Digital Logic Design: a rigorous approach ©

Chapters 17-20: Flip-Flops, Synchronous Circuits, and Finite State Machines

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

December 21, 2021

Book Homepage:

http://www.eng.tau.ac.il/~guy/Even-Medina

Preliminary questions

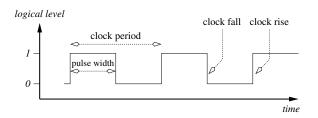
- 4 How is time measured in a synchronous circuit?
- What is a "clock" in a microprocessor?
- What is the frequency of a clock?
- What is memory? How are bits stored?

The clock

the clock is generated by rectifying and amplifying a signal generated by special non-digital devices (e.g., crystal oscillators).

Definition

A clock is a periodic logical signal that oscillates instantaneously between logical one and logical zero. There are two instantaneous transitions in every clock period: (i) in the beginning of the clock period, the clock transitions instantaneously from zero to one; and (ii) at some time in the interior of the clock period, the clock transitions instantaneously from one to zero.



Clock cycles

- A clock partitions time into discrete intervals.
- t_i the starting time of the ith clock cycle.
- $[t_i, t_{i+1})$ -clock cycle i.
- Clock period = $t_{i+1} t_i$.

Assumption

We assume that the clock period equals 1.

$$t_{i+1} = t_i + 1$$
.

Flip-Flop

Definition

A flip-flop is defined as follows.

Inputs: Digital signals D(t) and a clock CLK.

Output: A digital signal Q(t).

Functionality:

$$Q(t+1)=D(t).$$

t	D[t]	Q[t]	
0	1	?	
1	0	1	
1 2 3	0	0	
3	1	0	
4	1	1	

Clock enabled flip-flops

Definition

A clock enabled flip-flop is defined as follows.

Inputs: Digital signals D(t), CE(t) and a clock CLK.

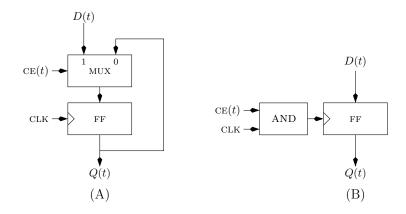
Output: A digital signal Q(t).

Functionality:

$$Q(t+1) = egin{cases} D(t) & ext{if $\operatorname{CE}(t) = 1$} \ Q(t) & ext{if $\operatorname{CE}(t) = 0$}. \end{cases}$$

We refer to the input signal CE(t) as the clock-enable signal. Note that the input CE(t) indicates whether the flip-flop samples the input D(t) or maintains its previous value.

Which design is a correct clock enabled FF?



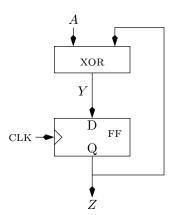
The Zero Delay Model

- 1 Transitions of all signals are instantaneous.
- ② Combinational gates: $t_{pd} = t_{cont} = 0$.
- Flip-flops satisfy:

$$Q(t+1)=D(t).$$

- Simplified model for specifying and simulating the functionality of circuits with flip-flops.
- **3** For a signal X, let X_i denote its value during the ith clock cycle.

Example: Sequential XOR



i	A_i	Y_i	Z_i
0	0	0	0
1	0	0	0
2	1	1	0
1 2 3 4 5 6	0	1	1
4	0	1	1
5	1	0	1
6	0	0	0
7 8	1	1	0
8	0	1	1

Sequential Adder

Definition

A sequential adder is defined as follows.

Inputs: A, B and a clock signal CLK, where $A_i, B_i \in \{0, 1\}$.

Output: S, where $S_i \in \{0, 1\}$.

Functionality: Then, for every $i \ge 0$,

 $\langle A[i:0] \rangle + \langle B[i:0] \rangle = \langle S[i:0] \rangle \pmod{2^{i+1}}.$

Sequential Adder Implementation

Sequential Adder: Correctness

Theorem

$$\sum_{j=0}^{i} A_j \cdot 2^j + \sum_{j=0}^{i} B_j \cdot 2^j = \sum_{j=0}^{i} S_j \cdot 2^j + c_{out}(i) \cdot 2^{i+1}.$$

Proof.

The proof is by induction on i.

The induction basis for i = 0 follows from the functionality of the full-adder:

$$A_0 + B_0 + C_{in}(0) = 2 \cdot C_{out}(0) + S_0$$
.

This requires that $C_{in}(0) = 0!$ Namely, that the FF is initialized to zero. (We will discuss how to partly mitigate the issue of initialization later.)

Sequential Adder: Implementation - correctness (cont.)

Proof.

We now prove the induction step for i > 0.

$$\sum_{j=0}^{i} A_{j} \cdot 2^{j} + \sum_{j=0}^{i} B_{j} \cdot 2^{j} = (A_{i} + B_{i}) \cdot 2^{i} + \sum_{j=0}^{i-1} A_{j} \cdot 2^{j} + \sum_{j=0}^{i-1} B_{j} \cdot 2^{j}$$

$$= (A_{i} + B_{i}) \cdot 2^{i} + \sum_{j=0}^{i-1} S_{j} \cdot 2^{j} + C_{out}(i-1) \cdot 2^{i}$$

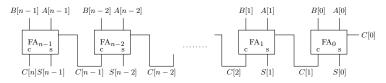
$$= (C_{in}(i) + A_{i} + B_{i}) \cdot 2^{i} + \sum_{j=0}^{i-1} S_{j} \cdot 2^{j}$$

$$= (S_{i} + 2 \cdot C_{out}(i)) \cdot 2^{i} + \sum_{j=0}^{i-1} S_{j} \cdot 2^{j}$$

$$= \sum_{i=0}^{i} S_{j} \cdot 2^{j} + C_{out}(i) \cdot 2^{i+1}.$$

Relation between RCA(n) and Sequential Adder

- FA_i is "simulated" by the FA (in Seq. Adder) in the i'th clock cycle.
- ② We can view RCA(n) as an "unrolling" of the Seq. Adder.



Comparison with Combinational Lower Bounds

- **1** Addition and XOR_n have functional cone of size n.
- ② Every combinational circuit has cost $\Omega(n)$ and delay $\Omega(\log n)$.
- **3** But sequential versions have cost O(1)! How can that be?

Registers

A term register is used to define a memory device that stores a bit or more. There are two main types of register depending on how their contents are loaded.

- Parallel Load Register
- 2 Shift Register (also called a serial load register)

Parallel Load Register - specification

Definition

An *n*-bit *parallel load register* is specified as follows.

Inputs: • D[n-1:0](t),

 \bullet CE(t), and

a clock CLK.

Output: Q[n-1:0](t).

Functionality:

$$Q[n-1:0](t+1) = egin{cases} D[n-1:0](t) & ext{if $\operatorname{CE}(t)=1$} \ Q[n-1:0](t) & ext{if $\operatorname{CE}(t)=0$}. \end{cases}$$

An n-bit parallel load register is simply built from n clock enabled flip-flops.

Parallel Load Register - design

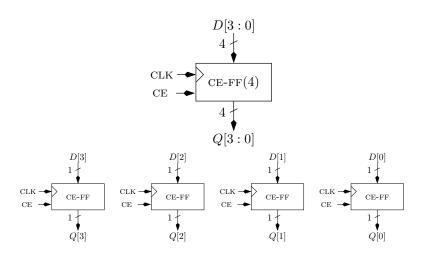
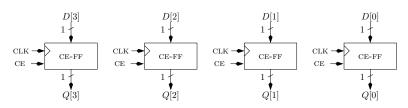


Figure: A 4-bit parallel load register

Parallel Load Register - simulation



i	D[3:0]	CE	Q[3:0]
0	1010	1	0000
1	0101	1	1010
2	1100	0	0101
3	1100	1	0101
4	0011	1	1100

Shift Register - definition

Definition

A *shift register* of n bits is defined as follows.

Inputs: D[0](t) and a clock CLK.

Output: Q[n-1](t).

Functionality: Q[n-1](t+n) = D[0](t).

Shift Register - design

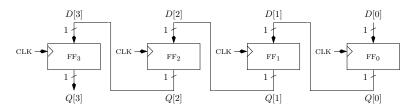
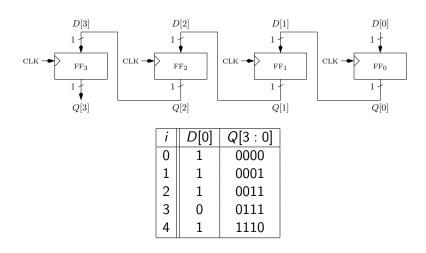


Figure: A 4-bit shift register. Functionality: Q[3](t+4) = D[0](t)

Shift Registers - simulation



ROM - definition/design

Definition

A $ROM(2^n)$ that implements a Boolean function

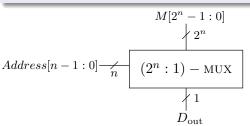
 $M: [0..2^n - 1] \rightarrow \{0, 1\}$ is defined as follows.

Inputs: Address[n-1:0](t).

Output: $D_{out}(t)$.

Functionality:

$$D_{\mathsf{out}} = M[\langle Address \rangle]$$
.



Read-Only Memory (ROM)

- The contents stored in each memory cell are preset and fixed.
- ROMs are used to store information that should not be changed.
- For example, the ROM stores the program that is executed when the computer is turned on.
- Modern computers use non-volatile memory as ROM (such memory does allow write operations - and writing is often limited by "permissions")

Random Access Memory (RAM)

- Hardware module that implements an array of memory cells, where each memory cell stores a single bit.
- 2 In each cycle, a single memory cell is accessed.
- Two operations are supported: read and write.
 - read operation: the contents of the accessed memory is output.
 - write operation: a new value is stored in the accessed memory cell.
- The number of memory cells is denoted by 2^n .
- **5** Each cell has a distinct address between 0 and $2^n 1$.
- The cell to be accessed is specified by an *n*-bit string called *Address*.
- The array of memory cells is denoted by $M[2^n 1:0]$. Let M[i](t) denote the value stored in the *i*th entry of the array M during clock cycle t.

RAM - definition

Definition

A $RAM(2^n)$ is specified as follows.

```
Inputs: Address[n-1:0](t) \in \{0,1\}^n, D_{in}(t) \in \{0,1\}, R/\overline{W}(t) \in \{0,1\} and a clock CLK.
```

Output: $D_{\text{out}}(t) \in \{0, 1\}$.

Functionality:

- data: array $M[2^n 1:0]$ of bits.
- ② initialize: $\forall i : M[i] \leftarrow 0$.
- **3** For t = 0 to ∞ do
 - $D_{\text{out}}(t) = M[\langle Address \rangle](t)$.
 - **②** For all $i \neq \langle Address \rangle$: $M[i](t+1) \leftarrow M[i](t)$.
 - (3)

$$M[\langle \textit{Address}
angle](t+1) \leftarrow egin{cases} D_{\mathsf{in}}(t) & \text{if } R/\overline{W}(t) = 0 \ M[\langle \textit{Address}
angle](t) & ext{else.} \end{cases}$$

RAM - schematic

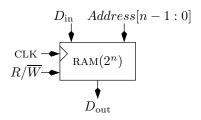
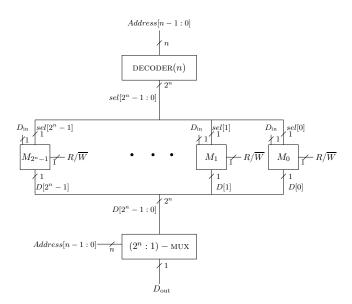


Figure: A schematic of a $RAM(2^n)$.

RAM -design



Memory Cell - specification

Definition

A single bit memory cell is defined as follows.

Inputs: $D_{in}(t)$, $R/\overline{W}(t)$, sel(t), and a clock CLK.

Output: $D_{out}(t)$.

Functionality:

Assume that D_{out} is initialized zero, i.e., $D_{\text{out}}(0) = 0$. The functionality is defined according to the following cases.

$$D_{ ext{out}}(t+1) \leftarrow egin{cases} D_{ ext{in}}(t) & ext{if } \mathit{sel}(t) = 1 ext{ and } R/\overline{W}(t) = 0 \ D_{ ext{out}}(t) & ext{otherwise}. \end{cases}$$

Memory Cell - design

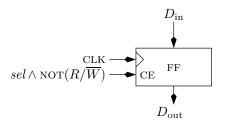


Figure: An implementation of a memory cell.

Summary of Part 1

- Clock signal & clock cycles.
- Flip-Flops and clock-enabled FF's
- Examples:
 - Sequential XOR
 - Sequential Adder
 - Omparison with combinational lower bounds.
- Registers: parallel load and shift registers.
- ROM and RAM.

Preliminary questions

- What is a synchronous circuit?
- 4 How can we initialize a synchronous circuit?

Synchronous Circuits

- Building blocks: combinational gates, wires, and flip-flops.
- The graph *G* of a synchronous circuit is directed but may contain cycles (e.g., sequential adder).
- A flip-flop has two inputs D and CLK that play quite different roles. We must make sure that we know the input port of each incoming edge.
- Definition based on a reduction to a combinational circuit...

Synchronous Circuits

Definition

A synchronous circuit is a circuit *C* composed of combinational gates, wires, and flip-flops that satisfies the following conditions:

- There is an input gate that feeds the clock signal CLK.
- The set of ports that are fed by the clock CLK equals the set of clock-inputs of the flip-flops.
- **3** Let C' denote a circuit obtained from C by stripping the flip-flops away. Then, the circuit C' is a combinational circuit.

Stripping Flip-Flops Away

Definition

- Delete the input gate that feeds the clock CLK and all the wires carrying the clock signal.
- 2 Remove all the flip-flops.
- Add an output gate for each D port.
- 4 Add an input gate for each Q port.

Example - stripping FFs away

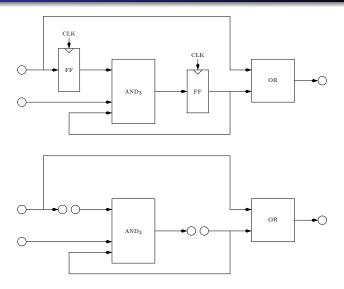


Figure: A synchronous circuit C and the combinational circuit C' obtained from C by stripping away the flip-flops.

Remarks:

It is easy to check if a given circuit C is a synchronous circuit.

- Check if there is a clock signal that is connected to all the clock terminals of the flip-flops and only to them.
- Strip the flip-flops away to obtain the circuit C'. Check if C' is a combinational circuit.

Cycles (closed paths) in a synchronous circuit

Claim

Every closed path in a synchronous circuit traverses at least one flip-flop.

Logical Simulation of Synchronous Circuits

Assumptions:

- Initialization (magical?): For every flip-flop FF_i , let $S_0(FF_i) \in \{0,1\}$ denote the value output by FF_i in clock cycle t=0.
- Input sequence: For every input gate X let $IN_t(X) \in \{0,1\}$ the input fed by X in clock cycle t.

Initialization serves a crucial role in the induction basis!

Simulation Algorithm

Algorithm 1 SIM(C, S_0 , $\{IN_t\}_{t=0}^{T-1}$) - An algorithm for simulating a synchronous circuit C with respect to an initialization S_0 and a sequence of inputs $\{IN_t\}_{t=0}^{T-1}$.

- Construct the combinational circuit C' obtained from C by stripping away the flip-flops.
- ② For t = 0 to T 1 do:
 - Simulate the combinational circuit C' with input values corresponding to S_t and IN_t . Namely, every input gate in C feeds a value according to IN_t , and every Q-port of a flip-flop feeds a value according to S_t . For every sink z in C', let z_t denote the value fed to z according to this simulation.
 - **②** For every Q-port S of a flip-flop, define $S_{t+1} \leftarrow NS_t$, where NS denotes the D-port of the flip-flop.

The Canonic Form of a Synchronous Circuit

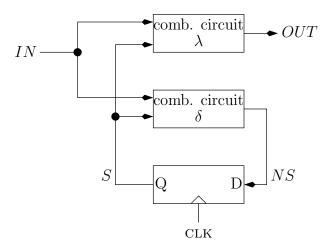


Figure: A synchronous circuit in canonic form.

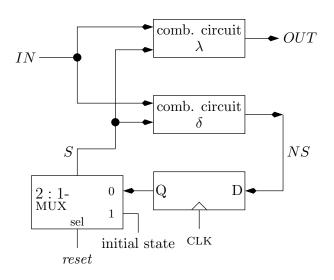
Initialization

- We require that the output of every flip-flop be defined during the first clock cycle. Impossible?
 - How can we even define the "first" clock cycle?
 - 2 What is the state of a flip-flop after power on?
 - 4 How can anything be set or determined after power on?
- Deus ex machina: introduce a reset signal:

$$reset(t) \stackrel{\triangle}{=} egin{cases} 1 & ext{if } t = 0, \\ 0 & ext{otherwise}. \end{cases}$$

- How is a reset signal generated? How could a reset signal differ from the the output of a flip-flop?
- No solution to this problem within the digital abstraction. All
 we can try to do is reduce the probability of such an event.
- In practice, a special circuit, called a reset controller, generates
 a proper reset signal with very high probability. Oddly enough,
 a reset controller is usually constructed by cascading flip-flops!

Using the reset



Restart "time": If reset(t) = 1, then set $t \leftarrow 0$.

Functionality: the canonic form

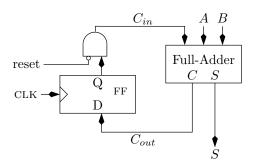
We denote the logical value of a signal X during the i'th clock cycle by X_i .

Claim

For every $i \ge 0$:

$$egin{aligned} S_i &= egin{cases} ext{initial state} & ext{if } i = 0 \ ext{NS}_{i-1} & ext{if } i \geq 1 \ ext{NS}_i &= \delta(ext{IN}_i, S_i) \ ext{OUT}_i &= \lambda(ext{IN}_i, S_i) \ \end{cases}$$

Sequential Adder with Reset



Note: Mux controlled by reset implemented by an AND-gate.

Sequential Adder with Reset

What happens if $|\{t \mid reset(t) = 1\}| > 1$? If reset(t) = 1, then we forget about the past, we treat clock cycle t as the first clock cycle. Formally, we define the last initialization r(i) as follows:

$$r(i) \stackrel{\triangle}{=} \max\{t \leq i : reset(t) = 1\}.$$

Namely, r(i) specifies the last time reset(t) = 1 not after cycle i. If $reset_j = 0$, for every $j \le i$, then r(i) is not defined, and functionality is unspecified. If r(i) is well defined, then the functionality is that, for every $i \ge 0$,

$$\langle A[i:r(i)]\rangle + \langle B[i:r(i)]\rangle = \langle S[i:r(i)]\rangle \pmod{2^{i-r(i)+1}}.$$

Finite State Machines

The functionality of a synchronous circuit in the canonic form is so important that it justifies a term called <u>finite state machines</u>.

Definition

A finite state machine (FSM) is a 6-tuple $\mathcal{A}=\langle Q,\Sigma,\Delta,\delta,\lambda,q_0\rangle$, where

- Q is a set of states.
- ullet Σ is the alphabet of the input.
- ullet Δ is the alphabet of the output.
- $\delta: Q \times \Sigma \to Q$ is a transition function.
- $\lambda: Q \times \Sigma \to \Delta$ is an output function.
- $q_0 \in Q$ is an initial state.

What does an FSM do?

An FSM is an abstract machine that operates as follows. The input is a sequence $\{x_i\}_{i=0}^{n-1}$ of symbols over the alphabet Σ . The output is a sequence $\{y_i\}_{i=0}^{n-1}$ of symbols over the alphabet Δ . An FSM transitions through the sequence of states $\{q_i\}_{i=0}^n$. The state q_i is defined recursively as follows:

$$q_{i+1} \stackrel{\triangle}{=} \delta(q_i, x_i)$$

The output y_i is defined as follows:

$$y_i \stackrel{\triangle}{=} \lambda(q_i, x_i).$$

FSM - terminology

Other terms for a finite state machine are a finite automaton with outputs and transducer. In the literature, an FSM according to our definition is often called a Mealy Machine. Another type of machine, called Moore Machine, is an FSM in which the domain of output function λ is Q (namely, the output is only a function of the state and does not depend on the input).

State Diagrams

FSMs are often depicted using state diagrams.

Definition

The state diagram corresponding to an FSM \mathcal{A} is a directed graph G=(Q,E) with edge labels $(x,y)\in\Sigma\times\Delta$. The edge set E is defined by

$$E \stackrel{\triangle}{=} \{(q, \delta(q, x)) : q \in Q \text{ and } x \in \Sigma\}.$$

Each edge $(q, \delta(q, x))$ is labeled $(x, \lambda(q, x))$.

The vertex q_0 corresponding to the initial state of an FSM is usually marked in an FSM by a double circle.

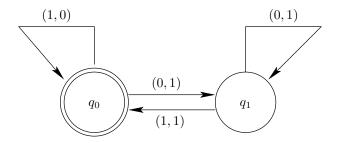
We remark that a state diagram is in fact a multi-graph, namely, one allows more than one directed edge between two vertices. Such edges are often called parallel edges. Note that the out-degree of every vertex in a state diagram equals $|\Sigma|$.

Example: A two-state FSM

Consider the FSM $\mathcal{A}=\langle Q,\Sigma,\Delta,\delta,\lambda,q_0\rangle$ depicted in the next figure, where

$$Q = \{q_0, q_1\},$$

 $\Sigma = \Delta = \{0, 1\}.$



Synthesis and Analysis

Two tasks are often associated with synchronous circuits. These tasks are defined as follows.

- Analysis: given a synchronous circuit *C*, describe its functionality by an FSM.
- ② Synthesis: given an FSM \mathcal{A} , design a synchronous circuit C that implements \mathcal{A} .

Analysis: Sync Circuit \mapsto FSM

The task of analyzing a synchronous circuit C is carried out as follows.

- **1** Define the FSM $\mathcal{A} = \langle Q, \Sigma, \Delta, \delta, \lambda, q_0 \rangle$ as follows.
 - **1** The set of states is $Q \stackrel{\triangle}{=} \{0,1\}^k$, where k denotes the number of flip-flops in C.
 - **②** Define the initial state q_0 to be the initial outputs of the flip-flops.
 - **3** $\Sigma = \{0,1\}^{\ell}$, where ℓ denotes the number of input gates in C.
 - **3** $\Delta = \{0,1\}^r$, where r denotes the number of output gates in C.
 - Define the transition function $\delta: \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^k$ to be the function implemented by the combinational "part" of C for the inputs of the flip-flops.
 - **1** Define the output function $\lambda: \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^r$ to be the function implemented by the combinational "part" of C for the output gates.

A Counter

Definition

A counter(n) is defined as follows.

Inputs: a clock CLK.

Output: $N \in \{0,1\}^n$.

Functionality:

$$\forall t : \langle N_t \rangle = t \pmod{2^n}$$

No input?! Input is "implied": it is the (missing) reset signal!

Counter Implementation

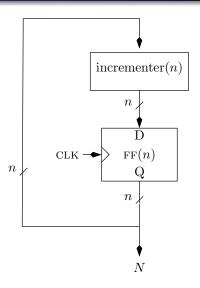


Figure: A synchronous circuit that implements a counter.

Counter Analysis

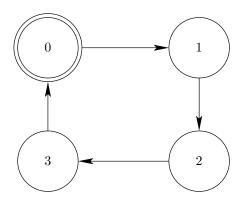


Figure: An FSM of a counter(2). The output always equals binary representation of the state from which the edge emanates.

A Counter with input

Definition

A counter(n) is defined as follows.

Inputs: $X \in \{0,1\}$ and a clock CLK.

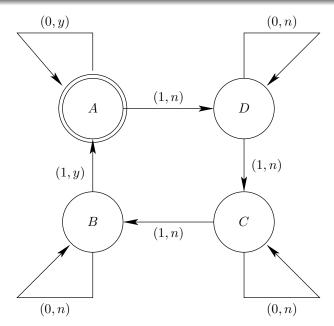
Output: $N \in \{0,1\}^n$.

Functionality:

$$\forall t : \langle N_t \rangle = \sum_{i=0}^t X_i \pmod{2^n}$$

Implementation of Counter with Input

Analysis of Counter with Input for n = 2



Sequential Adder: Analysis

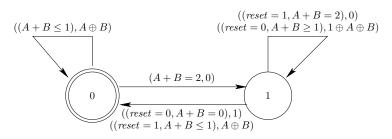


Figure: an FSM of a sequential adder (each transition is labeled by a pair: the condition that the input satisfies and the value of the output).

Revisiting Shift Registerers

Recall the definition of a shift register of n bits, that is:

Inputs: D[0](t) and a clock CLK.

Output: Q[n-1](t).

Functionality: Q[n-1](t+n) = D[0](t).

Implementation of Shift Register

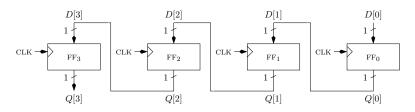
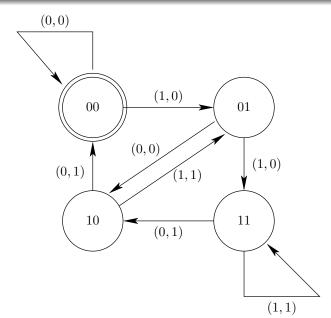


Figure: A 4-bit shift register.

Analysis of Shift Register for n = 2



Revisiting RAM

Definition

A $RAM(2^n)$ is specified as follows.

Inputs: $Address[n-1:0](t) \in \{0,1\}^n$, $D_{in}(t) \in \{0,1\}$, $R/\overline{W}(t) \in \{0,1\}$ and a clock CLK.

Output: $D_{\text{out}}(t) \in \{0, 1\}$.

Functionality: The functionality of a RAM is specified by the following program:

- data: array $M[2^n 1:0]$ of bits.
- ② initialize: $\forall i : M[i] \leftarrow 0$.
- - **②** For all $i \neq \langle Address \rangle$: $M[i](t+1) \leftarrow M[i](t)$.
 - 6

$$M[\langle Address \rangle](t+1) \leftarrow egin{cases} D_{\mathsf{in}}(t) & \mathsf{if} \ R/\overline{W}(t) = 0 \ M[\langle Address \rangle](t) & \mathsf{else}. \end{cases}$$

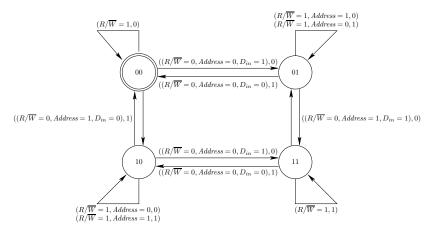


Figure: A (partial) FSM of a $RAM(2^1)$ (the "legend" of the edge labels: $((D_{in}, address, R/\overline{W}), D_{out}))$.

Effect of Adding Initialization to a Synchronous Circuit

- C is a synchronous circuit without an initialization signal (but we assume FFs output a specific value in t=0).
- Introduce an initialization signal *reset* that initializes the outputs of all flip-flops (namely, it cause the outputs of the flip-flops to equal a value that encodes the initial state).
- How? add a MUX after every FF that selects Q or initial-state based on *reset*.
- Denote the new synchronous circuit by \hat{C} .
- Let \mathcal{A} and $\hat{\mathcal{A}}$ denote the FSMs that model the functionality of C and \hat{C} , respectively.
- What is the relation between A and \hat{A} ?

Adding the initialization signal to an FSM - cont

Theorem

Let $\mathcal{A}=\langle Q,\Sigma,\Delta,\delta,\lambda,q_0\rangle$ denote the FSM that models the functionality of the synchronous circuit C. Let $\hat{\mathcal{A}}=\langle Q',\Sigma',\Delta',\delta',\lambda',q_0'\rangle$ denote the FSM that models the synchronous circuit \hat{C} . Then,

$$egin{aligned} Q' & riangleq Q, \ q_0' & riangleq q_0, \ \Sigma' & riangleq \Sigma imes \{0,1\}, \ \Delta' & riangleq \Delta, \ \delta'(q,(\sigma,\mathit{reset})) & riangleq \begin{cases} \delta(q,\sigma), & \mathit{if reset} = 0, \ \delta(q_0,\sigma), & \mathit{if reset} = 1, \end{cases} \ \lambda'(q,(\sigma,\mathit{reset})) & riangleq \begin{cases} \lambda(q,\sigma), & \mathit{if reset} = 0, \ \lambda(q_0,\sigma), & \mathit{if reset} = 1. \end{cases} \end{aligned}$$

Synthesis: FSM → Sync Circuit

Given an FSM $\mathcal{A} = \langle Q, \Sigma, \Delta, \delta, \lambda, q_0 \rangle$, the task of designing a synchronous circuit C that implements \mathcal{A} is carried out as follows.

1 Encode Q, Σ and Δ by binary strings. Formally, let f, g, h denote one-to-one functions, where

$$\begin{split} f: Q &\rightarrow \{0,1\}^k \\ g: \Sigma &\rightarrow \{0,1\}^\ell \\ h: \Delta &\rightarrow \{0,1\}^r. \end{split}$$

2 Design a combinational circuit C_{δ} that implements the (partial) Boolean function $B_{\delta}: \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^k$ defined by

$$B_{\delta}(f(x),g(y)) \stackrel{\triangle}{=} f(\delta(x,y)), \text{ for every } (x,y) \in Q \times \Sigma.$$

3 Design a combinational circuit C_{λ} that implements the (partial) Boolean function $B_{\lambda}: \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^r$

$$B_{\lambda}(f(x),g(y)) \stackrel{\triangle}{=} h(\lambda(x,y)), \text{ for every } (x,y) \in Q \times \Sigma.$$

Synthesis - cont

• How many flip-flops are required? $f: Q \to \{0,1\}^k$ is one-to-one. So

$$k \ge \log_2 |Q|$$

- It is not clear that minimizing k is a always a good idea. Certain encodings lead to more complicated Boolean functions B_{δ} and B_{λ} .
- The question of selecting a "good" encoding is a very complicated task, and there is no simple solution to this problem.

Example: A two-state FSM

Consider the FSM $\mathcal{A}=\langle Q,\Sigma,\Delta,\delta,\lambda,q_0\rangle$ depicted in the next figure, where

$$Q = \{q_0, q_1\},$$

 $\Sigma = \Delta = \{0, 1\}.$

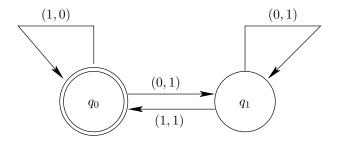


Figure: A two-state FSM.

Two-State FSMs: Synthesis

Given an FSM $\mathcal{A}=\langle Q,\Sigma,\Delta,\delta,\lambda,q_0\rangle$, the synchronous circuit C that is obtained by executing the synthesis procedure is as follows. We encode Q,Σ and Δ by binary strings Formally, let f,g,h denote one-to-one functions, where

$$f: Q \rightarrow \{0, 1\}$$

 $g: \Sigma \rightarrow \Sigma$
 $h: \Delta \rightarrow \Delta$,

where

$$f(q_0) = 0, f(q_1) = 1,$$

and

$$\forall x \in \{0,1\} : g(x) = h(x) = x.$$

Two-State FSMs: Synthesis - C_{δ}

We design a combinational circuit C_δ that implements the Boolean function $B_\delta:\{0,1\}^2\to\{0,1\}$ defined by

$$B_{\delta}(f(x),g(y))\stackrel{\triangle}{=} f(\delta(x,y)), \text{ for every } (x,y)\in Q\times \Sigma.$$

f(x)	g(y)	$f(\delta(x,y))$
0	0	1
1	0	1
0	1	0
1	1	0

Table: The truth table of B_{δ} .

It follows that $B_{\delta}(f(x), g(y)) = \text{NOT}(g(y))$.

Two-State FSMs: Synthesis - C_{λ}

We design a combinational circuit C_λ that implements the Boolean function $B_\lambda:\{0,1\}^2\to\{0,1\}$ defined by

$$B_{\lambda}(f(x),g(y))\stackrel{\triangle}{=} h(\lambda(x,y)), \text{ for every } (x,y)\in Q\times \Sigma.$$

f(x)	g(y)	$h(\lambda(x,y))$
0	0	1
1	0	1
0	1	0
1	1	1

Table: The truth table of B_{λ} .

It follows that $B_{\lambda}(f(x),g(y))=f(x)\vee \overline{g(y)}$.

Two-State FSMs: Synthesis - the Synch. circuit C

The synchronous circuit in canonic form constructed from a flip-flops and two combinational circuits is depicted in Figure ??.

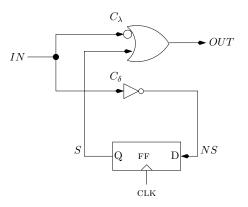


Figure: Synthesis of A.

Summary of Part 2

- Definition of synchronous circuits.
- Simulation algorithm.
- Synchronous circuits in canonic form.
- Initialization & reset signal.
- Functionality: finite-state machines & state diagrams.
- Analysis and synthesis of synchronous circuits.
- FSM's are not a useful model for synchronous circuit with many FF's because $|States| = 2^{|FF's|}$.