Hardware Algorithms: circuits & networks Problem Set 4 submit by July 18th

Guy Even and Moti Medina

July 6, 2008

- 1. Consider the odd-even transposition algorithm. Give an example with n inputs for which n-1 levels do not suffice to sort the inputs.
- 2. Prove the 0-1 Principal for merging and bitonic merging. Hint: use the follow lemma. A vector v is bi-sorted/bitonic iff $f_t(v)$ is bi-sorted/bitonic for every threshold function $f_t : R \to \{0, 1\}$ defined by $f_t(x) = 1 \Leftrightarrow x \ge t$.
- 3. Consider a variation of the odd-even merger in which the inputs A, B are connected to the two smaller mergers as follows:
 - top merger is input odd(A) and even(B), and
 - bottom merger is input even(A) and odd(B).
 - (a) Suggest a completion of the circuit using a column of comparison boxes fed by the outputs of the top and bottom mergers.
 - (b) Prove the correctness of the obtained merging circuit.
- 4. Bitonic merging. Given a bitonic vector $\{x_i\}_{i=1}^{2n}$, for $i = 1 \dots n$, let

$$a_i = \min\{x_i, x_{i+n}\}$$

 $b_i = \max\{x_i, x_{i+n}\}.$

- (a) Prove that either:
 - ${a_i}_{i=1}^n = 0^n$ and ${b_i}_{i=1}^n$ is bitonic, or
 - $\{b_i\}_{i=1}^n = 1^n$ and $\{a_i\}_{i=1}^n$ is bitonic.
- (b) Use the above claim to prove the correctness of Batcher's bitonic merging circuit.