# Digital Logic Design: a rigorous approach © 

## Chapter 12: Trees

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

$$
\text { May 3, } 2020
$$

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

## Preliminary questions:

(1) Which Boolean functions are suited for implementation by tree-like combinational circuits?
(2) In what sense are tree-like implementations optimal?


## Reminder: Binary Boolean Functions

## Definition

A binary Boolean function is a function $f:\{0,1\}^{2} \rightarrow\{0,1\}$.
A binary function is often denoted by a dyadic operator, say $*$. So instead of writing $f(a, b)$, we write $a * b$.
examples: OR, AND, XOR
$x$ - can be any bin. Boolean fund.

## Reminder: Associative Boolean functions

## Definition

A binary Boolean function $*:\{0,1\}^{2} \rightarrow\{0,1\}$ is associative if

$$
\left(x_{1} * x_{2}\right) * x_{3}=x_{1} *\left(x_{2} * x_{3}\right),
$$

for every $x_{1}, x_{2}, x_{3} \in\{0,1\}$.
One may omit parenthesis: $x_{1} * x_{2} * x_{3}$ is well defined.
Consider the function $f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ defined by

$$
\begin{gathered}
f_{n}\left(x_{1}, \ldots, x_{n}\right) \triangleq x_{1} * \cdots * x_{n} \\
\text { example: } O R_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\ldots+x_{n}
\end{gathered}
$$

associativity by picture



$$
\left(x_{1} * x_{2}\right) * x_{3}
$$

$$
x_{1} *\left(x_{2} * x_{3}\right)
$$

$*$ assoc. $\Longleftrightarrow$

$$
\begin{gathered}
Y=Z \\
\left(\forall x_{1}, x_{2}, x_{3}\right)
\end{gathered}
$$

## Extension of associative function

## Definition

Let $f:\{0,1\}^{2} \rightarrow\{0,1\}$ denote a Boolean function. The function
$f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$, for $n \geq 1$, is defined recursively as follows.
(1) If $n=1$, then $f_{1}(x)=x$.
(2) If $n=2$, then $f_{2}=f$.
(3) If $n>2$, then $f_{n}$ is defined based on $f_{n-1}$ as follows:

$$
f_{n}\left(x_{1}, x_{2}, \ldots x_{n}\right) \triangleq f\left(f_{n-1}\left(x_{1}, \ldots, x_{n-1}\right), x_{n}\right) .
$$

## Claim

If $f:\{0,1\}^{2} \rightarrow\{0,1\}$ is an associative Boolean function, then

$$
f_{n}\left(x_{1}, x_{2}, \ldots x_{n}\right)=f\left(f_{n-k}\left(x_{1}, \ldots, x_{n-k}\right), f_{k}\left(x_{n-k+1}, \ldots, x_{n}\right)\right),
$$

for every $n \geq 2$ and $k \in[1, n-1]$.

$$
\begin{aligned}
& f_{n}\left(x_{1}, \ldots, x_{n}\right) \\
= & f\left(f_{n-1}\left(x_{1}, \ldots, x_{n-1}\right), x_{n}\right)
\end{aligned}
$$

expand recursion:

want to prove that $\forall n \geqslant 2 \quad \forall k \in[1, n-1]$ :

$$
f_{n}\left(x_{1}, \ldots, x_{n}\right)=f\left(f_{n-k}\left(x_{1}, \ldots, x_{n-k}\right), f_{k}\left(x_{n-k+1},-, x_{n}\right)\right)
$$

meaning: $y=z$ where


* note: for $k=1$, equality hold $s$ because. LHS is the same as RHS
proof by comp. ind. on $n$.
basis: $n=2$ true because $k=1$.
hyp: $\quad$ LHS $=$ RHS $\quad \forall n^{\prime}<n \quad k \in\left[1, n^{\prime}-1\right]$
step: (by pictures!)

ind. hyp.
assoc.

ind. hyp.



## Trees of associative Boolean gates

To simplify the presentation, consider the Boolean function $\mathrm{OR}_{n}$.

## Definition

A combinational circuit $H=(V, E, \pi)$ that satisfies the following conditions is called an OR-tree( $n$ ).
(1) The graph $D G(H)$ is a rooted tree with $n$ sources.
(2) Each vertex $v$ in $V$ that is not a source or a sink is labeled $\pi(v)=O R$.
(3) The set of labels of leaves of $H$ is $\left\{x_{0}, \ldots, x_{n-1}\right\}$.


## Correctness of OR-tree( $n$ )

## Definition

A combinational circuit $H=(V, E, \pi)$ that satisfies the following conditions is called an OR-tree $(n)$.
(1) Topology. The graph $D G(H)$ is a rooted tree with $n$ sources.
(2) Each vertex $v$ in $V$ that is not a source or a sink is labeled $\pi(v)=O R$.
(3) The set of labels of leaves of $H$ is $\left\{x_{0}, \ldots, x_{n-1}\right\}$.

## Claim

Every OR-tree(n) implements the Boolean function OR $_{n}$.
$\forall O R-t r e e(n)$ implements $O R_{n}$
proof: by comp. ind. On $n$. (basis, hyp exercise)

where

$$
\begin{aligned}
& \vec{x}_{L} \cap \vec{x}_{R}=\phi \\
& \text { of } x_{2} \cup x_{R}=\left\{x_{1}, \ldots, x_{n}\right\} \\
& \text { ink. hyp: } \frac{\operatorname{OR}^{- \text {true }(k)}}{\hat{x}_{L}}=O R_{k}\left(\vec{x}_{L}\right) \\
& \frac{\overline{O R-\text { tree }(n-k) \mid}}{1}=O R_{n-k}\left(\vec{x}_{R}\right) \\
& y=O R\left(O R_{k}\left(\vec{x}_{L}\right), O R_{n-k}^{\vec{x}_{R}}\left(\vec{x}_{R}\right)\right) \stackrel{\text { chic }}{\wp} O R_{n}\left(\vec{x}_{L} \cup \vec{x}_{R}\right) \stackrel{\text { comm. }}{=} O R_{n}(\vec{x})_{\otimes}
\end{aligned}
$$

## Relation to Boolean Formulas

## Definition

A Boolean formula $\varphi$ is an $\operatorname{OR}(n)$ formula if it satisfies three conditions: (i) it is over the variables $X_{0}, \ldots, X_{n-1}$, (ii) every variable $X_{i}$ appears exactly once in $\varphi$, and (iii) the only connective in $\varphi$ is the or connective.

## Claim

A Boolean circuit $C$ is an $\operatorname{OR}(n)$-tree if and only if its graph (without the input/output gates) is a parse tree of an OR(n)-formula.
exercise (hint: complete ind.)

## Cost of OR-tree $(n)$



## Claim

The cost of every OR-tree $(n)$ is $(n-1) \cdot c(\mathrm{OR})$.

## Lemma

Let $G=(V, E)$ denote a rooted tree in which the in-degree of each vertex is at most two. Then

$$
\left|\left\{v \in V \mid \operatorname{deg}_{i n}(v)=2\right\}\right|=\left|\left\{v \in V \mid \operatorname{deg}_{i n}(v)=0\right\}\right|-1 .
$$

$$
\left|\left\{v \mid \operatorname{deg}_{\text {in }}(v)=2\right\}\right|=\left|\left\{v \mid \operatorname{deg}_{\min }(v)=0\right\}\right|-1
$$

proof: comp. ind. on $|V|$
basis: $|V|=1 \quad L H S=0 \quad$ RHS $=1-1=0$
hyp: $\forall$ rooted thee with \#leave's $\mid U n<\pi$ Lemma holds
Step: decompose tree

$$
\begin{aligned}
& \mid\left\{v \in \text { tree } \mid \operatorname{deg}_{\text {in }}(v)=2\right\} \mid \\
= & \left|\left\{v \in T_{L} \mid \operatorname{deg}_{\text {in }}(v)=2\right\}\right| \\
& +\left|\left\{v \in T_{k} \mid \operatorname{degin}_{\text {in }}(v)=2\right\}\right|+1
\end{aligned}
$$


ind. hyp. $\left(n_{1}-1\right)+\left(n_{2}-1\right)+1=n-1$ exercise: what if $\operatorname{deg} \operatorname{gin}(r)=1$ ?
depth of vertex in a rooted tree

$\operatorname{depth}(v)=$ length of path
from $v$ to root.
but we will use a non-standard definition of depth.
confusing, so be aware...

## Depth of tree

delay of an OR tree $=$ number of OR-gates along the longest path from an input to an output.

## Definition (depth - nonstandard definition)

The depth of a rooted tree $T$ is the maximum number of vertices with in-degree greater than one in a path in $T$. We denote the depth of $T$ by depth $(T)$.

Why is this nonstandard?

- Usually, depth is simply the length of the longest path.
- Here we count only vertices with in-degree $\geq 2$.
- Why?
- Input and output gates have zero delay (no computation)
- Assume inverters are free and have zero delay (we will show that for $\mathrm{OR}(n)$ cost \& delay are not reduced even if inverters are free and without delay)


## Binary rooted trees

## Definition

A rooted tree is a binary tree if the maximum in-degree is two.
A rooted tree is a minimum depth tree if its depth is minimum among all the rooted trees with the same number of leaves. All binary trees with $n$ leaves have the same cost. But, which have minimum depth?
(1) if $n$ that is a power of 2 , then there is a unique minimum depth tree, namely, the perfect binary tree with $\log _{2} n$ levels.
(2) if $n$ is not a power of 2 , then there is more than one minimum depth tree... (balanced trees)

## Example: Delay analysis

Are these minimum depth trees?


Figure: Two trees with six inputs.

## Depth: lower bound

## Claim

If $T_{n}$ is a rooted binary tree with $n$ leaves, then the depth of $T_{n}$ is at least $\left\lceil\log _{2} n\right\rceil$.
(1) Suffice to prove depth $\geq \log _{2} n$.
(2) Complete induction on $n$.
sketch: (comp. ind.)


$$
\begin{aligned}
& n_{1}+n_{2}=n \\
& \Rightarrow \max \left\{n_{1}, n_{2}\right\} \geqslant \frac{n}{2}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{depth}(T) & =1+\max \left\{\operatorname{depth}\left(T_{L}\right), \operatorname{depth}\left(T_{R}\right)\right\} \\
& \geqslant 1+\max \left\{\lg n_{1}, \lg n_{2}\right\} \\
& \geqslant 1+\log _{2}\left(\frac{n}{2}\right)=\log _{2} n
\end{aligned}
$$

## Min Depth: the case $n=2^{k}$ (perfect binary trees)

The distance of a vertex $v$ to the root $r$ in a rooted tree is the length of the path from $v$ to $r$.

## Definition

A rooted binary tree is perfect if:

- The in-degree of every non-leaf is 2 , and

- All leaves have the same distance to the root.

Note that the depth of a perfect tree equals the distance from the leaves to the root (no vertices with in-degree 1).

## Claim

The number of leaves in a perfect tree is $2^{k}$, where $k$ is the distance of the leaves to the root.

## Claim

Let $n$ denote the number of leaves in a perfect tree. Then, the distance from every leaf to the root is $\log _{2} n$.

## Minimum depth trees

We now show that for every $n$, we can construct a minimum depth tree $T_{n}^{*}$ of depth $\left\lceil\log _{2} n\right\rceil$. In fact, if $n$ is not a power of 2, then there are many such trees.

## Balanced partitions

## Definition

Two positive integers $a, b$ are a balanced partition of $n$ if:
(1) $a+b=n$, and
(2) $\max \left\{\left\lceil\log _{2} a\right\rceil,\left\lceil\log _{2} b\right\rceil\right\} \leq\left\lceil\log _{2} n\right\rceil-1$.

## Claim

If $n=2^{k}-r$, where $0 \leq r<2^{k-1}$, then the set of balanced partitions is

$$
P \triangleq\left\{(a, b) \mid 2^{k-1}-r \leq a \leq 2^{k-1} \text { and } b=n-a\right\}
$$

$$
\begin{aligned}
& n=13=2^{4}-3 \\
& \quad P=\{(8,5),(7,6),(6,7) .(5,8)\}
\end{aligned}
$$

## Construction of a balanced tree



Algorithm 1 Balanced-Tree( $n$ ) - a recursive algorithm for constructing a binary tree $T_{n}^{*}$ with $n \geq 1$ leaves.
(1) The case that $n=1$ is trivial (an isolated root).
(2) If $n \geq 2$, then let $a, b$ be balanced partition of $n$.
(3) Compute trees $T_{a}^{*}$ and $T_{b}^{*}$. Connect their roots to a new root to obtain $T_{n}^{*}$.

## Definition

A rooted binary tree $T_{n}$ is a balanced tree if it is a valid output of Algorithm Balanced-Tree(n).

## Def: balanced tree

$\overline{\text { Algorithm } 2 \text { Balanced-Tree( } n \text { ) - a recursive algorithm for construct- }}$ ing a binary tree $T_{n}^{*}$ with $n \geq 1$ leaves.
(1) The case that $n=1$ is trivial (an isolated root).
(2) If $n \geq 2$, then let $a, b$ be balanced partition of $n$.
(3) Compute trees $T_{a}^{*}$ and $T_{b}^{*}$. Connect their roots to a new root to obtain $T_{n}^{*}$.

## Claim

The depth of a binary tree $T_{n}^{*}$ constructed by Algorithm Balanced-Tree( $n$ ) is $\left\lceil\log _{2} n\right\rceil$.

## Corollary

The propagation delay of a balanced OR-tree( $n$ ) is
$\left\lceil\log _{2} n\right\rceil \cdot t_{p d}(\mathrm{OR})$.

$$
\operatorname{depth}\left(T_{n}^{*}\right)=\left\lceil\log _{2} n\right\rceil
$$

proof: comp. ind. on $n$
sketch


$$
\begin{aligned}
\operatorname{depth}\left(T_{n}^{*}\right) & =1+\max \left\{\left\lceil\log _{2} a\right\rceil,\left[\log _{2} b\right\rceil\right\} \\
& \leq 1+\left\lceil\log _{2} n\right\rceil-1=\left\lceil\log _{2} n\right\rceil
\end{aligned}
$$

but $T_{n}^{*}$ has $n$ leaves

$$
\Rightarrow \operatorname{depth}\left(T_{n}^{*}\right) \geq\left\lceil\log _{2} n\right\rceil
$$

Summary

* defined $O R_{n}$
can be extended
* defined OR-tree ( $n$ )
* cost or-tree ( $n$ ) to any binary Boolean assoc. fund.
* balanced trees
* delay of balanced trees

CIRCUIT LOWER BOUNDS given $f_{n}:\{0,1\}^{n} \longrightarrow\{0,1\}$.
find $c: N \rightarrow N$ such that
$\forall$ comb. circuit $\operatorname{COMB}_{n}$ that computes $f_{n}: \operatorname{cost}\left(\operatorname{com} B_{n}\right) \geq c(n)$.
If a comb. circuit $H$ has $\operatorname{cost}(H)<c(n)$, then $H$ does not compute $f_{n}$ ? example: $\quad f_{n}=O R_{n}, f_{2 n}(a, b)=\begin{aligned} & n^{\prime}+\text { th bit }\langle i\rangle \\ & \text { of }\langle a\rangle+\langle b\rangle\end{aligned}$ lower bound does not restrict ComB $_{n}$ ?

## Optimality of trees

$$
\forall \text { gate: } \operatorname{cost}(\text { gate })=1
$$

Goals: prove optimality of a balanced OR-tree $(n)$.

## Theorem

Let $C_{n}$ denote a combinational circuit that implements $\mathrm{OR}_{n}$. Then,

$$
c\left(C_{n}\right) \geq n-1 .
$$

## Theorem

Let $C_{n}$ denote a combinational circuit that implements $\mathrm{OR}_{n}$. Let $k$ denote the maximum fan-in of a gate in $C_{n}$. Then

$$
t_{p d}\left(C_{n}\right) \geq\left\lceil\log _{k} n\right\rceil
$$

## Flipping bits

## Definition

Let flip $:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be the Boolean function defined by $\operatorname{flip}_{i}(\vec{x}) \triangleq \vec{y}$, where

$$
y_{j} \triangleq \begin{cases}x_{j} & \text { if } j \neq i \\ \operatorname{NOT}\left(x_{j}\right) & \text { if } i=j\end{cases}
$$

$$
f \operatorname{lip}_{1}(110)=101
$$

The cone of a function

Definition (Cone of a Boolean function)
The cone of a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is defined by

$$
\operatorname{cone}(f) \triangleq\left\{i: \exists \vec{v} \text { such that } f(\vec{v}) \neq f\left(f l p_{i}(\vec{v})\right)\right\}
$$

Example

$$
\text { cone }(\mathrm{XOR})=\{1,2\} .
$$

We say that $f$ depends on $x_{i}$ if $i \in \operatorname{cone}(f)$.

$$
\begin{aligned}
& \operatorname{XOR}(0,0) \neq \operatorname{XOR}(1,0) \quad 2 x \in \operatorname{Cove}(x \circ R) \\
& \operatorname{XOR}(0,0) \neq \operatorname{XOR}(0,1) \quad \phi \in \operatorname{cone}(x \circ R)
\end{aligned}
$$

## Example

Consider the following Boolean function:

$$
f(\vec{x})= \begin{cases}0 & \text { if } \sum_{i} x_{i}<3 \\ 1 & \text { otherwise }\end{cases}
$$

Suppose that one reveals the input bits one by one. As soon as 3 ones are revealed, one can determine the value of $f(\vec{x})$. Nevertheless, the function $f(\vec{x})$ depends on all its inputs, and hence, cone $(f)=\{1, \ldots, n\}$.

$$
\begin{aligned}
& f(1,1,1, \cdots)=1 \\
& f(0,0 \ldots 0,1,1, x)=x
\end{aligned}
$$

## Constant Functions

## Claim <br> cone $(f)=\emptyset \Longleftrightarrow f$ is a constant Boolean function.

cone $(f)=\phi \Leftrightarrow f$ constant
$(\Leftarrow)$ if $f$ constant, then
$\forall v \forall i: f(v)=f(f l i p i(v))$
$\Rightarrow \forall i: \quad i \notin \operatorname{cone}(f)$
$\Rightarrow \quad$ cone $(f)=\varnothing$
cone $(f)=\phi \Leftrightarrow f$ constant
$(\Longrightarrow$ need to prove that (counter-positive)
Cone $(f) \neq \phi \Longleftarrow f$ not const.
suppose: $f:\left\{0.13^{n} \longrightarrow\{0,1\}\right.$
consider Hypercube $\left(\left\{0,13^{n}, E\right)\right.$ where

$$
(u, v) \in E \text { iff } \quad \exists i: u=f_{l i p i}(v)
$$

Hypercube over

$$
\begin{gathered}
\left\{0,13^{3}\right. \\
f \neq \text { const } \Rightarrow \exists u \exists v: \\
f(u)=0 \quad \& \quad f(v)=1
\end{gathered}
$$



$$
f(u)=0, \quad f(v)=1
$$

consider path from $u$ to $v$ in Hypercube.
[path exists: flip bits in which $u$ \& $v$ disagree one at a time.
$000 \rightarrow 100 \rightarrow 110 \rightarrow 111$.
path: $u=x_{0}-x_{1}-\cdots-x_{l}=v$

$$
f\left(x_{0}\right)=0, \quad f\left(x_{l}\right)=1
$$

$\Rightarrow \exists i: f\left(x_{i}\right)=0$ \& $f\left(x_{i+1}\right)=1$
but $\left(x_{i}, x_{i+1}\right) \in E$, so $\exists_{j}$ : $x_{i+1}=f \operatorname{lip}_{j j}\left(x_{i}\right)$

$$
\Rightarrow j \in \operatorname{cone}(f) .
$$

## Composition of Functions

## Claim

If $g(\vec{x}) \triangleq B\left(f_{1}(\vec{x}), f_{2}(\vec{x})\right)$, then

$$
\operatorname{cone}(g) \subseteq \operatorname{cone}\left(f_{1}\right) \cup \operatorname{cone}\left(f_{2}\right)
$$



$$
\begin{aligned}
& g(x) \triangleq B\left(f_{1}(x), f_{2}(x)\right) \\
& \text { cone }(g) \subseteq \operatorname{cone}\left(f_{1}\right) \cup \operatorname{cone}\left(f_{2}\right)
\end{aligned}
$$

proof by counter-positive, suffice:
$i \notin$ cone $\left(f_{1}\right) \cup$ cone $\left(f_{2}\right) \Rightarrow i \notin$ cone $(g)$.

$$
\left.\left.\begin{array}{rl}
g(x) & =B\left(f_{1}(x), f_{2}(x)\right) \\
& =B\left(f_{1}\left(f \operatorname{lip}_{i}(x)\right), f_{2}\left(f \operatorname{lip}_{i}(x)\right)\right) \\
& =g\left(f_{\operatorname{lip}}^{i}\right.
\end{array}(x)\right)\right)
$$

## Graphical Cone

## Definition

Let $G=(V, E)$ denote a DAG. The graphical cone of a vertex $v \in V$ is defined by

$$
\operatorname{cone}_{G}(v) \triangleq\left\{u \in V: \operatorname{deg}_{i n}(u)=0 \text { and } \exists \text { path from } u \text { to } v\right\}
$$

In a combinational circuit, every source is an input gate. This means that the graphical cone of $v$ equals the set of input gates from which there exists a path to $v$.


Functional Cone $\subseteq$ Graphical Cone


Claim
Let $H=(V, E, \pi)$ denote a combinational circuit. Let
$G=D G(H)$. For every vertex $v \in V$, the following holds:

$$
\operatorname{cone}\left(f_{v}\right) \subseteq \operatorname{cone}_{G}(v) .
$$

Namely, if $f_{v}$ depends on $x_{i}$, then the input gate $u$ that feeds the input $x_{i}$ must be in the graphical cone of $v$.


$$
\text { cone }\left(f_{v}\right) \subseteq \operatorname{cone}_{G}(v)
$$

proof top. sort of $V$

$$
\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$


prove (by comp. ind on $i$ ):

$$
\forall i: \text { cone }\left(f_{v_{i}}\right) \subseteq \operatorname{cone}_{G}\left(v_{i}\right)
$$

basis: $i=1$ (or sources)

$$
\text { cone }\left(f_{v_{1}}\right)=\left\{v_{1}\right\} \quad \text { cone }\left(v_{1}\right)=\left\{v_{1}\right\}
$$

hyp: claim holds for $j<i$.
step:
3 cases: $\quad \operatorname{deg} \operatorname{in}^{\left(v_{i}\right)} \in\{0,1,2\}$
exercise:

$$
\operatorname{deg}_{\operatorname{m}}(v)=1
$$

$$
\begin{aligned}
& v_{a} \rightarrow f_{v_{i}}(x)=\frac{B}{\pi\left(v_{i}\right)}\left(f_{v_{a}}(x), f_{v_{b}}(x)\right) \\
& \Rightarrow \operatorname{cone}\left(f_{v_{i}}\right) \leq \operatorname{cone}\left(f_{v_{a}}\right) \cup \text { cone }\left(f_{v_{b}}\right) \\
& \leq \operatorname{cone}_{G}\left(v_{a}\right) \cup \operatorname{cone}_{G}\left(v_{b}\right) \\
& =\operatorname{cone}_{G}\left(v_{i}\right)
\end{aligned}
$$

## Claim

Let $G=(V, E)$ denote a $D A G$. For every $v \in V$, there exist $U \subseteq V$ and $F \subseteq E$ such that:
(1) $T=(U, F)$ is a rooted tree;
(2) $v$ is the root of $T$;
(3) cone ${ }_{G}(v)$ equals the set of leaves of $(U, F)$.

The sets $U$ and $F$ are constructed as follows.
(1) Initialize $F=\emptyset$ and $U=\emptyset$.
(2) For every source $u$ in cone $_{G}(v)$ do
(a) Find a path $p_{u}$ from $u$ to $v$.
(b) Let $q_{u}$ denote the prefix of $p_{u}$, the vertices and edges of which are not contained in $U$ or $F$.
(c) Add the edges of $q_{v}$ to $F$, and add the vertices of $q_{v}$ to $U$.


## Lower Bound on Cost

## Theorem (Linear Cost Lower Bound Theorem)

Let $H=(V, E, \pi)$ denote a combinational circuit. If the fan-in of every gate in $H$ is at most 2 , then

$$
c(H) \geq \max _{v \in V}\left|\operatorname{cone}\left(f_{v}\right)\right|-1
$$

## Corollary

Let $C_{n}$ denote a combinational circuit that implements $\mathrm{OR}_{n}$. Then

$$
c\left(C_{n}\right) \geq n-1 .
$$

$$
\left\lvert\, \begin{array}{ll}
\mid \text { cone }\left(O R_{n}\right) \mid=n & O R_{n}(\vec{O})=0 \\
& O R_{n}\left(f l_{i p}(\overrightarrow{0})\right)=1
\end{array}\right.
$$

$$
\cos t(H) \geqslant \max _{v}\left|\operatorname{cone}\left(f_{v}\right)\right|-1
$$

proof: consider $D G(H)$. fix vertex $v$. construct tree $T_{v}$ routed at $v$ with

$$
\begin{aligned}
\operatorname{leaves}\left(T_{v}\right)= & \text { cone }_{D G(H)}(v) \\
\left|\left\{u \in T_{v}: \operatorname{deg}_{\text {in }}^{T_{v}}(u)=2\right\}\right| & =\mid \text { Leaves }^{\left(T_{v}\right) \mid-1} \\
& =|\operatorname{cone} \underset{D G(H)}{ }(v)|-1 \\
& \geqslant\left|\operatorname{cone}\left(f_{v}\right)\right|-1
\end{aligned}
$$

but: $\operatorname{cost}(H) \geqslant\left|\left\{u \in T_{v}: \operatorname{deg}_{\text {in }}^{T_{v}}(u)=2\right\}\right|$.
note: did not count inv's.

## Lower Bound on Delay

## Theorem (Logarithmic Delay Lower Bound Theorem)

Let $H=(V, E, \pi)$ denote a combinational circuit. If the fan-in of every gate in $H$ is at most 2, then

$$
t_{p d}(H) \geq \max _{v \in V} \log _{2}\left|\operatorname{cone}\left(f_{v}\right)\right|
$$

## Corollary

Let $C_{n}$ denote a combinational circuit that implements $\mathrm{OR}_{n}$. Let 2 denote the maximum fan-in of a gate in $C_{n}$. Then

$$
t_{p d}\left(C_{n}\right) \geq\left\lceil\log _{2} n\right\rceil
$$

$$
t_{p d}(H) \geq \max _{v} \log _{2} \mid \text { cone }\left(f_{v}\right) \mid
$$

proof: fix $v$. let $T_{v}$ denote tree routed at $v$ with Leaves $\left(T_{v}\right)=$ cone DG (H) $(v)$

$$
\begin{aligned}
\operatorname{depth}\left(T_{v}\right) & \geqslant \log _{2}\left|\operatorname{Leaves}\left(T_{v}\right)\right| \\
& =\log _{2} \mid \operatorname{cone}(v G(H) \mid \\
& \geqslant \log _{2}\left|\operatorname{cone}\left(f_{v}\right)\right|
\end{aligned}
$$

$$
\operatorname{tpd}(H) \geqslant \operatorname{depth}\left(T_{r}\right) .
$$

## What is the effect of increasing the fan-in on the delay?

## Theorem (Logarithmic Delay Lower Bound Theorem)

Let $H=(V, E, \pi)$ denote a combinational circuit. If the fan-in of every gate in $H$ is at most $k$, then

$$
t_{p d}(H) \geq \max _{v \in V} \log _{k}\left|\operatorname{cone}\left(f_{V}\right)\right|
$$

## Corollary

Let $C_{n}$ denote a combinational circuit that implements $\mathrm{OR}_{n}$. Let $k$ denote the maximum fan-in of a gate in $C_{n}$. Then

$$
t_{p d}\left(C_{n}\right) \geq\left\lceil\log _{k} n\right\rceil
$$

exercise

- Focus on combinational circuits that have a topology of a tree with identical gates.
- Trees are especially suited for computing associative Boolean functions.
- Defined an OR-tree( $n$ ) to be a combinational circuit that implements $\mathrm{OR}_{n}$ using a topology of a tree.
- Proved that OR-tree $(n)$ are asymptotically optimal (cost).
- Balance conditions to obtain good delay.
- General lower bounds based on cone(f).
- \# gates in a combinational circuit implementing a Boolean function $f$ must be at least $|\operatorname{cone}(f)|-1$.
- the propagation delay of a combinational circuit implementing a Boolean function $f$ is at least $\log _{2} \mid$ cone $(f) \mid$.

