Digital Logic Design: a rigorous approach ©
Chapter 12: Trees

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

November 25, 2015

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina
Preliminary questions:

1. Which Boolean functions are suited for implementation by tree-like combinational circuits?
2. In what sense are tree-like implementations optimal?
A Boolean function $f : \{0, 1\}^2 \to \{0, 1\}$ is associative if

$$f(f(\sigma_1, \sigma_2), \sigma_3) = f(\sigma_1, f(\sigma_2, \sigma_3)),$$

for every $\sigma_1, \sigma_2, \sigma_3 \in \{0, 1\}$.

A Boolean function defined over the domain $\{0, 1\}^2$ is often denoted by a dyadic operator, say \ast. Namely, $f(\sigma_1, \sigma_2)$ is denoted by $\sigma_1 \ast \sigma_2$. Associativity of a Boolean function \ast is then formulated by

$$\forall \sigma_1, \sigma_2, \sigma_3 \in \{0, 1\} : (\sigma_1 \ast \sigma_2) \ast \sigma_3 = \sigma_1 \ast (\sigma_2 \ast \sigma_3).$$

One may omit parenthesis: $\sigma_1 \ast \sigma_2 \ast \sigma_3$. Thus, we obtain a function defined over $\{0, 1\}^n$ from a dyadic Boolean function.
Extension of associative function

Definition

Let \(f : \{0, 1\}^2 \rightarrow \{0, 1\} \) denote a Boolean function. The function \(f_n : \{0, 1\}^n \rightarrow \{0, 1\} \), for \(n \geq 1 \), is defined recursively as follows.

1. If \(n = 1 \), then \(f_1(x) = x \).
2. If \(n = 2 \), then \(f_2 = f \).
3. If \(n > 2 \), then \(f_n \) is defined based on \(f_{n-1} \) as follows:

\[
 f_n(x_1, x_2, \ldots, x_n) \triangleq f(f_{n-1}(x_1, \ldots, x_{n-1}), x_n).
\]

Claim

If \(f : \{0, 1\}^2 \rightarrow \{0, 1\} \) is an associative Boolean function, then

\[
 f_n(x_1, x_2, \ldots, x_n) = f(f_{n-k}(x_1, \ldots, x_{n-k}), f_k(x_{n-k+1}, \ldots, x_n)),
\]

for every \(n \geq 2 \) and \(k \in [1, n - 1] \).
Trees of associative Boolean gates

To simplify the presentation, consider the Boolean function OR_n.

Definition

A combinational circuit $H = (V, E, \pi)$ that satisfies the following conditions is called an $\text{OR-tree}(n)$.

1. The graph $DG(H)$ is a rooted tree with n sources.
2. Each vertex v in V that is not a source or a sink is labeled $\pi(v) = \text{OR}$.
3. The set of labels of leaves of H is $\{x_0, \ldots, x_{n-1}\}$.

![Diagram of OR-tree](image-url)
Correctness of OR-tree(n)

Definition

A combinational circuit $H = (V, E, \pi)$ that satisfies the following conditions is called an OR-tree(n).

1. **Topology.** The graph $DG(H)$ is a rooted tree with n sources.
2. Each vertex v in V that is not a source or a sink is labeled $\pi(v) = \text{OR}$.
3. The set of labels of leaves of H is $\{x_0, \ldots, x_{n-1}\}$.

Claim

*Every OR-tree(n) implements the Boolean function OR_n.***
Definition

A Boolean formula φ is an \texttt{OR}(n) formula if it satisfies three conditions: (i) it is over the variables X_0, \ldots, X_{n-1}, (ii) every variable X_i appears exactly once in φ, and (iii) the only connective in φ is the \texttt{OR} connective.

Claim

A Boolean circuit C is an \texttt{OR}(n)-tree if and only if there exists an \texttt{OR}(n) Boolean formula φ such that $C = C_\varphi$.
Cost of $\text{OR-tree}(n)$

Claim

The cost of every $\text{OR-tree}(n)$ is $(n - 1) \cdot c(\text{OR}).$

Lemma

Let $G = (V, E)$ denote a rooted tree in which the in-degree of each vertex is at most two. Then

$$|\{v \in V \mid \text{deg}_{in}(v) = 2\}| = |\{v \in V \mid \text{deg}_{in}(v) = 0\}| - 1.$$
delay of an OR tree = number of OR-gates along the longest path from an input to an output times the delay of an OR-gate.

Definition (depth - nonstandard definition)

The depth of a rooted tree T is the maximum number of vertices with in-degree greater than one in a path in T. We denote the depth of T by $\text{depth}(T)$.

Why is this nonstandard?

- Usually, depth is simply the length of the longest path.
- Here we count only vertices with in-degree ≥ 2.
- Why?
 - Input and output gates have zero delay (no computation)
 - We ignore inverters, but they only add to the delay...
A rooted tree is a **binary tree** if the maximum in-degree is two.

A rooted tree is a **minimum depth tree** if its depth is minimum among all the rooted trees with the same number of leaves. All binary trees have the same cost. But, which trees have minimum depth?

1. If n that is a power of 2, then there is a unique minimum depth tree, namely, the perfect binary tree with $\log_2 n$ levels.

2. If n is not a power of 2, then there is more than one minimum depth tree... (balanced trees)
Example: Delay analysis

Are these minimum depth trees?

Figure: Two trees with six inputs.
Claim

If T_n is a rooted binary tree with n leaves, then the depth of T_n is at least $\lceil \log_2 n \rceil$.

1. Suffice to prove depth $\geq \log_2 n$.
2. Complete induction on n.
The case $n = 2^k$: perfect binary trees

The distance of a vertex v to the root r in a rooted tree is the length of the path from v to r.

Definition

A rooted binary tree is perfect if:
- The in-degree of every non-leaf is two, and
- All leaves have the same distance to the root.

Note that the depth of a perfect tree equals the distance from the leaves to the root.

Claim

The number of leaves in a perfect tree is 2^k, where k is the distance of the leaves to the root.

Claim

Let n denote the number of leaves in a perfect tree. Then, the distance from every leaf to the root is $\log_2 n$.

We now show that for every n, we can construct a minimum depth tree T_n^* of depth $\lceil \log_2 n \rceil$. In fact, if n is not a power of 2, then there are many such trees.
Balanced partitions

Definition

Two positive integers a, b are a balanced partition of n if:

1. $a + b = n$, and
2. $\max\{\lceil \log_2 a \rceil, \lceil \log_2 b \rceil\} \leq \lceil \log_2 n \rceil - 1$.

Claim

If $n = 2^k - r$, where $0 \leq r < 2^{k-1}$, then the set of balanced partitions is

$$P \triangleq \{(a, b) \mid 2^{k-1} - r \leq a \leq 2^{k-1} \text{ and } b = n - a\}.$$
Algorithm 1 Balanced-Tree(n) - a recursive algorithm for constructing a binary tree T_n^* with $n \geq 1$ leaves.

1. The case that $n = 1$ is trivial (an isolated root).
2. If $n \geq 2$, then let a, b be balanced partition of n.
3. Compute trees T_a^* and T_b^*. Connect their roots to a new root to obtain T_n^*.

Definition

A rooted binary tree T_n is a balanced tree if it is a valid output of Algorithm Balanced-Tree(n).
Algorithm 2 Balanced-Tree\((n)\) - a recursive algorithm for constructing a binary tree \(T^*_n\) with \(n \geq 1\) leaves.

1. The case that \(n = 1\) is trivial (an isolated root).
2. If \(n \geq 2\), then let \(a, b\) be balanced partition of \(n\).
3. Compute trees \(T^*_a\) and \(T^*_b\). Connect their roots to a new root to obtain \(T^*_n\).

Claim

The depth of a binary tree \(T^*_n\) constructed by Algorithm Balanced-Tree\((n)\) is \(\lceil \log_2 n \rceil\).

Corollary

The propagation delay of a balanced OR-tree\((n)\) is \(\lceil \log_2 n \rceil \cdot t_{pd}(\text{OR})\).
Goals: prove optimality of a balanced OR-tree(n).

Theorem

Let C_n denote a combinational circuit that implements OR_n. Then,

$$c(C_n) \geq n - 1.$$

Theorem

Let C_n denote a combinational circuit that implements OR_n. Let k denote the maximum fan-in of a gate in C_n. Then

$$t_{pd}(C_n) \geq \lceil \log_k n \rceil.$$
Definition (Restricted Boolean functions)

Let $f : \{0, 1\}^n \rightarrow \{0, 1\}$ denote a Boolean function. Let $\sigma \in \{0, 1\}$. The Boolean function $g : \{0, 1\}^{n-1} \rightarrow \{0, 1\}$ defined by

$$g(w_0, \ldots, w_{n-2}) \triangleq f(w_0, \ldots, w_{i-1}, \sigma, w_i, \ldots, w_{n-2})$$

is called the restriction of f with $x_i = \sigma$. We denote it by $f|_{x_i = \sigma}$.

Example

Consider the Boolean function $f(\vec{x}) = \text{XOR}_n(x_1, \ldots, x_n)$. The restriction of f with $x_n = 1$ is the Boolean function

$$f|_{x_n = 1}(x_1, \ldots, x_{n-1}) \triangleq \text{XOR}_n(x_1, \ldots, x_{n-1}, 1)$$

$$= \text{INV}(\text{XOR}_{n-1}(x_1, \ldots, x_{n-1})).$$
when does a function depend on an input?

Definition

A Boolean function \(f : \{0, 1\}^n \to \{0, 1\} \) depends on its \(i \)th input if

\[
f|_{x_i=0} \neq f|_{x_i=1}.\]

Example

Consider the Boolean function \(f(\vec{x}) = \text{XOR}_2(x_1, x_2) \). The function \(f \) depends on the \(i \)th input for \(i = 2 \). Indeed, \(f|_{x_2=1}(x_1) = \text{NOT}(x_1) \) and \(f|_{x_2=0}(x_1) = x_1 \).
The cone of a function

Definition (Cone of a Boolean function)

The cone of a Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is defined by

$$cone(f) \triangleq \{ i : f|_{x_i=0} \neq f|_{x_i=1} \}.$$

Example

The cone of the Boolean function $f(\vec{x}) = \text{XOR}_2(x_1, x_2)$ equals \{1, 2\} because XOR depends on both inputs.
Flipping bits

Definition

Let \(\text{flip}_i : \{0, 1\}^n \to \{0, 1\}^n \) be the Boolean function defined by

\[
\text{flip}_i(\vec{x}) \overset{\triangle}{=} \vec{y},
\]

where

\[
y_j \overset{\triangle}{=} \begin{cases}
 x_j & \text{if } j \neq i \\
 \text{NOT}(x_j) & \text{if } i = j.
\end{cases}
\]

Claim

Let \(f : \{0, 1\}^n \to \{0, 1\}^k \) denote a Boolean function. Then,

\[
i \in \text{cone}(f) \iff \exists \vec{v} \in \{0, 1\}^n : f(\vec{v}) \neq f(\text{flip}_i(\vec{v})).
\]

Claim

The Boolean function \(\text{OR}_n \) depends on all its inputs, namely,

\[
|\text{cone}(\text{OR}_n)| = n.
\]
Consider the following Boolean function:

\[
f(\vec{x}) = \begin{cases}
0 & \text{if } \sum_i x_i < 3 \\
1 & \text{otherwise.}
\end{cases}
\]

Suppose that one reveals the input bits one by one. As soon as 3 ones are revealed, one can determine the value of \(f(\vec{x}) \). Nevertheless, the function \(f(\vec{x}) \) depends on all its inputs, and hence, \(cone(f) = \{1, \ldots, n\} \).
Claim

\(\text{cone}(f) = \emptyset \iff f \text{ is a constant Boolean function.} \)
Composition of Functions

Claim

If \(g(\vec{x}) \triangleq B(f_1(\vec{x}), f_2(\vec{x})) \), then

\[
\text{cone}(g) \subseteq \text{cone}(f_1) \cup \text{cone}(f_2).
\]
Let $G = (V, E)$ denote a DAG. The graphical cone of a vertex $v \in V$ is defined by

$$cone_G(v) \triangleq \{ u \in V : deg_{in}(u) = 0 \text{ and } \exists \text{path from } u \text{ to } v \}.$$

In a combinational circuit, every source is an input gate. This means that the graphical cone of v equals the set of input gates from which there exists a path to v.
Let $H = (V, E, \pi)$ denote a combinational circuit. Let $G = DG(H)$. For every vertex $v \in V$, the following holds:

$$\text{cone}(f_v) \subseteq \text{cone}_G(v).$$

Namely, if f_v depends on x_i, then the input gate u that feeds the input x_i must be in the graphical cone of v.
Let $G = (V, E)$ denote a DAG. For every $v \in V$, there exist $U \subseteq V$ and $F \subseteq E$ such that:

1. $T = (U, F)$ is a rooted tree;
2. v is the root of T;
3. $\text{cone}_G(v)$ equals the set of leaves of (U, F).

The sets U and F are constructed as follows.

1. Initialize $F = \emptyset$ and $U = \emptyset$.
2. For every source u in $\text{cone}_G(v)$ do
 a. Find a path p_u from u to v.
 b. Let q_u denote the prefix of p_u, the vertices and edges of which are not contained in U or F.
 c. Add the edges of q_v to F, and add the vertices of q_v to U.
Theorem (Linear Cost Lower Bound Theorem)

Let $H = (V, E, \pi)$ denote a combinational circuit. If the fan-in of every gate in H is at most 2, then

$$c(H) \geq \max_{v \in V} |\text{cone}(f_v)| - 1.$$

Corollary

Let C_n denote a combinational circuit that implements OR_n. Then

$$c(C_n) \geq n - 1.$$
Theorem (Logarithmic Delay Lower Bound Theorem)

Let $H = (V, E, \pi)$ denote a combinational circuit. If the fan-in of every gate in H is at most k, then

$$t_{pd}(H) \geq \max_{v \in V} \log_k |\text{cone}(f_v)|.$$

Corollary

Let C_n denote a combinational circuit that implements OR_n. Let k denote the maximum fan-in of a gate in C_n. Then

$$t_{pd}(C_n) \geq \lceil \log_k n \rceil.$$
Focus on combinational circuits that have a topology of a tree with identical gates.

Trees are especially suited for computing associative Boolean functions.

Defined an OR-tree\(n\) to be a combinational circuit that implements \(\text{OR}_n\) using a topology of a tree.

Proved that OR-tree\(n\) are asymptotically optimal (cost).

Balance conditions to obtain good delay.

General lower bounds based on \(\text{cone}(f)\).

- \# gates in a combinational circuit implementing a Boolean function \(f\) must be at least \(|\text{cone}(f)| − 1\).
- the propagation delay of a combinational circuit implementing a Boolean function \(f\) is at least \(\log_2 |\text{cone}(f)|\).