Digital Logic Design: a rigorous approach (C)

Chapter 14: Selectors

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.
May 14, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

Multiplexer (MUX)

Definition

A MUX-gate is a combinational gate that has three inputs $D[0], D[1], S$ and one output Y. The functionality is defined by

$$
Y= \begin{cases}D[0] & \text { if } S=0 \\ D[1] & \text { if } S=1\end{cases}
$$

Note that we could have used the shorter expression $Y=D[S]$ to define the functionality of a MUX-gate.

n-bit selector

Definition

An ($\mathrm{n}: 1$)-MUX is a combinational circuit defined as follows:
Input: data input $D[n-1: 0]$ and select input $S[k-1: 0]$ where $k=\left\lceil\log _{2} n\right\rceil$.
Output: $Y \in\{0,1\}$.
Functionality:

$$
Y=D[\langle\vec{S}\rangle] .
$$

To simplify the discussion, we will assume in this chapter that n is a power of 2 , namely, $n=2^{k}$.

Example

Let $n=4$ and $D[3: 0]=0101$. If $S[1: 0]=00$, then $Y=D[0]=1$. If $S[1: 0]=01$, then $Y=D[1]=0$.

Implementation

We describe two implementations of ($\mathrm{n}: 1$)-mux.

- translate the number $\langle\vec{S}\rangle$ to 1-out-of- n representation (using a decoder).
- tree based.

decoder based ($\mathrm{n}: 1$)-MUX

Claim

The (n:1)-mux design is correct.
decoder based ($\mathrm{n}: 1$)-MUX - cost

Claim
The cost of the (n:1)-MUX design is $\Theta(n)$.
decoder based ($\mathrm{n}: 1$)-MUX - delay

Claim
The delay of the $(n: 1)$-mud design is $\Theta(\log n)$.

(n:1)-MUX - lower bounds

Claim

The cone of the Boolean function implemented by a ($n: 1$)-MUX circuit contains at least n elements.

Consider combinational circuits with gates of constant fan-in.
Corollary
The cost of the (n:1)-MUX design is asymptotically optimal.

Corollary

The delay of the ($n: 1$)-mux design is asymptotically optimal.

$$
\mid \operatorname{cove}(m u x)) \mid \geqslant n
$$

proof: fix $i \in\{0, \ldots, n-1\}$.
let $\langle S\rangle=i$

then, output $Y=0$
bot for $f\left(i p_{i}(D[n-1: 0]), \quad f l i p_{i}\left(0^{n}\right)\right.$

$$
\text { output } Y=1
$$

tree based ($\mathrm{n}: 1$)-MUX
(recursive design)

Claim
The ($n: 1$)-MUX design is correct.

tree based ($\mathrm{n}: 1$)-MUX - cost

Claim
The cost of the ($n: 1$)-mux design is $\Theta(n)$.

tree based (n:1)-MUX - delay

Claim
The delay of the $(n: 1)$-mux design is $\Theta(\log n)$.

Comparison

- Both implementations are asymptotically optimal with respect to cost and delay.
- The cost/delay table suggests that the tree-like implementation is cheaper and faster.
- Fast and cheap implementations of MUX-gates in CMOS technology (called "pass transistors") do not restore the signals well. This means that long paths consisting only of such MUX-gates are not allowed (must interleave with invertors to restore the signals).
- What about physical layout? Which design has a smaller "drawing"? (beyond the scope of this course)
- Conclusion: our simplified model cannot be used to deduce conclusively which multiplexer design is better.

