Chapter 4: Directed Graphs

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

March 18, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina
In the following definition we consider a directed acyclic graph $G = (V, E)$ with a single sink called the root.

Definition

A DAG $G = (V, E)$ is a **rooted tree** if it satisfies the following conditions:

1. There is a single sink in G.
2. For every vertex in V that is not a sink, the out-degree equals one.

The single sink in rooted tree G is called the root, and we denote the root of G by $r(G)$.
Rooted Trees

acyclic directed graph $G = (V, E)$ s.t.

1) Single Sink
2) $\forall v: \text{deg}_{out}(v) \leq 1$

not rooted trees

rooted tree
Definition

A DAG $G = (V, E)$ is a rooted tree if it satisfies the following conditions:

1. There is a single sink in G.
2. For every vertex in V that is not a sink, the out-degree equals one.

Theorem

In a rooted tree there is a unique path from every vertex to the root.
\(G = (V, E) \) rooted tree \(\Rightarrow \forall v \in V \exists ! \text{path } v \rightarrow^* \text{root} \)

proof by ind. on \(|V| \).

base: \(|V| = 1 \), trivial.

hyp: holds if \(|V| = n \).

step: prove for \(|V| = n+1 \).

\(G \text{ DAG } \Rightarrow \exists \text{ source } v \)

consider \(G' = (V', E') \) where \(\begin{cases} V' = V \setminus \{v\} \\ E' = E \setminus Ev \end{cases} \)

\(G' \) is a rooted tree: \(\text{deg}_{G'}(u) \) is unchanged

ind. hyp on \(G' : \forall u \in V' \exists ! \text{path } u \rightarrow^* \text{root} \)

what about \(v ? \) \(\text{deg}_{G'}(v) = 1 \) \(\Rightarrow \exists ! u : (v,u) \in E \)

\begin{center}
\begin{tikzpicture}
 \node (v) at (0,0) {v};
 \node (u) at (2,0) {u};
 \node (root) at (4,0) {root};
 \draw[->] (v) -- (u);
 \draw[->] (u) -- (root);
 \node at (1,-0.5) {uniq. path};
 \node at (-0.5,0) {\text{only edge}};
\end{tikzpicture}
\end{center}
2nd proof: 1) \exists \text{ path to root}

2) unique path to root

\exists \text{ path to root: }

pick \(v \in V \). build path recursively as follows:

\[V_0 \leftarrow v \]

if \(v \) \(\text{Sink} \) \(\text{stop} \).

if \(v \neq \text{sink} \), \(\exists u : (v_i, u) \in E \).

set \(v_{i+1} \leftarrow u \).

since \(|\text{path}| < \infty \), alg. must terminate.

sink is unique, path reaches the root.
2) unique path to root

if \exists 2 paths: v \rightarrow root

\[\text{paths diverge} \]
\[\Rightarrow \text{deg}_{\text{out}}(u) \geq 2 \]

\[\Rightarrow \text{contra. to } G \text{ is a rooted tree.} \]
Figure: A decomposition of a rooted tree G into two rooted trees G_1 and G_2.
Terminology

- each the rooted tree $G_i = (V_i, E_i)$ is called a tree hanging from $r(G)$.
- **Leaf**: a source node.
- **interior vertex**: a vertex that is not a leaf.
- **parent**: if $u \rightarrow v$, then v is the parent of u.
- Typically maximum in-degree = 2.
The rooted trees hanging from \(r(G) \) are **ordered**. Important in parse trees.

Arcs are oriented from the leaves towards the root. Useful for modeling circuits:
- leaves = inputs
- root = output of the circuit.

\[a \div (b + c) \]

\[(X \text{ AND } Y) \text{ OR } Z \]