Definition

Let $f : A \rightarrow B$ denote a function from A to B.

- The function f is one-to-one if a ≠ a' implies that f(a) ≠ f(a').
- ② The function f is onto if, for every b ∈ B, there exists an a ∈ A such that f(a) = b.
- **(3)** The function f is a bijection if it is both onto and one-to-one.
 - A one-to-one function is sometimes called an injective function (or an injection).
 - A function that is onto is sometimes called a surjection.

Lemma

Every restriction of a one-to-one function is one-to-one.

Lemma (2.5)

Let A and B denote two finite sets. If there exists a one-to-one function $f : A \rightarrow B$, then $|A| \leq |B|$.

- By Lemma 2.5: If there exists a one-to-one function $f : A \rightarrow B$, then $|A| \le |B|$.
- The contrapositive form of Lemma 2.5: if |A| > |B|, then every function $f : A \rightarrow B$ is not one-to-one.

We are now ready to formalize the Pigeonhole Principle, as follows.

The Pigeonhole Principle

Let $f : A \rightarrow \{1, \ldots, n\}$, and |A| > n, then f is not one-to-one, i.e., there are $a_1, a_2 \in A$; $a_1 \neq a_2$, such that $f(a_1) = f(a_2)$.