
Digital Logic Design: a rigorous approach c©
Chapter 9: Representation of Boolean Functions by Formulas

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

April 20, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1 / 34

http://www.eng.tau.ac.il/~guy/Even-Medina

Normal Forms of Boolean Functions

A normal form is a restricted syntax for Boolean Formulas.

For example, Negation Normal Form (NNF) allows negations
only of variables or constants.

We now consider two more normal forms:
Disjunctive Normal Form (DNF) also called Sum of Products
(SoP)
Conjunctive Normal Form (CNF) also called Product of Sums
(PoS)

We will also consider polynomials over a finite field!

2 / 34

Literals

Definition (literal)

A variable or a negation of a variable is called a literal.

Example

X

not(X)

3 / 34

Product / Conjunction

Recall that:

and, ·,∧ denote the same logical connective.

Associativity of and function allows us to omit parenthesis.

Definition (product/conjunction)

A Boolean formula ϕ is a conjunction (or a product) if

ϕ = "1 and · · · and "k ,

for k ≥ 1 and every "i is a literal.

Example

X · Ȳ · Z = (X and Ȳ and Z)

= (X ∧ Ȳ ∧ Z)

4 / 34

Notation

With each product p, we associate the set of variables that
appear in p.

The set of variables that appear in p is denoted by vars(p).

Let vars+(p) denote the set of variables that appear in p that
appear without negation.

Let vars−(p) denote the set of variables that appear in p that
with negation.

Let literals(p) denote the set of literals that appear in p.

p =
∧

!∈literals(p) " = (
∧

Xi∈vars+(p)
Xi) and (

∧

Xi∈vars−(p) X̄i).

Example

Let p = X1 · X̄2 · X3, then vars(p) = {X1,X2,X3},
vars+(p) = {X1,X3} and vars−(p) = {X2}, and
literals(p) = {X1, X̄2,X3}.

5 / 34

Simple Products

Definition (simple product)

A product term p is simple if every variable appears at most once
in p.

a simple product: X1 · X2 · X̄3

not simple: X · X , X1 · X2 · X̄1

Recall that:

1 X · X̄ is a contradiction

2 X · X is logically equivalent to X

3 X̄ · X̄ is logically equivalent to X̄ .

Claim

Every product is a contradiction or logically equivalent to a simple
product.

6 / 34

Minterms

Definition (minterm)

A simple product term p is a minterm with respect to a set U of
variables if vars(p) = U.

Example

U = {X ,Y ,Z}. Minterms: X · Y · Z , X̄ · Ȳ · Z .

question

How many different minterms are there with respect to U?

lemma

A minterm p attains the truth value 1 for exactly one truth
assignment.

7 / 34

Sum-of-Products (SOP) / Disjunctive Normal Form (DNF)

Definition (SoP/DNF)

A Boolean formula ϕ is called a sum-of-products (SOP) (or in
Disjunctive Normal Form (DNF)) if satisfies one of the following
conditions:

1 ϕ = p1 + · · ·+ pk , where k ≥ 2 and each pi is a product

2 ϕ is a product

(the case of a product is a degenerate case for k = 1 and includes
the case of a single literal.)

8 / 34

Examples

Each of the following formulas is a sum-of-products.

1 ϕ1 = X · Y + X · Y ,

2 ϕ2 = (Ā and B and C) or (A and B̄ and C) or D̄,

3 ϕ3 = L.

Each of the following formulas is not a sum-of-products.

1 (X + Y) · Z ,

2 (A or B) and (C or D).

9 / 34

SoP representation

Definition

For a v ∈ {0, 1}n , define the minterm pv to be pv
"

= ("v1 · "
v
2 · · · "

v
n),

where:

"vi
"

=

{

Xi if vi = 1

X̄i if vi = 0.

Question

What is the truth assignment that satisfies pv?

Question

Prove that the mapping v %→ pv is a bijection from {0, 1}n to the
set of all minterms.

10 / 34

SoP representation - cont (i)

Definition (preimage)

Let f : {0, 1}n → {0, 1}. Let f −1(1) denote the set

f −1(1)
"

= {v ∈ {0, 1}n | f (v) = 1}.

Definition

The set of minterms of f is defined by

Min(f)
"

= {pv | v ∈ f −1(1)}.

11 / 34

SoP Representation - cont (ii)

Theorem

Every Boolean function f : {0, 1}n → {0, 1} that is not a constant
zero is expressed by the sum of the minterms in Min(f).

Question

Let ϕ be the sum of the minterms in Min(f) and let τ denote a
truth assignment that satisfies ϕ (i.e., τ̂(ϕ) = 1). How many
products in ϕ are satisfied by τ?

12 / 34

sum-of-minterms: a “bad” example

We are interested in “short” formulas that express a given Boolean
function.

Consider the constant Boolean function f : {0, 1}n → {0, 1}
that is defined by f (v) = 1, for every v .

The sum-of-minterms that represents f is the sum of all the
possible minterms over n variables. This sum contains 2n

minterms.

On the other hand, f can be represented by the constant 1.

The question of finding the shortest sum-of-products that
represents a given Boolean formula is discussed in more detail
in our book.

13 / 34

Product of Sums (PoS)/ Conjunctive Normal Form (CNF)

The second normal form we consider is called conjunctive normal
form (CNF) or product of sums (POS).

14 / 34

Sum / Disjunction

Recall that:

or,+,∨ denote the same logical connective.

Associativity of or function allows us to omit parenthesis.

Definition

A Boolean formula s is a disjunction (or a sum) if

s = "1 + · · · + "k ,

for k ≥ 1 and every "i is a literal.

Example

X + Ȳ + Z = (X or Ȳ or Z)

= (X ∨ Ȳ ∨ Z)

Define vars(s), vars+(s), vars−(s), literals(s) as in products.
15 / 34

Maxterms

Definition (simple sum)

A sum s is simple if every variable appears at most once in s.

Definition (maxterm)

A simple sum term s is a maxterm with respect to a set U of
variables if vars(s) = U.

Question

How many maxterms are there with respect to U?

Lemma

A maxterm s is satisfied by all but one truth assignment (s attains
the truth value 0 for exactly one truth assignment).

16 / 34

Product-of-Sums (PoS) / Conjunctive Normal Form (CNF)

Definition (SoP/DNF)

A Boolean formula ϕ is called a product-of-sums (POS) (or in
Conjunctive Normal Form (CNF)) if satisfies one of the following
conditions:

1 ϕ = s1 · · · · · sk , where k ≥ 2 and each si is a sum

2 ϕ is a sum

(the case of a sum is a degenerate case for k = 1 and includes the
case of a single literal.)

17 / 34

relation to de Morgan duality

Recall that DM(ϕ) is the De Morgan dual of the formula ϕ.

observation

1 If p is a product, then DM(p) is a sum.

2 If s is a sum, then DM(s) is a product.

3 If p is a minterm, then DM(p) is a maxterm.

4 If s is a maxterm, then DM(s) is a minterm.

5 If p is a sum-of-products, then the formula DM(p) is a
product-of-sums.

6 If p is a product-of-sums, then the formula DM(p) is a
sum-of-products.

18 / 34

Maxterms of a Boolean Function

Definition

For a v ∈ {0, 1}n , define the maxterm sv to be

sv
"

= (mv
1 + · · · +mv

n), where:

mv
i

"

=

{

Xi if vi = 0

X̄i if vi = 1.

Note that "vi is logically equivalent to not(mv
i).

Question

Which truth assignment does not satisfy sv?

19 / 34

PoS representation of Boolean Functions

Definition (Maxterms of a function f : {0, 1}n → {0, 1})

Max(f) ! {sv | v ∈ f −1(0)} .

Theorem

Every Boolean function f : {0, 1}n → {0, 1} that is not a constant
one is expressed by the product of the maxterms in Max(f).

20 / 34

De Morgan Duality and CNF representation

Question

What is the relation between Min(f) and Max(not(f))?

Let U = {X1, . . . ,Xn} and f : {0, 1}n → {0, 1}.

Lemma

Let p denote a minterm wrt U. Then,

p ∈ Min(f) ⇐⇒ DM(p) ∈ Max(not(f))

Let s denote a maxterm wrt U. Then,

s ∈ Max(f) ⇐⇒ DM(s) ∈ Min(not(f))

Theorem

CNF (f) = DM(DNF (not(f)))

21 / 34

Representation by polynomials

Definition

The Galois Field GF (2) is defined as follows.

1 Elements: the elements of GF (2) are {0, 1}. The zero is called
the additive unity and one is called the multiplicative unity.

2 Operations:
1 addition which is simply the xor function, and
2 multiplication which is simply the and function.

In the context of GF (2) we denote multiplication by · and addition
by ⊕.

22 / 34

GF (2) properties

We are used to infinite fields like the rationals (or reals) with
regular addition and multiplication. In these fields, 1 + 1 += 0.
However, in GF (2), 1⊕ 1 = 0.

Observation

X ⊕ X = 0, for every X ∈ {0, 1}.

A minus sign in a field means the additive inverse.

Definition

The element −X stands for the element Y such that X ⊕ Y = 0.

23 / 34

GF (2) properties - more

Observation

In GF (2), the additive inverse of X is X itself, namely −X = X,
for every X ∈ {0, 1}.

Thus, we need not write minus signs, and adding an X is
equivalent to subtracting an X .

The distributive law holds in GF (2), namely:

Observation

(X ⊕ Y) · Z = (X · Z)⊕ (Y · Z), for every X ,Y ,Z ∈ {0, 1}.

24 / 34

GF (2) properties - even more

Let X k denote the product (and of literals)

X k "

=

k times
︷ ︸︸ ︷

X · · · · · X .

We define X 0 = 1, for every X ∈ {0, 1}. The following observation
proves that multiplication is idempotent.

Observation

X k = X, for every k ∈ N+ and X ∈ {0, 1}.

25 / 34

GF (w) is a field like the reals

The structure of a field allows us to solve systems of equations. In
fact, Gauss elimination works over any field. The definition of a
vector space over GF (2) is just like the definition of vector spaces
over the reals. Definitions such as linear dependence, dimension of
vector spaces, and even determinants apply also to vector spaces
over GF (2).

26 / 34

Examples

X1 ⊕ X2 = 0 ⇔ X1 = X2.

We show how to solve a simple systems of equalities over
GF (2) using Gauss elimination. Consider the following system
of equations

X1 ⊕ X2 ⊕ X3 = 0 ,
X1 ⊕ X3 = 0 ,

X2 ⊕ X3 = 1 .

27 / 34

Polynomials over GF (2)

Definition

A monomial in GF (2) over the variables in the set U is a finite
product of the elements in U or a constant in {0, 1}.

Observation

Every monomial p in GF (2) over the variables in U equals a
constant or a simple product of variables in p.

By commutativity: X1 · X2 · X3 · X1 = X 2
1 · X2 · X3.

Positive exponents can be reduced to one. For example,
X 2
1 · X2 · X3 equals X1 · X2 · X3.

28 / 34

Polynomials

Definition

A polynomial in GF (2) over the variables in the set U is a finite
sum of monomials.

Example: X1 · X2 ⊕ X1 · X3 ⊕ X2 · X3 ⊕ 1.
We denote the set of all polynomials in GF (2) over the variables in
U by GF (2)[U]. Just as multivariate polynomials over the reals
can be added and multiplied, so can polynomials in GF (2)[U].

29 / 34

representation by polynomials in GF (2)[U]

Every polynomial p ∈ GF (2)[U] is a Boolean function
fp : {0, 1}|U| → {0, 1}. The converse is also true.

Theorem

Every Boolean function f : {0, 1}n → {0, 1} can be represented by
a polynomial in GF (2)[U], where U = {X1, . . . ,Xn}.

proof outline

easy: f is constant.

f −1(1)
"

= {v ∈ {0, 1}n | f (v) = 1}.

For each v ∈ f −1(1), we define the product pv . The
polynomial p ∈ GF (2)[U] is defined as follows.

p
"

=
⊕

v∈f −1(1)

pv .

30 / 34

Side effect

Corollary

The set of connectives {xor,and} is complete.

31 / 34

Satisfiability

The problem of satisfiability of Boolean formulas is defined as
follows.

Input: A Boolean formula ϕ.

Output: The output should equal “yes” if ϕ is satisfiable. If ϕ
is not satisfiable, then the output should equal “no”.

Note that the problem of satisfiability is quite different if the input
is a truth table of a Boolean function. In this case, we simply need
to check if there is an entry in which the function attains the value
1.

32 / 34

Relation to P vs. NP

The main open problem in Computer Science since 1971 is whether
P = NP . We will not define the classes P and NP , but we will
phrase an equivalent question in this section.
Consider a Boolean formula ϕ. Given a truth assignment τ , it is
easy to check if τ̂(ϕ) = 1. We showed how this can be done in
Algorithm EVAL. In fact, the running time of the EVAL algorithm
is linear in the length of ϕ.
On the other hand, can we find a satisfying truth assignment by
ourselves (rather than check if τ is a satisfying assignment)?
Clearly, we could try all possible truth assignments. However, if n
variables appear in ϕ, then the number of truth assignments is 2n.

33 / 34

Satisfiability and P vs. NP

We are ready to formulate a question that is equivalent to the
question P = NP .

Satisfiability in polynomial time

Does there exist a constant c > 0 and an algorithm Alg such that:

1 Given a Boolean formula ϕ, algorithm Alg decides correctly
whether ϕ is satisfiable.

2 The running time of Alg is O(|ϕ|c), where |ϕ| denotes the
length of ϕ.

This seemingly simple question turns out to be a very deep
problem about what can be easily computed versus what can be
easily proved. It is related to the question whether there is a real
gap between checking that a proof is correct and finding a proof.

34 / 34

