M(\varphi)$.

We present an algorithm $\operatorname{NNF}(\varphi)$ that transforms a Boolean formula φ into a logically equivalent formula in negation normal form.

Algorithm 4 NNF (φ) - An algorithm for computing the negation normal form of a Boolean formula $\varphi \in \mathcal{B F}\left(\left\{X_{1}, \ldots, X_{n}\right\},\{\neg\right.$, OR, AND $\left.\}\right)$.
(3) Base Cases: If $\varphi \in\left\{0,1, X_{i},\left(\neg X_{i}\right), \neg 0, \neg 1\right\}$, then return φ.
(2) Reduction Rules:
(1) If $\varphi=\left(\neg \varphi_{1}\right)$, then return $\operatorname{DM}\left(\operatorname{NNF}\left(\varphi_{1}\right)\right)$.
(2) If $\varphi=\left(\varphi_{1} \cdot \varphi_{2}\right)$, then return $\left(\operatorname{NNF}\left(\varphi_{1}\right) \cdot \operatorname{NNF}\left(\varphi_{2}\right)\right)$.
(3) If $\varphi=\left(\varphi_{1}+\varphi_{2}\right)$, then return $\left(\operatorname{NNF}\left(\varphi_{1}\right)+\operatorname{NNF}\left(\varphi_{2}\right)\right)$.

Theorem

Let $\varphi \in \mathcal{B} \mathcal{F}\left(\left\{X_{1}, \ldots, X_{n}\right\},\{\neg\right.$, OR, AND $\left.\}\right)$. Then, $\operatorname{NNF}(\varphi)$ is logically equivalent to φ and in negation normal form.

* for simplicity we allow not (0), not (1). Clearly, one could eliminate such negations.
\Rightarrow do not get confused by this point!

THY: $\operatorname{NNF}(\varphi) \Leftrightarrow \varphi$ and $N N F(\varphi)$ in NNF. proof by comp. ind. on n size of parse tree of φ.
Fill details by yourself:
basis: $n \in\{1,2\} \ldots$
hyp:
step: $\varphi \in\left\{\operatorname{not}\left(\varphi_{1}\right), \varphi_{1}+\varphi_{2}, \varphi_{1} \cdot \varphi_{2}\right\}$
cases: $\varphi=\varphi_{1} \cdot \varphi_{2} \cdots, \quad \varphi=\varphi_{1}+\varphi_{2} \cdots$.

$$
\left.\begin{array}{rl}
\varphi=7 \varphi_{1}: \operatorname{NNF}(\varphi) & =\operatorname{DM}\left(\operatorname{NNF}\left(\varphi_{1}\right)\right) \\
\text { ind. hyp. + subst. } & \Leftrightarrow \operatorname{DM}\left(\varphi_{1}\right) \\
& \Leftrightarrow 7 \varphi_{1} \\
& =\varphi_{1}
\end{array}\right\} \begin{gathered}
\operatorname{NNF}(\varphi) \\
\Leftrightarrow \\
\varphi
\end{gathered}
$$

prove that $N N F(Y)$ is $N N F$:

$$
\begin{aligned}
& \varphi=\neg \varphi_{1} \\
& \operatorname{NNF}(\varphi)=\operatorname{DM}\left(\operatorname{NNF}\left(\varphi_{1}\right)\right)
\end{aligned}
$$

$\operatorname{NNF}\left(\varphi_{1}\right)$ is NNF (ind. hyp-)
$\operatorname{DM}\left(\operatorname{NNF}\left(Y_{1}\right)\right)$ is $\operatorname{NNF}\binom{D M$ preserves }{$N N F}$

