Array Multipliers

Array of AND gates

Z7 Z6

Z5

Z4

Z3

Z2

Z1

Z0

Array of AND gates

Z0

Array of AND gates

Principle of CSA — add 4 numbers using a RCA

Principle of CSA — add 4 numbers using a CSA

Principle of CSA

CSA based multiplier updated

Homework: $O((log_2n)^2)$ using CLA

Build a multiplier that adds $Y^*X_0 + 2^*Y^*X_1$ and $Y^*X_2 + 2^*Y^*X_3$ and $Y^*X_4 + 2^*Y^*X_5$ etc., using (n/2) CLAs with (n+1) bits each. Then, add the (n/2) results using (n/4) CLAs with (n+3) bits each. Continue till you need to add only 2 numbers.

Calculate the delay expected in a CLA has a delay of T*log₂n

Signed array multiplier

A full adder – a reminder

$$2*C_{out}+Y=A+B+C_{in}$$

$$2*Y_1+Y_0 = A + B + C$$

A full adder – a reminder

$$2*Y_1+Y_0 = A+B+C$$

$$2*Y_1-Y_0 = A+B-C$$

$$-2*Y_1+Y_0 = -A-B+C$$

other array multipliers

other array multipliers

1. Odd/Even CSA multiplier $O(n/2 + log_2 n)$

2. CLA binary tree multiplier $O([log_2n]^2)$

3. Wallace tree multiplier O(log_{1.5}n)

4. CSA binary tree O(log₂n)

And there are others!

Note: in all of the above except the Booth, we demonstrate unsigned multiplication

1. Odd/Even CSA multiplier

- 1. Similar to the "regular" CSA multiplier except that we add the "even" summands and the "odd" summands separately (and sum them together at the end)
- 2. This is done in parallel, so we get about half of the time

A regular CSA multiplier

Odd/Even CSA multiplier

Odd/Even CSA multiplier – The parallel flow

Odd/Even CSA multiplier – The parallel flow

(See homework)

- 1. $O([\log_2 n]^2)$
- 2. Use (n/2) CLAs for adding $2Y_1+Y_0$, $2Y_3+Y_1$, $2Y_5+Y_4$, etc.
- 3. Use (n/4) wider CLAs for adding the (n/2) results
- 4. Continue in a tree like structure in the same manner
- 5. Delay is T_{CLA}*log₂n since the tree depth is log₂n
- 6. Since $T_{CLA} = \log_2 n$ we get $O([\log_2 n]^2)$
- 7. Cost is C_{CLA}^* n *(1/2+1/4+...+1/2ⁿ⁻¹) = n* C_{CLA} (with average of 1.5n bits??) CHECK!!!

Binary tree with CLAs

All adders are CLAs

Size of adders is increasing

Binary tree with CLAs

All adders are CLAs

Delay is $T_{CLA}^*log_2n$ = $T_{FA}^*(log_2n)^2$

Cost < (n-1)*C_{CLA}*2

3. Wallace tree = 3>2 reduction

(See Guy Even' lectures, Patterson & Hennessy Quantitative approach Fig. A.30, I. Koren, pp 88-89)

- 1. Delay is $O(log_{1.5}n)$
- 2. Use (n/3) CSAs for reducing the number of summands to (2/3)n
- 3. Use (2/3)n/3 2 bit wider CSAs for adding the (2/3)n results
- 4. Continue in a Wallace tree structure in the same manner
- 5. Delay is T_{CSA} *log_{1.5}n since the tree depth is log_{1.5}n
- 6. Since $T_{CSA} = T_{FA}$ we get delay of $O(log_{1.5}n)$
- 7. Cost is $C_{CSA}^* [n/3 + (2/3)n/3 + (2/3)^2n/3 + ...] = O(n^2)$ CHECK!!!

Wallace tree – an example – 8 summands

summands => levels:

3=>1, 4=>2, 5-6=>3, 7-9=>4, 10-13=>5, 14 -19=>6, 20-28=>7,

29-42=>8, 43-63=>9

A note:

The ratio 2/3 comes from the fact that a FA has inputs and 2 outputs

44

4. Binary tree with CSAs

- 1. $O(\log_2 n)$
- 2. Use (n/2) 4-to-2 CSA structure for adding $[8Y_3+4Y_2+2Y_1+Y_0]$, $[8Y_7+4Y_6+2Y_5+Y_4]$, etc.
- 3. Use (n/4) wider 4-to-2 CSAs for adding the (n/2) results
- 4. Continue in a binary tree like structure in the same manner
- 5. Delay is T_{CSA} *log₂n since the tree depth is log₂n
- 6. Since $T_{CSA} = T_{FA}$ we get $O(log_2 n)$
- 7. Cost = $C_{CSA}^*n^*(1/2+1/4+...+1/2^{n-1}) = n^*C_{CSA}^*$ (with average of 1.5n bits??) CHECK!!!

4-to-2 CSA

Binary tree with CSAs

 $= 2*T_{FA}*log_2n$

