Lecture 1: (© copyright by Daniel Seidner)

1

Lecture 1

NNTAN — '9N'Y 7aun

DN NIMLVN'o 7"1n DYWN 7w NI0'dN .and, or, Not YW DN 'DN'Y 7ayn W 'Man NaX e
N'707211IX NdWWN DHINN

.D'72uN 1 'R WYY 075NN NRIDN DNINYRN WY DY [1DN YYN ' 'DNY 722un e

—

7v 21w'n y¥an 72ynn .7aynn 7Y NIrrxpaon nyap)0 — WY 0pmn yyn 7w nnix 71 e
AYINAN DR'Y'D 7Y DX U791 D'YNN DYYAY NIFRYT1IAN DIFYR90N

NIYYT N7un N NN 7217000 — aynn ntwn e

.(7ayn1) yva oMywn 19010 ,7n170 .yya 0'NXN 190N — 7aynn 'nn e

VY D7 7pwn 9'oin N AWoK .'NN INIRE NTAYN ANIK DYYN 770 0NN R GDNYN e
S121 7700 7pwnn N Nnn N NNpna

.0'077 DNIX "T'-7Y DTN NIFNY 0710 DY7VN NYN e
AN Y 2 'y 1102 .ywh niotdn 1oon — Fanin—notmdn nanT e

(n1015 namn and v nxM 7"1n 757 Xnam)

:(MNTIZN DNTANN NANTN) AWTN DNTAN

DAG (Directed Acyclic Graph) — yya nijyna 212 wnnw

— 21N R K171 YV N7V KjY nn LYY 'R AT
12 XD K171 YV WIIY RIjIY NN

N son nirnY oo ATy

(NX¥INN 770N NIRNAIT NRN))

Lecture 1: (© copyright by Daniel Seidner)

2

1.8 Gates
The basic building blocks which are used to implement a logic function are called gates. Any
equation can be considered as a system having inputs (the variables) and outputs (the result of

applying the functions on the variables). The equation Y = f (A, B,C) describes a system
having 3 inputs A, B,C and a single output Y .

1.8.1 An AND gate
Its equation is ¥ = A - B. We draw it as in Figure 1.4. Its truth table is given below and is
identical to the AND operation.

A B Y

0 0 0] }

0 1]o o

1 0 0 Figure 1.4 — An AND gate
1 1 1

1.8.2 An OR gate
Its equation is ¥ = A + B . We draw it as in Figure 1.5. Its truth table is given below and is
identical to the OR operation.

A B Y
0 0 0 }
0 1 1

0 1

1 1

Figure 1.5 —An OR gate

Lecture 1: (© copyright by Daniel Seidner)

3

1.8.3 A NOT gate (usually called an INVERTER)

Its equation is ¥ = A. We draw it as in Figure 1.6. Its truth table is given below and is identical

to the NOT operation.

A Y
0
1 0

1.8.4 A NAND gate

-

Figure 1.6 — An Inverter (a NOT gate)

Its equationis ¥ = A - B. We draw it as in Figure 1.7. Its truth table is given below.

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

1.8.5 A NOR gate

D

Figure 1.7- A NAND gate

Its equation is ¥ = A + B . We draw it as in Figure 1.8. Its truth table is given below.

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

D

Figure 1.8 — A NOR gate

Lecture 1: (© copyright by Daniel Seidner)

4

1.8.6 A XOR gate

Its equation is ¥ = A-B+A-B=A® B.Wedraw itas in Figure 1.9. Its truth table is given

below.

A B
0 0
0 1
0
1

Y
0
1
1
0

—D—

Figure 1.9 — A XOR gate

Figure 1.10 is a simple example of implementing a Boolean function using gates. We here build a
XOR gate, using AND, OR and NOT gates (Note: a dot represents a connection of wires):

D

}

Figure 1.10- Building a XOR gate using AND, OR & NOT gates

Lecture 1: (© copyright by Daniel Seidner)
5

1.9 A Universal system

Note that since the only operators we defined in Boolean algebra are the AND, OR and NOT
operators, it is clear that having these three kind of gates in our hands, enables us to build any
desired function. Therefore, we call the set of AND, OR and NOT gates, a universal system.

A NAND gate is itself a universal system and so it is called a Universal Gate. In order to show
that we can build any desired function using only NAND gates, we will show that we can
implement all of the 3 operators AND, OR and NOT using only NAND gates. Let us start with

the NOT operation. We want to implement ¥ = A using a NAND gate whose function is
Y =A- B.If we choose B_ to be 1 or connect the input A to the other input, we create an
inverter since Y =A-1=A andalso Y =A-A=A:

R
A_}—Y or A{[}—Y

Figure 1.11 — An inverter made of a NAND gate

Since a NAND gate is just an AND gate which is followed by an inverter, all we need in order to
convert it “back” to a regular AND gate, is to add one more inverter:

A |
B | Y

Figure 1.12 — An AND gate made of NAND gates

Building the OR is a little bit more difficult. We need to use DeMorgan’s laws:

Y=A+B=A+B=A-B.Now,itis easy to implement the OR using 3 NAND gates, two as
inverters and the third one to perform the NAND operation on the first two’s outputs.

D
— D -

Figure 1.13 — An OR gate made out of NAND gates

A

B

Lecture 1:

(© copyright by Daniel Seidner)

6

Let us now try to implement a XOR gate using only NAND gates. The easiest way is to replace
any inverter in Figure 1.10 with the inverter of Figure 1.11, and any AND gate with the AND

gate of Figure 1.12, and finally, the OR gate with the OR of Figure 1.13:

* T e Dy

Figure 1.14 — Building a XOR gate using only NAND gates

We can reduce the gate count, if we delete the two redundant pairs of inverters. Those are

redundant since (Y) = X . Eventually we end with:

—D—

D

),_

}J

=

Figure 1.15 — A XOR gate made of NAND gates

Lecture 1: (© copyright by Daniel Seidner)
7

1.10 Timing issues of gates

Let us first define some terms.

A signal is a continuous function of the time t.

A logic level “0” is a predefined voltage range that is recognized by a gate as a “0” level. In the
well-known TTL 74xx logic family, a “0” level was defined as 0.0v to 0.2v.

A logic level “1” is another predefined voltage range that is recognized by a gate as a “1” level.
In the 74xx logic family, a “1” level was defined as 2.0v to 5.0v.

The signal has a logic level when the value of the signal in the range of logic level “0” or in the
range of logic level “1”. A signal is called stable at a time interval if it stays in the same logic
level along the entire time interval.

Let us explore the behavior of a simple gate. We input the signal A(t) to an inverter and receive
the signal Y (t) at the inverter’s output.

A(t) ‘: Y(t)

Figure 1.16 — Naming the signals of a NOT gate

The input signal A(t) starts at “1” so Y(t) is “0”. At a certain point at time, i.e., at ty, we change
the input signal to be “0”. The gate does not respond immediately. Its response is depicted in
Figure 1.17 below. We see that it takes some time till the output signal changes. The time period
in which the output signal still stays in the initial logic level, i.e., the time in which the gate “does
not response” to the input change, is called the contamination delay and is denoted by t.4. The
time required for the output to reach its “final”, i.e., stable level, is called the propagation delay
and is denoted by tpq. These two time intervals are described in Figure 1.17 below for the rising
and falling of the signals A(t) and Y (t) where A(t) is changing at tp and t;.

When we implement a logical function using gates, we must consider the timing. When we want
to know how soon will the output of a logical system be valid, i.e., in its stable logical level, we
need to consider the worst case of all the gates. If this is a combinational system, we should take
into account the sum of the delays of the maximal path (longest or slowest) between the input and
the output signals. So, for our purposes, we can draw the signals as having valid logical values
after the maximal t,q of the gates involved.

Lecture 1: (© copyright by Daniel Seidner)

8
A
AW
07? : t
t=0 t() 8]
A
Yldeal(t) 113 1 E)
‘6079 : t
0
A
The actual Logic level “1”
Y(t) Vi
Vo
Logic level “0” .t
0 —f ld |e —>f ld e
—> t — —> t —
pd pd
Y(t) in “pr
“digital
levels”
07? I : t
0 —> t — —> t —
pd pd
to t

Figure 1.17 — The timing behavior of a NOT gate

In Figure 1.17, we see the input signal A(t) at the top. The response of an ideal gate, i.e., without
any delay, is described as Yigeai(t). The actual signal Y(t) at the output appears 2™ from the
bottom. For our analysis of digital circuits we can use the “digital levels” picture shown at the
bottom of Figure 1.17.

1.11 Multiple inputs gates

Now we know that gates have delays. We should take that into account when we build systems
that are more complex then a single gate. In computer science, the analysis of an algorithm
usually deals with its complexity or performance, expressed as the number of operations required,

Lecture 1: (© copyright by Daniel Seidner)
9

and its cost in the memory units required. In analysis of hardware systems, we have similar
measures. The performance is measured by the maximum delay of the system and the cost by the
number of required gates.

Let us now build an n inputs AND gate using two inputs AND gates only. The simplest way is
based on induction. When we want to build a three input AND gate using two inputs AND gate
we’ll use the rules saying that Y = A-B-C=(A-B)-C ,i.e., we'll use one gate to produce

A - B and another gate to AND the result with C. Using induction, we can quite easily build an
n inputs AND gate, adding a single input at a time. This is depicted in Figure 1.18:

I,

: :3131

’

—Dp

Figure 1.18 — Building an n inputs AND gate using 2 inputs AND gates

We will define such a structure “recursively” by describing an n inputs gate built of an (n-1) input
gate and a simple 2 inputs gate:

Iy
L

} Y
In-l

Figure 1.19 — Building an n inputs AND recursively

In this simple way, the recursive equations describing the cost and the delay of the multiple input
gate are C(n)=C(n-1)+1 and D(n)=D(n-1)+T respectively. In this case, it is easy to see that the
cost of an n inputs AND gate is C(n)=n-1, i.e., we need n-1 gates, 2 input AND gates, in order to
build an n inputs AND gate. The delay is given by D(n)=(n-1)T where T is the delay of a single 2
inputs AND gate. The reason for this dependency of the delay on the number of inputs is the
chaining of the gates. Because of this structure, a change in the Iy should “propagate” through n-1
gated until it “reaches”, i.e., influences, the output Y. This seems a little exaggerated. There must

Lecture 1: (© copyright by Daniel Seidner)

10

be a better way. That way is to use a binary tree structure. The depth of that tree will determine
the maximal delay. This can be seen in Figure 1.20 below.

Iy
L
L }
L
Is
I }
L
In/2-1 —
} Y
In-4
In-3
In-2 }
In-l

Figure 1.20 — Building an n inputs AND gate using a tree of inputs AND gates

Lecture 1: (© copyright by Daniel Seidner)
11

We can define such a structure “recursively” by describing an n inputs gate built of two n/2 input
gates:

Iy |
L]

n/2 inputs :
In/2-1 PR

}Y
In/2 PR
X In/2+1

n/2 inputs :

In-l R

Figure 1.21 -A recursive building of an n inputs AND gate

The cost of such an n inputs gate stays C(n)=n-1. This is so since it really does not matter how we
add the inputs, since every new input forces us to add a single gate. The recursive equation
describing the cost is C(n)=2C(n/2)+1 having n/2 but also a factor of 2 certifies a linear cost.

It is quite clear from Figure 1.19 that the delay follows the recursive equations
D(n)=D(n/2)+T . This immediately means that the delay is logarithmic, i.e.,

D(n)=T -1g, n. This is so since we can write:
Dn)=Dn/2)+T=Dn/4)+T+T=Dn/8)+T +T +T, etc., so we see that we
have to sum 1g, n times the delay T.

When n is not an exact power of 2, there are several optional trees, all with depth of hgz n—‘, to

arrange the gates. The delay in such case is given by D(n) =T - th n—|

We use basic gates of 2 inputs although in practice gates with more inputs are available.
Note that if we had a basic gate of 3 inputs we would get D(n)=T - hg3 n—‘

Lecture 1: (© copyright by Daniel Seidner)
12

1.12 Decoders

It is time now to get to our first useful system. We are going to build a Decoder. A decoder has n
inputs and 2" outputs. Only one of its outputs is “1” at a given time. The combination of the n
input lines, each can be “0” or “1”, determines which of the outputs is “on”, i.e., “1”. As a matter
of fact, the combination at the input represents a binary number in which the rightmost digit has a
value (or weight) of 1, the next digit has a value of 2, the next has a value of 4 and the next of 8
and so on. Thus the combination 0101 has a value of 0-8+1-4+0-2+1-1=5 and the combination
0111 has a value of 7 since 0-8+1-4+1-2+1-1=7. We would like to build a decoder having only
two inputs, Iy and I;, forming together a two bit number [I;, Iy] which can have the values 0,1,2 or
3. And so, the decoder has 4 outputs Yy, Y, Y2, and Y3. We would like the i-th output to be “1”
when the input has the combination that represent the number i.

How do we do that?

We use a truth table to describe the decoder and then find the equations of the outputs from that
table;

Ll Yo Yy Y, Y;

00 1 0 0 0

01 0 1 0 0

10 0 0 1 0

11 0 0 0 1

We immediately see that the equations of the outputs are given by:

Y, =11,
Y =11,
Y,=1,-1,
Y,=1-1,

So the decoder can be built as described in Figure 1.22 below:

Lecture 1:

(© copyright by Daniel Seidner)

13

Figure 1.22 - A 2 inputs — 4 outputs decoder

: [}YG
s | }Yl

+ }Yz
. }Ya

Note that the procedure that we’ll always use is: First, define the required device. Then, build its
truth table. Then, find its equations from the truth table. Then implement it with gates.

We would now like to recursively build an n inputs decoder using (n-1) inputs decoders. When
we design a VLSI chip, we want to get rid of all redundant parts. Another look at Figure 1.23
reveals that the two decoders produce similar outputs. Therefore, a better design is to use a single
decoder and duplicate its output as shown in Figure 1.26.

n-1

IO - In-2 ﬁ‘ >

(n-1)—2™"Y

Decoder

|

7

A

i

Figure 1.26 — A Recursive Decoder

Yo

=

5

o

N

o
N

<

™o
7

=

&

N

-

> 2" outputs

> 2" outputs

\

> 2" outputs

Lecture 1: (© copyright by Daniel Seidner)
14

In Figure 1.27 we show a 3—8 decoder built that way:

e

J
|

)

oh 55750 &

I

Figure 1.27 — A complete 3—8 recursive decoder

It is quite easy to see that the delay of such a decoder is given by D(n)=D(n-1)+T where T is the
delay of a single gate. This means that we have D(n)=n"T. Note that this structure is similar to
the first way in which we built an n input AND gate (Figures 1.18 and 1.19). We can use a "tree
style" approach to get a logarithmic delay. Try to do that as a homework exercise.

The cost of the system in Figure 1.26, is n inverters and much more AND gates so we just count
the AND gates as the cost. Since we see that the cost follows the recursive equation
C(n)=2-2""+C(n-1)= 2"+ C(n-1), we have a geometric sequence with q=2.

Since C(1)=0, C(2)=4, we have C(n)= 2> +2° + ...+ 2" =2""_4.

There are two more issues in designing such systems that we did not consider. One is the length
of the lines, i.e., the connecting wires. This has to do with the area of silicon that is required in

Lecture 1: (© copyright by Daniel Seidner)
15

order to implement the design on silicon. We will not discuss that issue. The other thing is the
Fan out of the gates. The gates are electronic devices which have output and input currents. Since
the output current of a gate is limited, it can “drive” only a limited number of gates. The number
of gate inputs that can be driven by the output of a gate is called the Fan out of that gate. A
typical value of the Fan out is 10 to 20. We would like to analyze a much severe case where the
fan out of a gate is only 2. (Less then 2 means that we can connect the output of a gate only to a
single input. This is too restrictive.)

In our decoder, we see that each AND gate drives two other gates, so there is no problem there.
However, the inverters drive up to ol inputs, i.e., the number of the inputs that should be driven
by the inverters is exponential! How can we overcome such a problem when the allowed fan out
is only two?

The answer is that we should build a “tree” of inverters to produce 2" inverted outputs and 2"
non-inverted outputs from the I,.; input:

J \

—>o——o—

—>o—
o
—>o—
- >o—

Figure 1.28 — A fan out expansion tree

Note that since the depth of such a tree is about n, we almost did not increase the delay of the
decoder.

Lecture 1: (© copyright by Daniel Seidner)
16

1.13 Multiplexers

A multiplexer (Mux), as a decoder, is one of the basic devices used in building computers. An
n—m multiplexer, n>m, is a device with n inputs and m outputs. It also has some select inputs
that determine which of the inputs are transferred to the outputs.

1.13.1 A simple mux

We follow our design procedure: First, define the required device. Then, build its truth table.
Then, find its equations from the truth table. Then implement it with gates. So, we first define the
simplest multiplexer which is a 2—1 multiplexer. It has two data inputs A and B (or Iy and I;) and
a single data output, Y. It also has a single select input denoted by S. Its drawing and function is
given in Figure 1.29.

A(orly) |

Brl)) |

S

Figure 1.29a — The schematic drawing of 2—1 multiplexer

A (or Ip)

B(orl}) —

S

Figure 1.29b — A 2—1 mux selects between the 2 inputs

As shown in Figure 1.29b, the multiplexer functions as a switch. The S input determines which of
the two inputs is “connected” to the output Y. When S="0", we have Y=A (or Y=Ip). When
S="1", we have Y=B (or Y=I,). The function of the mux can be written as:

A if S=0
Y =
B ifS=1

Lecture 1: (© copyright by Daniel Seidner)

17

The truth table is therefore:

S A (I B (I) Y
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
aN
1 0 fo 0
1 0 1 1
1 1 0 0
1 1 1 1

The logic function of a mux is very simple:
Y=A-S+B-S (orif we use the other notation: Y=1, -§—+—I1 5.

The implementation using gates is also simple:

A (or Ip)

B (or I) 4D7

Figure 1.30 — The inside of 2—1 multiplexer

Lecture 1: (© copyright by Daniel Seidner)
18

1.13.2 First expansion: A 2n—n mux , also called n*(2—1) mux
The 2n—n mux has 2n inputs and n outputs as shown in Figure 1.31. The data inputs represent
two n bit numbers and the S input determines which of them is transferred to the n outputs. We

denote the A inputs by A[n-1:0]=[Ay.1,An2,...,A¢], the B inputs by B[n-1:0]=[B,.;,By2,...,Bol,
and the data outputs, Y by Y[n-1:0]=[Y.1,Yn2,..., Yol.

A[n-1:0] ﬁgn

n*2—1) Y[n-1:0]

B[n-1:0] ﬁng

S

Figure 1.31 — The schematic drawing of an n*(2—1) multiplexor

The function of the mux can is given by:

A[n-1:0] if S=0
Y[n-1:0] =
B[n-1:0] if S=1

This can be implemented using n regular 2—1 muxes, i.e., the A;, B; and the Y; are connected to a
single 2—1 mux. So, now we understand why we called that mux an n*(2—1) mux. In Figure
1.32 we see the internal structure of a 3*(2—1) mux.

Ay A1 Ay

Yo

Y,

Figure 1.32 — The inside of a 3*(2—1) mux

Lecture 1: (© copyright by Daniel Seidner)
19

1.13.3 Second expansion: A 21 mux

The 25—1 mux has 2" inputs and a single output as shown in Figure 1.31. There are also k select
inputs denoted S[k-1:0]=[Sk.1,Sk-2,...,591,5¢0]. There are 2¥ combinations to the select lines. When

S[k-1:0]=i, i.e., the combination of [Ski,...,S50] represents the number i, the i-th input is
transferred to the output Y. Since there are 2" inputs we have chosen to denote those inputs by I,
L, ..., Izk_l. Note that the simple 2—1 mux we studied before, is a particular case with k=1.
Ip —\
i Y
L,
k
S[k-1:0]

Figure 1.33 — The schematic drawing of a 2*—1 multiplexor

We would like to build an 8—1 (i.e., a 2°—1) mux using 2 muxes of 4—1. This is pretty easy.
We have to add another select input, S,, to the two select inputs, S; and Sy, of the 4—1 muxes
(i.e., 21 muxes). This S, input will choose between the two outputs of the two 4—1 muxes, as
in Figure 1.34 below.

7
’

Iy —E*\\\ The number
I ! S~o_ represented by
1 .
| ! S[k-1:0] is the
2 ! serial number of
L —] the input
! transferred to the
! Y output.
1
Iy — S: Si S
1 2 1 0
[s — 000 =0
I I 001 =1
I 010 =2
L — 011 =3
D 100 = 4
- 101 =5
110 =6
So Sy S, 111 =7

Figure 1.34 - A 2’1 mux build of two 2°—>1 muxes

Lecture 1: (© copyright by Daniel Seidner)
20

Since adding a select line exactly doubles the number of combinations, we can similarly build a
2" 1 mux using two 21 muxes and a single 2—1 mux. Thus, we can build a 2*—1 mux
recursively. In Figure 1.35 we see the recursive definition of such a mux.

-
k-1
2 3
1 1
1nputs .
1
1
1
\ ' .
1 1
1 1 Y
: |
1
(L : L~ i
1
Ik-l 1 L}
2k-1 2 4] —] :
1
inputs { Loy 251 :
1! !
- 1 P
1 ’/’
S A
. k-l// _-
1 ’//
1 e
1 e
1 A~
-7
L/
k—l//
Sk—Zy"'ySO Sk—l

Figure 1.35 — Building a mux recursively

The cost equation is C(k) =2+C(k-1) + C(1). This means that the cost is actually:
C(k) = C(1)* [14 2+4+...+25"]= C(1)* (21). Note that here we look at k instead of n where n is
the number of the inputs and follows n=2*. So C(n)=Cy—,;*(n-1).

The delay equation is D(k) = D(k-1) + D(1). This means that the delay is given by D(k) =k +D(1)
or D(n) =1g,n* Dy,;.

In Figure 1.36 we show the entire tree of an 8—1 mux.

(© copyright by Daniel Seidner)

Lecture 1:

21

S2

S

So

in an 8—1 mux

depth

1Ire recursion

Figure 1.36 — The ent

Lecture 1: (© copyright by Daniel Seidner)
22

1.13.4 Third expansion: An n*(2*>1) mux

The n*(2*—1) mux has 2 inputs, n bits each, i.e., each input represent an n bits binary number,
and a single n bits output as shown in Figure 1.37. There are also k select inputs denoted
S[k-1:0]=[Sk-1,5k.2,...,91,S¢]. There are 2¥ combinations to the select lines. When S[k-1:0]=i, the
i-th input is transferred to the output Y. Since there are 2" inputs we have choose to denote those
inputs by Ip, I, ..., Izk_l, sometimes denoted A,B,...,Z.

Io[n-1:0] (or A[n-1:0]) D T ~—

Ii[n-1:0] (or B[n-1:0])
7 n*(2*>1) n
| ——/ YI[n-1:0]

L*.[n-1:0] (or Z[n-1:0]) ﬁ‘L

Sk-15-+-550

Figure 1.37 — The schematic drawing of an n*(2*>1) multiplexer

Similarly to the first expansion, the n*(2"—1) mux is built of n muxes of 2*—1, each of them
takes care for one of the n bits. An example of a 12—3 mux, i.e., a 3*(22—>1) mux, is given in
Figure 1.38 below.

Lecture 1: (© copyright by Daniel Seidner)

23

Ay Ap Ay

Figure 1.38 — The inside of a 3*(22—>1) mux

We can also take apart the 4—1 muxes, which , as we already know, are built of 2—1 muxes:

(© copyright by Daniel Seidner)

Lecture 1:
24

Yo

Y,

Y>

The inside of a 3*(22—>1) mux in detail

Figure 1.39 -

Figure 1.40 below shows the entire muxes family:

Lecture 1: (© copyright by Daniel Seidner)
25

B(rl) |

2nd expansion:
binary tree for 2k

— I

P |

First expansion:
N bits in parallel

3rd expansion:
2" inputs of N bits in

\

n*(2*>1) n

——/ Y[n-1:0]

Io[n-1:0] (or A[n-1:0])
Ii[n-1:0] (or B[n-1:0])

s

L*i[n-1:0] (or Z[n-1:0]) ;1/

Figure 1.40 — The entire multiplexers family

Lecture 1: (© copyright by Daniel Seidner)
26

We have only one last thing to say about muxes and decoders. They complement each other. A
mux is the “inverse” of a decoder. To show that, we will change our interpretation of decoders.
Let us look at a 2—4 decoder that has an enable input denoted E. If E="0" all outputs of the
decoder are “0”. If E="1", then the output selected by the code, or combination, of the inputs is
“1”. So, one can see the decoder as a switch controlled by the inputs that transfers the E data into
one of the output as in Figure 1.41.

Yo
Io
2—1 | Y, .
1 decoder Y, =
Y;

1[1:0]=[11,Io]

Figure 1.41 — A decoder as a controlled switch

We can use Muxes and Decoders to multiplex multiple data streams on a single line as in Figure
1.42. This is called TDM, Time Division Multiplexing, since when we sequentially change the
selection code S[1:0]=0—1—-2—3—0—1—... etc., we have a different data stream appearing on
the line at different times. Note that the rate of switching the select lines should be 4 times higher
than the rate in which the data streams may change.

h — ¢ _ 1 Y,
L _— 1 . v . E . 1 v
L — 1 i » 5 I S A
| COR J oY,
,A/ 2
2

S1,50

Figure 1.42 — 4 data lines sharing a single line

Suggested homework: 1)A “recursive” comparator 2) "ALT" detector 3) A “tree” decoder

Lecture 1: (© copyright by Daniel Seidner)

27
3) Adders and ALU circuits

In this section we will use the knowledge we acquired in the previous two chapters to design
Adders and ALU.

3.1) A Half Adder

We begin with designing a component called a Half Adder. This component, depicted in Figure
3.1 below, as well as its truth-table, is capable of adding two one bit numbers.

A
|]
0o Jo o
o |1 o |1 HA
o o |1
|1 [t o l

C, Y

Figure 3.1 — A Half

The equations of a Half-Adder are easily found from its truth-tabe:
Y=A-B+A-B=A®B
C=A-B

So, the implementation of a Half-Adder (HA) is simple and involves only two gates:

Figure 3.2 — The inside of a Half-Adder

'z

Lecture 1: (© copyright by Daniel Seidner)
28

The reason that this device is called a Half-Adder is that we need two of these in order to add
longer numbers. Let us demonstrate it. We’ll try to build an Adder that will add two 6 bits
numbers A[5:0] and B[5:0]. We connect the A;-th and B;-th bits to a Half-Adder that produces the
Y;-th output and hope for good:

C6 CS C4 C3 C2 C1
Y5 Y4 Y3 Y2 Y] YO

Figure 3.3 - Trying to build an adder .:

Let us now try to use the adder for adding some unsigned numbers. We do not have any problems
in adding A=001100 and B=010001. But we seem to have a problem adding A=001100 and B=
001010. The 4 LSBs of Y[5:0], i.e., Yo, Y1, Yo, and Y3 are OK. But Y4 is not, since the addition
of Az and B; produces a carry, given by the signal C4 which is “1”, but has no influence on Y.
Such an adder cannot handle cases of carry. We need to do some modifications to this design as is
explained below.

3.2) A Full Adder
Let us try to imitate the way we, humans, do the addition of two binary numbers. Let us add the

two numbers A=0111100 and B=0101010. We add the numbers bit by bit. When carry is
produced, we add it to the next digit; (the result of each step is in red, older results are in blue)

Lecture 1: (© copyright by Daniel Seidner)

29
A= 0111100

+ B= 0101010
Calculating Yo and C;: 00 we calc Ag+Bo=[C;,Y(]=0+0=[0,0]
Calculating Y; and C;: 010 we calc A1+B;+C;=[C,,Y1]=0+1+0=[0,1]
Calculating Y, and C; 0110 we calc Ay+By+Cy=[C5,Y;2]=1+0+0=[0,1]
Calculating Y3 and Cq4 10110 we calc A3+B3+C3=[C4,Y3]=1+1+0=[1,0]
Calculating Yo and Cs l_i)_(_)_l_i;)_ we calc Ay+B4+Cy=[Cs5,Y4]=1+0+1=[1,0]
Calculating Ys and Cg “mml_i;)_(_)_l_i;)“ we calc As+Bs+Cs=[Cq¢,Ys]=1+1+1=[1,1]
Calculating Yeand C; (; _l_i;)_(_)_l_i;)“ we calc Ag+B+Ce=[C7,Y]=0+0+1=[0,1]
The final 6 bits result: i_l_(_)_(;i_l_(_)_

We can build a device that first adds the two digits A;j and B; and then adds the carry, C;. The only
issue we have left is how to calculate the carry to the next digit, Ci,;:

A; B

| C < HA i
Cin <_i@ A+B; | C;
| G,
| < HA i
Yo

Figure 3.4 - A Full-Adder device .:

Lecture 1: (© copyright by Daniel Seidner)
30

Such a device is called a Full-Adder (FA). In Figure 3.4 we demonstrate building a Full-Adder
using two Half-Adders. We see that we first add the two digits and then add also the carry in. It is
easy to see that we would have carry out only when two (or more) of the inputs A;, B, C; are “1”’s
(see the truth-table below). Let us now make sure that the circuit calculates C;,; correctly:

When Ai=B;="1", then C,="1", and so Cj;;="1". This is the only case in which C,="1".

When C;="0", we have no problem since C,="0", and so only C, can cause Cj; to be “1”. This of
course happens only if A;=B;="1".

When C;="1", we have to worry only about the case in which we have A#B;, since if they are
equal, then if they are “0”, A;+B; is also “0” and no carry is produced at all. If they are “1”’s, then,
although Cp="0", we have carry since C,="1".

When C;="1" and A;#B;, we know that there must be carry. Since in this case we have
A;+B;="1", we also have C,="1" and therefore C;,;="1" as desired.

Thus, the circuit depicted in Figure 3.4 satisfies the truth-table of a Full-Adder (FA) that is shown
below.

By the way, note that the unsigned number [Ci,;,Y] actually represents the number of “1”’s in the
set { A, B;, C; }.

Gi Ai |Bi G | Yi
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

The schematic drawing of a Full-Adder is shown in Figure 3.5 below.

Lecture 1: (© copyright by Daniel Seidner)
31

Figure 3.5 - The schematic drawing .

We could have used the truth-table and Karnaugh maps to find the equations of Y and Ci,,;.
Those are:

+A-B-C+A B -C =

.
i

C.=A-B+A-C+B-C

So we can draw the implementation of a Full-Adder using gates:

Figure 3.6 — The inside of a Full-Adder
We can use a slightly different equation for Ci,:

Lecture 1: (© copyright by Daniel Seidner)

32

CHI :Ai .Bi +(Ai ®B1)Cl

which changes the implementation slightly to:

Cin

Figure 3.7 — Another implementation of a Full-Adder

Note that this implementation has fewer gates than the previous one, but the delay from A; or B;
to Ci4 s larger since an extra gate is included in this path (if a 3 input gate has the same delay).
Note that this implementation is identical to Figure 3.4.

We are ready now to build our first Adder.

3.3) A Ripple Carry Adder

A Ripple Carry Adder is an adder built of Full-Adders very similarly to our first try of Figure 3.3.
This time we use Full-Adders instead of the Half-Adders and connect the carry-out of a digit to
the carry-in of the next digit:

Lecture 1: (© copyright by Daniel Seidner)

33
Tn-l Tn-l Ti Ti Tz Tz Tl T To To
Cn Cn—l Ci.,. Ci C3 C2 C1 C0

v
OVF Y. Y; Y Y, Yo

Figure 3.8 — A Ripple Carry Adder .;

This kind of an adder is called a Ripple Carry Adder (RCA) since the carry propagates through
the Full-Adders like a wave.

%
r
|
r

Note that, as explained in the previous chapter, this adder is capable of adding two unsigned
numbers, or two 2’s Comp. numbers.

A[n-1:0] B[n-1:0]

t 1

Adder l— G
n
v
OVF G
/IT

Finiiro 2 O . Tho erhomatirn Irr

Lecture 1: (© copyright by Daniel Seidner)
34

The cost of a RCA with width of n bits, i.e., an adder capable of adding two n bits numbers, is n
times the cost of a single Full-Adder. Let us choose the implementation of Figure 3.7, i.e., we
have 5 gates in a Full-Adder. Thus, we have

C(n):n ‘ CFAZS'II

This means that when we double the width of our processor word we will need to pay twice the
price.

The delay of a RCA depends on the carry propagation. The first stage calculating Yy, will have
the correct result after the delay of the two XOR gates of the right-hand side FA. The second
stage, calculating Y, will have the correct result later, since we have to wait for C; and then wait
another delay of a XOR gate till Y; is ready. For Y,, we have to wait for C, which depends on C,
and so on, as shown in Figure 3.10. Thus, a two gates delay should be added for every bit.
Eventually we have:

D(n)=n+2+T +T, where T is the delay of a single gate.

This is so since in order to calculate C,, which is required some times, we need to wait 3T until
we produce C; and then, 2(n-1)T until the carry propagates through the next (n-1) stages, i.e., the
total delay of this adder is (2n+1)T.

The time required for Y, to be ready is 3T+(n-2)+2T+T=2nT.

Figure 3.10 — Delay in a RCA

Lecture 1: (© copyright by Daniel Seidner)
35

In case we would have used the implementation of Figure 3.6, even only for the 1* stage, we
would shorten the time by T to all outputs (except Yo), and so we would have D(n)=n+2 + T,
(for Cy).

We definitely have D(n) = O(n), i.e., a linear delay.

This is not a good result. It means that when we double the word width of our computer, we also
double the calculation time, i.e., we make our computer two times slower than before. We will
later try to improve the performance. We would like to have a linear cost and a logarithmic delay.
This is the best we can hope for.

3.4) ALU

Although we are not satisfied with the performance of our adder (the RCA), we are now ready to
design the heart of a CPU, the Arithmetic Logic Unit (ALU). The ALU is the part of the CPU that
does all the computations.

First, we’ll improve the functionality of our adder by adding the capability of performing
subtraction.

Since, as we already know, A— B= A+ B +1, all we have to do in order to subtract B from A

is to invert its bits and add the inverted number to A, and also add 1. Adding 1 is very easy. We’ll
use Cy for that. This is actually the reason we used a Full-Adder in the 1*' stage instead of a Half-

Adder which is slightly faster and less expensive. Having the C input is also useful for "add with
carry" operations.

The SUB input controls the function of the circuit. In case SUB="0", B is not inverted (the XOR
gate actually means that each bit of B is XORed with SUB), and Cy="0", thus the circuit
calculates Y=A+B. In case SUB="1", B is inverted and Cy="1", so the circuit calculates Y=A-B.
(Note: try to prove that when this circuit is used for unsigned numbers subtraction, the result is
negative if C,="0"!! Le., C, is definitely not equal to the borrow we expect when subtracting 2
unsigned numbers).

Lecture 1: (© copyright by Daniel Seidner)
36

A[n-1:0] B[n-1:0]

—

((

=]

Co
Adder/Subtractor /< SUB

/ YvI

Firniirn 2 11 - An YVIT

It is very simple to add some Logical operation to the Adder/Subtractor, and so, to form an ALU.
Let us define the functionality of an ALU we want to design. We want the ALU to have two n
bits inputs, the numbers A[n-1:0] and B[n-1:0], and an n bit output called Y[n-1:0]. We need to
have some control lines, say 3 select lines, S, S, So, that will determine the operation performed
by the ALU. The following table shows the desired functionality of our ALU:

Lecture 1: (© copyright by Daniel Seidner)

37

S[2:0] Code | The operation The name
performed by the | of the

S, 1S, |S, |ALU operation

0 |0 |0 JY=AplusB Add

0 [0 |1 JY=A-B Sub

0O |1 |0 JY=A'B AND

0 |1 I JY=A+B OR

1 [0 |0 J[Y=ADB XOR

I 10 (1 Jvy=2A4 NOT

1 I [0 |Y=A

1 1 1 |Y=B

The way to get such functionality is to perform all those operations (almost) in parallel using 8
(actually 7) h/w units that perform those 8 operations. Some of the units are very simple, just n
gates each (e.g., the AND, OR, XOR, NOT, i.e., all the logical operations). Some are much more
complicated (e.g., the Adder/Subtractor). We use a multiplexer to select the appropriate output
according to the select code. Since the Adder/Subtractor is used for two operations, its output is
connected to two inputs of the multiplexer, the ones that are selected by [000] and [001].

We also add some special outputs. The ZR output is “1” if the ALU’s output is zero. The C, is
“1” when there is a carry-out. We usually also add the NEG output which is the sign bit of Y, i.e.,
Y..1, and the OVF output, which tells us if 2’s Comp overflow had occurred. (The last two
outputs are not shown in Figure 3.12).

Lecture 1:

(© copyright by Daniel Seidner)

38

A[n-1:0] .. B[n-1:0]
A
| T T==== __"'
\ 1
\ 1
\ ”
‘\ v 1
\ ”
\ n '
‘\ n n n "
\ > d > d A \J /
\ n n n n n n ,'
\ - - - 4
A A A 7 n
\‘ // n ”I
\
! A 4 J \ A 4 !
\ 1
\ Y O L . i s,
\ n n n n !
! _ _ rd > d " !
E]
‘\‘ //V l'
\ n m !
‘\ // // l’
\ A 4 A 4 A 4 A 4 A 4 A 4 A 4 \ 4 J
\ | 1
: 7 6 5 4 3 2 1 0 / / S
‘\\ Mu f '
\ / ”
‘\ oCE— 'I ;
\ 1
\ ”
‘ | ‘\ __ !
n
¥
Y[n-1:0]

C, OV Z Sign

(Neg)

Figure 3.12 — The complete ALU

Lecture 1: (© copyright by Daniel Seidner)
39

3.5) A Conditional Sum Adder

The idea in a Conditional Sum Adder (CSA) is to compute the addition of A[n-1:0] and B[n-1:0],
i.e., two numbers of n bits each, by parts. By that we mean that the lower half of the numbers (lets
call it the LSB part of the numbers), A[n/2-1:0] and B[n/2-1:0] are added separately than the
upper part of the numbers (the MSB part), A[n-1:n/2] and B[n-1:n/2]. If we split the operation
into these two parts, we can use two separate adders (each adding n/2 bits numbers). That way we
do the computation faster since we do things in parallel (In both adders the carry propagates only
half of the way, at the same time). Instead of having delay of D(n), we’ll have a delay of D(n/2).
However, there is a problem. For the MSB part, we should add A[n-1:n/2] and B[n-1:n/2] and
Cup. But, Cyy is available only after D(n/2), i.e., when the LSB part calculation is finished. If we
then start the calculation of the MSB part (adding the C,, takes also D(n/2)), the total calculation
time is D(n/2)+D(n/2), and no improvement had been acquired. The solution is to calculate 3
calculations in parallel: The 1% is A[n/2-1:0]+B[n/2-1:0]. The PAET A[n-1:n/2]+B[n-1:n/2] and
the 3 is A[n-1:n/2]+B[n-1:n/2]+1. These 3 calculations last D(n/2). After this time we have the
3 results and C,; as well. The result of A[n/2-1:0]+B[n/2-1:0] is Y[n/2-1:0]. We’ll use C,» to
select the appropriate result of Y[n-1:n/2]. If Cy, is 0, we take the result of A[n-1:n/2]+B[n-1:n/2]
as Y[n-1:n/2]. If C, is 1, we take the result of A[n-1:n/2]+B[n-1:n/2]+1 as Y[n-1:n/2]. This is
done by adding a Mux as depicted in Figure 3.13 below. This is actually a recursive way of
building a CSA.

A[n-1:n/2] A[n/2-1:0]
B[n-1:n/2] B[n/2-1:0]

nlx” nlx” nlx” nlx” n n

A\ 4 A\ 4 A\ 4 A\ 4
AT AT e e
Cn 1 Cn o Cun

nlx” nlx”

YV vvr YV viv

A 4 A 4

1 0 1 0
251 X n/2%(2—1) Mux 4_T

nlx” nlx”

v v

\"4 YvYIrr \"4 YY

Finitiro 2 12 - RiilAinAa a MQA YVITT

Lecture 1: (© copyright by Daniel Seidner)
40

The delay is given by the recursive equation D(n) = D(n/2) +Tmux. This means that the delay is
logarithmic: D(n) = Tyux - g n. This is so since whenever we double the inputs we add a delay
of a mux.

Figure 3.14 describes the entire recursion depth of a 4 bits CSA. The basic parts used are Full-
Adders and Muxes.

A3 B3 A2B2 AIBI AOBO

Cz\1 0/ C,

Figure 3.14 - The entire recursion in a 4 bits CSA

Since we have lg n recursive stages, where in each , the number of Full-adders is tripled, we
should have about 3'¢" = n'¢* = n'”® Full-Adders in a CSA of n inputs. A similar count, reversing
the order, i.e., about (n/2) Muxes at the last stage (not including the carry muxes), 3-(n/4) Muxes
at the one before, 3% (n/8) Muxes before etc., which sums up to about n'® Muxes:

(n/2) +(3/2)-(n/2) +(3/2) (0/2)+...=(n/2): [1+(3/2)*+(3/2) +...+(3/2)"" '] =n-[(3/2)¢"-1]= 3"
-n=n®*-n=n""%-n = n"

The carry muxes, 1 for the last stage + 3 for the one before the last + 3% +...+ 3
=312 =@ - 2= 02

Ign-1_

Lecture 1: (© copyright by Daniel Seidner)

41

Thus, the cost of such an adder is polynomial, C(n) = O(nl'sg). This is not a good result. We
employ such a design when we need to build a fast adder using already existing smaller adders.
The next adder we’ll discuss has a logarithmic delay and a linear cost.

3.6) A Carry Look Ahead Adder

Let us try to calculate the carry of all the stages in a logarithmic time. We notice that there are
two reasons for having a carry out from the i-th stage of an adder, i.e, from adding A;, B; and C;.
(This addition produces a two bits number [Ci;1,Y;]). The carry C;;; can be generated in the i-th
stage or generated in a lower stage and propagate into Ci; (through C;). Carry is generated only
when Ai=Bi=1. C; will propagate through the i-th stage only if A;#B;. If this is the case, we have
Ci;+1=C;. Carry will not be generated or propagated when A;=B;=0. So we can write the carry
equation as:

Ci+1 :Ai 'Bi +(Ai ®BI)C1

We denote the AND of A; and B; by G; which stands for generate. We denote the XOR of A; and
B; by P; which stands for propagate. So we have a new equation for the relation of C; and Ci,i:

Ca=G+P -G

Note that since Gj and P; depend only on A; and Bj, we can calculate all of them in parallel at the
same time. Let us build a device, very similar to a Full-Adder, that calculates Y;, G; and P;
(instead of Y; and C;,; calculated by a Full-Adder). Such a device is depicted in Figure 3.15
below.

Figure 3.15 - Y and G P calculation

Lecture 1: (© copyright by Daniel Seidner)
42

Let us now build an adder using this device.

A, B A, B Ay By
G2 G1 G0|
C C C
P, 2 P, ! P, [«0»

Figure 3.16 — A Carry Look Ahead Adder

Let us calculate the delay of such an adder. First, the Gi-s and P;-s are all calculated in parallel
(see the red lines in Figure 3.16). This takes T seconds, where T is the delay of a single gate.
Then, we have to wait till the dotted box calculates all the C;-s. Let’s denote this time as Tia.
Following this, all the outputs become valid after an additional delay of a single gate (see the blue
lines in Figure 3.16). So the delay of this adder is Tyt = 2T + Tpa.

At a first glance, it seems that we earned nothing in this new design of an adder. We calculated C,
using the equation which gave: C1=Gy+Py-Cy. We calculated C, similarly by C,=G;+P;-C; and
C; by C3=G,+P,-C,. As we see from Figure 3.16, this means that we connected the circuit in
series. The delay from the minute all the G;-s and P;-s and Cy are ready till the time where all the
Ci-s are valid, is the delay of two gates multiplied by the number of bits in the adder, i.e.,
TLa=2nT. Thus the total delay of that adder is Ty = 2T + Ta=(2n+2)T. (Actually Ty =
(2n+1)T since C, is calculated in parallel to Y,.;). Again we reached a situation where the delay
of the adder is linear.

So, we should try to improve the performance of the dotted box. This box is called a Carry Look
Ahead (CLA) circuit and this is the reason for calling this adder a CLA adder. We can easily see
that it is possible to calculate the carry with a logarithmic delay:

We start with calculating C; which is given by C1=Gy+Py-C.

Lecture 1: (© copyright by Daniel Seidner)

43

Next, we deal with C,. Here we have C,=G;+P;-C;. If we substitute C; with the equation above,
we get:
C2=G1+P1 'C1=G1+P1 : (G()+P() : C0)=G1+P1G0+P1P()C().

In the same way we get:
C3: G2+P2 : C2:G2+P2 : (G1+P1G0+P1P0 : C0)2G2+P2G1+P2P1G0+P1P0C0

and:
C4: G3+P3 : C3:G3+P3 : (G2+P2G1+P2P1G0+P1P()Co):
= G3+P;Gy+P3P,G 1+ P3P,P1Go+ PsPPyCo

And eventually:
Cn:Gn_1+ Pn_lGn—2+Pn_1Pn_2Gn_3+ R Pn—IPn—2 Cee. 'P2P1G0+ R Pn—IPn—Z . 'P()C()

As we see from that equation, we have here AND and OR functions of up to n+1 inputs. We
already know that using binary trees, we can compute those in a logarithmic delay. Thus, we are
sure that we can build a CLA adder having a logarithmic delay.

Note that there are many identical parts in the product terms of that equation. There is a chance
that we can use this in order to produce all of the C;-s by the same circuit (i.e., by a circuit that
shares some partial products). Before we show that this can be done in linear cost, let us replace
the “serial” CLA of Figure 3.16 with a “parallel” system which is possible if 3 and 4 input gates
are available.

C3 G2 P, C2 G1 P, Cl G() Py Co

Co
| . |
| ’ :
| (®
: L] |
| ® |
: —e i
| ¢ |
| ® |
L |

) Parallel Prefi mputation

Figure 3.17 — A simple Carry Look Ahead circuit using multiple inputs gates

Lecture 1: (© copyright by Daniel Seidner)

44

The algorithm enabling calculation of all of the carry outputs simultaneously, in a linear cost and
a logarithmic delay, is called Parallel Prefix Computation (PPC).

We denote the unsigned number [G;_i, Pi.1] as ;. Actually G; equals the sum of A;; and B;_; and
also equals to 2Gj.;+Pi.;. (and Go= 2Cy).

We define the operation & as follows:

0 ifo,=0
I[,=0, ® o, = o, ifo,=1
2 ifo,=2

This operation helps us to detect whether the i-th stage has carry in its input. Let us look at o3. If
it is 2, we definitely have carry at the input of the 31 stage, i.e., C3=1. This is so since G,=1 (i.e.,
carry is generated in the 2nd stage). If 63=0, we are sure that there is no carry, i.e., C3=0, since

G,=P,=0 (no generation or propagation of carry in the 2nd stage). If 63=1, we do not know if we
have carry or not. We know that P,=1, i.e., carry will propagate through the 2nd stage. So we

should look at G,. If 6,=2, we have carry. If 6,=0, we do not have carry. If 6,=1, we must check

01. and so on. We therefore conclude that in order to determine C;, the carry into the the i-th
stage, we should actually look at IT;, where I1; is defined by:

II,=o; ®Gi_1 ®Gi_2 X... ®02 ®61 ®00

Since Gy equals 0 or 2, all of the II;-s have values of 0 or 2. None of them can be equal to 1.
Eventually, when converting back from IT; to C;j the rule is therefore C;="1" if I1;=2.

Note that the operation ®is associative:

(0.¥0,)®0.= 0, ®(cp,®0,)

This means that the order of computation does not matter. Note that the order of a, b, ¢ matters,
ie.,0,80,80.#% 6, 6.0, !!! (6.£.,2=102Q0# 1Q®0&K2=0).

The operation & is not commutative.

The associativity of the operation & is easily proved by checking all of the possible cases.

Lecture 1: (© copyright by Daniel Seidner)

45

Since this is so, we can calculate I1,,.; using pairs of G-s:

I1,.1=0Cn1 ® (o)) ® On-3 ® On4 ®...Q® O3 ® 62® O1 ® Op =
=(Cn1 ® 012)® (63 ® 6,4)® ... B(03 ® 6,)X (61 D o)

Let us denote G°i» = (01 @ G;). So now we have:
=0T 021 @ G2 @G a3 ® ... ®6,® 06 1® 0

The following circuit uses the associativity to produce all Ilj-s from the Gj-s recursively:

On2 On-1 O Os O4 O3 O O; Op
0‘n/2—1 '2 '1 'o
PPC(n/2)
IT w21 Il IT IT
) 4) 4) 4
v v v v v
My oo Il IIs Il II; II, IT; Il

Figure 3.18 — Recursive PPC: PPC(n) built of PPC(n/2)
This circuit calculates the right results since we can see that

IIp= 0oy

leﬁ’o =0; ® Oo

I, =0, ® H1=(52® (O] ® (o))

H3:0’1 ® (5,() 2(03 ®(52)®(01 ® 00):03 ®(52 ®01 ®(50

Lecture 1: (© copyright by Daniel Seidner)
46

etc., and that we can also use the relation: I;=0; &® II;,.

We immediately see that the delay follows the equation: D(n)= 2T + D(n/2) where T is the delay
of the device performing the operation & . Thus, we conclude that the delay is logarithmic: D(n)
~2-T-lgn.

We also see that adding n/2 inputs caused addition of (n-1) devices which is about twice of the
number of inputs we add. This means that the cost is given by C(n) = 2n.

This is so since C(n) = n + C(n/2) = 2(n/2)+C(n/2) = 2(n/2) + 2(n/4) + C(n/4) =

~2[(/2) + (n/4) + (0/8) + ... + 2 + 1] =2(n-1) = 2n.

[The exact results are: D(n)=(2:1gn-1)T and C(n)=2n-2-1g(n)]

Thus, the PPC version of the carry look ahead has a logarithmic delay and a linear cost.

Calculating the C;-s from the IT;-s is easy:

C="0" if II;=0, and C;="1" if II;=2. As mentioned above, I1; can never be 1, since Gy can be 0
or 2. (Le., if we have IIi=1, we “look” to the right and get the value of O or 2 from II;.;. Even if
we get 1 and therefore should continue looking further to the right, eventually we reach Gy, that
by definition can be only O or 2).

(© copyright by Daniel Seidner)

Lecture 1:
47

Figure 3.19 below shows the entire recursion depth of a PPC(16).

Figure 3.19 — The entire recursion depth in a PPC(16)

Lecture 1: (© copyright by Daniel Seidner)

48

The implementation of the & operation is depicted in Figure 3.20 below.

G P Go Po 01 =[G,Pi] G0 =1[Go,Po]

11l
e

IT; = [G,P]

Figure 3.20 — The implementation of the ® operation

Let us verify the correctness of the implementation:

e When ;=2 (i.e., Gi=1), we have I1,=2 (i.e., G=1) as desired. (Note that in this case P;
must be 0 so P is also 0).

e When ;=0 (i.e., G;=P;=0), we have I1;=0 as desired.

e When 0,=1 (i.e., G;=0, P;=1), we have II;= G as required (since in this case we have
G=Gy and P=Py).

