

http://www.eng.tau.ac.il/~guy/Even-Medina

- Which Boolean functions are suited for implementation by tree-like combinational circuits?
- In what sense are tree-like implementations optimal?

A binary Boolean function is a function $f : \{0, 1\}^2 \rightarrow \{0, 1\}$.

A binary function is often denoted by a dyadic operator, say *. So instead of writing f(a, b), we write a * b.

examples : OR, AND, XOR X - can be any bin. Boolean func.

A binary Boolean function $*: \{0,1\}^2 \rightarrow \{0,1\}$ is associative if

$$(x_1 * x_2) * x_3 = x_1 * (x_2 * x_3)$$
,

for every $x_1, x_2, x_3 \in \{0, 1\}$.

One may omit parenthesis: $x_1 * x_2 * x_3$ is well defined. Consider the function $f_n : \{0,1\}^n \to \{0,1\}$ defined by

$$f_n(x_1, \dots, x_n) \triangleq x_1 * \dots * x_n$$

example : $OR_n(X_1, \dots, X_n) = X_1 + \dots + X_n$

Extension of associative function

Definition

Let $f : \{0,1\}^2 \to \{0,1\}$ denote a Boolean function. The function $f_n : \{0,1\}^n \to \{0,1\}$, for $n \ge 1$, is defined recursively as follows.

If
$$n = 1$$
, then $f_1(x) = x$

2 If
$$n = 2$$
, then $f_2 = f$.

③ If n > 2, then f_n is defined based on f_{n-1} as follows:

$$f_n(x_1, x_2, \ldots x_n) \stackrel{\scriptscriptstyle riangle}{=} f(f_{n-1}(x_1, \ldots, x_{n-1}), x_n).$$

Claim

If $f:\{0,1\}^2 \to \{0,1\}$ is an associative Boolean function, then

$$f_n(x_1, x_2, \ldots, x_n) = f(f_{n-k}(x_1, \ldots, x_{n-k}), f_k(x_{n-k+1}, \ldots, x_n)),$$

for every $n \ge 2$ and $k \in [1, n-1]$.

want to prove that
$$\forall n \ge 2 \quad \forall k \in [1, n-1]$$
;
 $f_n(x_1, \dots, x_n) = f(f_{n-k}(x_1, \dots, x_{n-k}), f_{k}(x_{n-k+1}, \dots, x_n))$
meaning: $y = z$ where

because LHS is the same as RHS

Trees of associative Boolean gates

To simplify the presentation, consider the Boolean function OR_n .

Definition

A combinational circuit $H = (V, E, \pi)$ that satisfies the following conditions is called an OR-tree(*n*).

- The graph DG(H) is a rooted tree with *n* sources.
- 2 Each vertex v in V that is not a source or a sink is labeled $\pi(v) = OR$.
- **③** The set of labels of leaves of *H* is $\{x_0, \ldots, x_{n-1}\}$.

A combinational circuit $H = (V, E, \pi)$ that satisfies the following conditions is called an OR-tree(*n*).

- **()** Topology. The graph DG(H) is a rooted tree with n sources.
- Each vertex v in V that is not a source or a sink is labeled π(v) = OR.
- **③** The set of labels of leaves of *H* is $\{x_0, \ldots, x_{n-1}\}$.

Claim

Every OR-tree(n) implements the Boolean function OR_n .

$$\begin{aligned} & \forall \text{ or-tree}(n) \quad \text{implements} \quad \text{OR} \\ & \text{proof}; \quad \text{by comp. ind. on n.} \quad (\text{ basis, hyp exercise}) \\ & \text{decompose or-tree}(n). \quad \begin{array}{c} \gamma^{\text{y}} \\ \text{or} \\ \text{or} \\ \text{where} \\ \vec{x}_{L} \cap \vec{x}_{R} &= \phi \\ \vec{x}_{L} \cap \vec{x}_{R} &= \left\{ \vec{x}_{1}, ..., \vec{x}_{n} \right\} \quad \begin{array}{c} \text{or-tree}(n). \\ \vec{x}_{L} \\ \vec{x}_{L} \\ \text{ind. hyp}: \quad \begin{array}{c} \text{or-true}(k) \\ \vec{x}_{L} \\ \end{array} \right| = \quad \begin{array}{c} \text{OR}_{k}(\vec{x}_{L}) \\ \vec{x}_{L} \\ \hline \vec{x}_{L} \\ \end{array} \right| \\ & \vec{y}_{L} \\ \end{array} \end{aligned}$$

A Boolean formula φ is an OR(*n*) formula if it satisfies three conditions: (i) it is over the variables X_0, \ldots, X_{n-1} , (ii) every variable X_i appears exactly once in φ , and (iii) the only connective in φ is the OR connective.

Claim

A Boolean circuit C is an OR(n)-tree if and only if its graph (without the input/output gates) is a parse tree of an OR(n)-formula.

Cost of OR-tree(n)

Claim

The cost of every
$$OR$$
-tree (n) is $(n-1) \cdot c(OR)$.

Lemma

Let G = (V, E) denote a rooted tree in which the in-degree of each vertex is at most two. Then

 $|\{v \in V \mid deg_{in}(v) = 2\}| = |\{v \in V \mid deg_{in}(v) = 0\}| - 1.$

$$[\{v \mid deg_{in}(v) = 2\}] = |\{v \mid deg_{in}(v) = o\}| - 1$$

proof: comp. ind. on $|V|$
basis: $|V| = 1$. LHS = 0 RHS = 1-1 = 0
Heaves < n
hyp: V rooted tree with $|V| < n$ Lemma holds
Step: decompose tree
 $|\{v \in tree \mid deg_{in}(v) = 2\}|$
 $= |\{v \in T_{k} \mid deg_{in}(v) = 2\}|$
 $+ (\{v \in T_{k} \mid deg_{in}(v) = 2\}| + 1$
ind. hyp. $(n_{1} - 1) + (n_{2} - 1) + 1 = n - 1$
exercise: what if $deg_{in}(v) = 1$?

but we will use a non-standard definition of depth. confusing, so be aware...

Depth of tree

delay of an ${\rm OR}$ tree = number of ${\rm OR}\xspace$ along the longest path from an input to an output.

Definition (depth - nonstandard definition)

The depth of a rooted tree T is the maximum number of vertices with in-degree greater than one in a path in T. We denote the depth of T by depth(T).

Why is this nonstandard?

- Usually, depth is simply the length of the longest path.
- Here we count only vertices with in-degree ≥ 2 .
- Why?
 - Input and output gates have zero delay (no computation)
 - Assume inverters are free and have zero delay (we will show that for OR(n) cost & delay are not reduced even if inverters are free and without delay)

death = 1

A rooted tree is a binary tree if the maximum in-degree is two.

A rooted tree is a minimum depth tree if its depth is minimum among all the rooted trees with the same number of leaves. All binary trees with n leaves have the same cost. But, which have minimum depth?

- if n that is a power of 2, then there is a unique minimum depth tree, namely, the perfect binary tree with log₂ n levels.
- If n is not a power of 2, then there is more than one minimum depth tree... (balanced trees)

Are these minimum depth trees?

Figure: Two trees with six inputs.

Claim

If T_n is a rooted binary tree with n leaves, then the depth of T_n is at least $\lceil \log_2 n \rceil$.

- Suffice to prove depth $\geq \log_2 n$.
- Omplete induction on n.

sketch: (comp. ind.) $n_1 + n_2 = n$ 2/gn.] Tr / Tr / 2 /g n. \Rightarrow max {n, n₂} $\geq \frac{n}{2}$ 1+ max { depth(TL), depth(TR)} depth(T) = ≥ 1+ max { lg n, lg n2} $\stackrel{*}{\geq} 1 + \log_2\left(\frac{n}{2}\right) = \log_2 n$

Min Depth: the case $n = 2^k$ (perfect binary trees)

The distance of a vertex v to the root r in a rooted tree is the length of the path from v to r.

Definition

A rooted binary tree is perfect if:

- The in-degree of every non-leaf is 2, and
- All leaves have the same distance to the root.

Note that the depth of a perfect tree equals the distance from the leaves to the root (no vertices with in-degree 1).

Claim

The number of leaves in a perfect tree is 2^k , where k is the distance of the leaves to the root.

Claim

Let n denote the number of leaves in a perfect tree. Then, the distance from every leaf to the root is $\log_2 n$.

We now show that for every n, we can construct a minimum depth tree T_n^* of depth $\lceil \log_2 n \rceil$. In fact, if n is not a power of 2, then there are many such trees.

Two positive integers a, b are a balanced partition of n if:

a + b = n, and

 $a \max\{ \lceil \log_2 a \rceil, \lceil \log_2 b \rceil \} \le \lceil \log_2 n \rceil - 1.$

Claim

If $n = 2^k - r$, where $0 \le r < 2^{k-1}$, then the set of balanced partitions is

$$P \stackrel{\scriptscriptstyle \triangle}{=} \{(a,b) \mid 2^{k-1} - r \le a \le 2^{k-1} \text{ and } b = n-a\}.$$

 $h = 13 = 2^{4} - 3$ $P_{2} \{ (8, 5), (7, 6), (6, 7), (5, 8) \}$

Tn = The At

Algorithm 1 Balanced-Tree(n) - a recursive algorithm for constructing a binary tree T_n^* with $n \ge 1$ leaves.

- The case that n = 1 is trivial (an isolated root).
- 2 If $n \ge 2$, then let a, b be balanced partition of n.
- Sometimes Compute trees T_a^* and T_b^* . Connect their roots to a new root to obtain T_n^* .

Definition

A rooted binary tree T_n is a balanced tree if it is a valid output of Algorithm Balanced-Tree(n).

Def: balanced tree

Algorithm 2 Balanced-Tree(n) - a recursive algorithm for constructing a binary tree T_n^* with $n \ge 1$ leaves.

- The case that n = 1 is trivial (an isolated root).
- 2 If $n \ge 2$, then let a, b be balanced partition of n.
- Sompute trees T_a^* and T_b^* . Connect their roots to a new root to obtain T_n^* .

Claim

The depth of a binary tree T_n^* constructed by Algorithm Balanced-Tree(n) is $\lceil \log_2 n \rceil$.

Corollary

The propagation delay of a balanced OR-tree(n) is $\lceil \log_2 n \rceil \cdot t_{pd}(OR)$.

depth
$$(T_n^*) = \lceil \log_2 n \rceil$$

sketch

$$depth(T_n^*) = 1 + \max \{ \lceil \log_2 a \rceil, \lceil \log_2 b \rceil \}$$

$$\leq 1 + \lceil \log_2 n \rceil - 1 = \lceil \log_2 n \rceil$$
but T_n^* has n leaves
$$\implies depth(T_n^*) \geq \lceil \log_2 n \rceil$$

- * defined ORn
- * defined OR-tree (n)
- can be extended to any binary Boolean assoc. func.

- * cost OR-tree(n)
- * balanced trees
- * delay of balanced trees

CIRCUIT LOWER BOUNDS given $f_n: \Sigma_{0,13}^n \longrightarrow \{0,13\}$. find c: N -> H such that Ycomb. circuit COMB, that computes f_n : $cost(comB_n) \ge c(n)$. If a comb. circuit H has cost(H) < c(n), then H does not compute f_n example: $f_n = OR_n$, $f_{2n}(a,b) = of (a,b) = of (a,b)$ lower bound does not restrict COMBN ?

¥ gate : cost(gate)=1

Goals: prove optimality of a balanced OR-tree(n).

Theorem

Let C_n denote a combinational circuit that implements OR_n . Then,

 $c(C_n) \geq n-1.$

Theorem

Let C_n denote a combinational circuit that implements OR_n . Let k denote the maximum fan-in of a gate in C_n . Then

 $t_{pd}(C_n) \geq \lceil \log_k n \rceil$.

Let $\mathit{flip}_i: \{0,1\}^n \to \{0,1\}^n$ be the Boolean function defined by $\mathit{flip}_i(\vec{x}) \triangleq \vec{y}$, where

$$y_j \stackrel{\scriptscriptstyle riangle}{=} \begin{cases} x_j & ext{if } j
eq i \ \operatorname{NOT}(x_j) & ext{if } i = j. \end{cases}$$

$$flip_1(10) = 101$$

Definition (Cone of a Boolean function)

The cone of a Boolean function $f: \{0,1\}^n \to \{0,1\}$ is defined by

$$\mathit{cone}(f) \stackrel{ riangle}{=} \{i: \exists ec{v} ext{ such that } f(ec{v})
eq f(\mathit{flip}_i(ec{v}))\}$$

Example

 $cone(XOR) = \{1, 2\}.$

We say that f depends on x_i if $i \in cone(f)$. $\chi \circ R (\bigcirc \circ) \neq \chi \circ R (\land \circ) \chi ^{f \in cone(\chi \circ R)}$ $\chi \circ R (\circ, \circ) \neq \chi \circ R (\circ, \circ) = 1 \notin C \circ cone(\chi \circ R)$ Consider the following Boolean function:

$$f(ec{x}) = egin{cases} 0 & ext{if } \sum_i x_i < 3 \ 1 & ext{otherwise.} \end{cases}$$

Suppose that one reveals the input bits one by one. As soon as 3 ones are revealed, one can determine the value of $f(\vec{x})$. Nevertheless, the function $f(\vec{x})$ depends on all its inputs, and hence, $cone(f) = \{1, \ldots, n\}$.

$$f(1,1,1,1,...) = 1 f(0,0-0,1,1,X) = X$$

Constant Functions

Claim

$\operatorname{cone}(f) = \emptyset \iff f$ is a constant Boolean function.

cone $(f) = \emptyset \langle = \rangle$ f constant ($\langle = \rangle$ if f constant, then $\forall v \forall i : f(v) = f(flip:(v))$ $\Rightarrow \forall i : i \notin cone(f)$ $\Rightarrow cone(f) = \emptyset$

cone
$$(f) = \phi \ll \gamma$$
 f constant
(\Rightarrow) need to prove that (counter-positive)
Cone $(f) \neq \phi \ll \beta$ not const.
Suppose : $f : \{0,13^n \rightarrow \{0,13\}$
consider Hypercube ($\{0,13^n, E\}$) where
 $(u,v) \in E$ iff $\exists i: u = flip_i(v)$
Hypercube over
 $\{0,13^3$
 $f \neq const = \rangle \exists u \exists v :$
 $f(u) = 0 & f(v) = 1$

f(w) = 0, f(v) = 1. consider path from u to v in Hypercube. [path exists ; flip bits in which u & v disagree one at a time. $path: u = x_0 - x_1 - \dots - x_l = V$ $f(x_0) = 0$, $f(x_1) = 1$ $\exists i : f(x_i) = 0 & f(x_{ini}) = 1$ \rightarrow but $(x_i, x_{i+1}) \in E$, so $\exists j: x_{i+1} = flip_{\delta}(x_i)$ => jecone(f). X

Claim

If $g(\vec{x}) \triangleq B(f_1(\vec{x}), f_2(\vec{x}))$, then

$$\operatorname{cone}(g) \subseteq \operatorname{cone}(f_1) \cup \operatorname{cone}(f_2)$$
.

 $g(x) \stackrel{\text{\tiny def}}{=} B(f_1(x), f_2(x))$ $cene(g) \subseteq cone(f,) \cup cone(f_2)$ proof by counter-positive, suffice: if cone(f,) u cone (f2) => if cone(g). $g(x) = B(f_1(x), f_2(x))$ = $B(f_1(f_1(x)), f_2(f_1(x)))$ = g(flip;(x)) \mathbb{N}

Definition

Let G = (V, E) denote a DAG. The graphical cone of a vertex $v \in V$ is defined by

 $cone_G(v) \stackrel{\triangle}{=} \{ u \in V : deg_{in}(u) = 0 \text{ and } \exists path from u to v \}.$

In a combinational circuit, every source is an input gate. This means that the graphical cone of v equals the set of input gates from which there exists a path to v. $cone_{(v)} = \{x_{i}, x_{i}\}$ $cone_{G}(v) = \{x_{i}\}$

X. 0_

Functional Cone \subseteq Graphical Cone

$$x_i \longrightarrow AND \rightarrow y = x_i \cdot x_i = 0$$

 $cone(f) = \phi \quad cone(y) = \{x_i\}$

Claim

Let $H = (V, E, \pi)$ denote a combinational circuit. Let G = DG(H). For every vertex $v \in V$, the following holds:

 $\operatorname{cone}(f_v) \subseteq \operatorname{cone}_G(v)$.

Namely, if f_v depends on x_i , then the input gate u that feeds the input x_i must be in the graphical cone of v.

$$cone(f_v) \leq cone_{G}(v) \qquad \text{SIM ALG}$$

$$proof topo. sort of V \qquad (V_1, V_2, ..., V_m)$$

$$prove (by comp. ind on i); \\
\forall i: cone(f_{V_i}) \leq cone_{G}(v_i)$$

$$basis: i = 1 (or sources) \\
cone(f_{V_1}) = \{V_n\} cone_{G}(v_i) = \{V_n\} \\
hage: claim holds for jri.
$$step: \qquad exercise: deg_{in}(v_i) \in \{0, 1, 2\} \qquad exercise: cla_{jn}(v) = 1$$

$$(V_n) \qquad f_{V_i}(v_i) \qquad f_{V_i}(v_i) \qquad (cone(f_{V_n}) u cone(f_{V_n})) \\
(V_n) \qquad f_{V_i}(v_i) \leq cone(f_{V_n}) u cone(f_{V_n}) \\
\leq cone_{G}(V_n) u cone_{G}(V_n) \\
= cone_{G}(v_i)$$$$

"Hidden" Rooted Trees

Claim

Let G = (V, E) denote a DAG. For every $v \in V$, there exist $U \subseteq V$ and $F \subseteq E$ such that:

1
$$T = (U, F)$$
 is a rooted tree;

v is the root of T;

Society cone_G(v) equals the set of leaves of (U, F).

The sets U and F are constructed as follows.

- Initialize $F = \emptyset$ and $U = \emptyset$.
- 2 For every source u in $cone_G(v)$ do
 - (a) Find a path p_u from u to v.
 - (b) Let q_u denote the prefix of p_u , the vertices and edges of which are not contained in U or F.
 - (c) Add the edges of q_v to F, and add the vertices of q_v to U.

Theorem (Linear Cost Lower Bound Theorem)

Let $H = (V, E, \pi)$ denote a combinational circuit. If the fan-in of every gate in H is at most 2, then

$$c(H) \geq \max_{v \in V} |\operatorname{cone}(f_v)| - 1.$$

Corollary

Let C_n denote a combinational circuit that implements OR_n . Then

$$c(C_n) \geq n-1.$$

 $|cone(OR_n)| = n$ $OR_(\vec{o}) = 0$ $OR_n(flip;(\vec{o})) = 1$

cost(H) z max | cone(fv) | - 1 proof: consider DG(H). fix vertex v. construct tree Ty routed at v with $leaves(T_v) = cone_{DG(H)}(v)$ | {ue Ty: degin (u) =2 } = | Leaves (Tv) - 1 $= \left| CONe \left(v \right) \right| - 1$ DG(H) $\geq |cone(f_v)| - 1$ $cost(H) \ge |SueT_v: deg_{in}^{T_v}(u)=2S|.$ but : Note: did not count invis. \bowtie

Theorem (Logarithmic Delay Lower Bound Theorem)

Let $H = (V, E, \pi)$ denote a combinational circuit. If the fan-in of every gate in H is at most 2, then

$$t_{pd}(H) \geq \max_{v \in V} \log_2 |\operatorname{cone}(f_v)|.$$

Corollary

Let C_n denote a combinational circuit that implements OR_n . Let 2 denote the maximum fan-in of a gate in C_n . Then

 $t_{pd}(C_n) \geq \lceil \log_2 n \rceil$.

$$t_{pd}(H) \ge \max \log_2 |cone(f_v)|$$

$$proof: fix v. let T_v denote tree routed
at v with Leaves(T_v) = cone (v)
depth(T_v) \ge \log_2 |Leaves(T_v)|$$

$$= \log_2 |cone (v)|$$

$$\ge \log_2 |cone (f_v)|$$

$$t_{pd}(H) \ge depth(T_v).$$

Theorem (Logarithmic Delay Lower Bound Theorem)

Let $H = (V, E, \pi)$ denote a combinational circuit. If the fan-in of every gate in H is at most k, then

$$t_{pd}(H) \geq \max_{v \in V} \log_k |\operatorname{cone}(f_v)|.$$

Corollary

Let C_n denote a combinational circuit that implements OR_n . Let k denote the maximum fan-in of a gate in C_n . Then

 $t_{pd}(C_n) \geq \lceil \log_k n \rceil$.

exercise

- Focus on combinational circuits that have a topology of a tree with identical gates.
- Trees are especially suited for computing associative Boolean functions.
- Defined an OR-tree(n) to be a combinational circuit that implements OR_n using a topology of a tree.
- Proved that OR-tree(n) are asymptotically optimal (cost).
- Balance conditions to obtain good delay.
- General lower bounds based on *cone*(*f*).
 - # gates in a combinational circuit implementing a Boolean
 function f must be at least |cone(f)| − 1.
 - the propagation delay of a combinational circuit implementing a Boolean function f is at least log₂ |cone(f)|.