
Computer Structure Lab - Fall 2002
Dr. Guy Even

Handout #6: A simplified DLX: design, testing, timing, and pro-
gramming

Each question counts as one assignment. Submission deadline is given next to each question. We
highly recommend that you divide the load between students in the same group, otherwise you will
find the burden too high.

1. (submit at the beginning of your 11th lab meeting.) Design and test the simplified DLX.

• Submit schematics of the project and of the new modules. Submit results of testing
using test vectors of each module.

• Submit VHDL file of the control. Describe how you tested the control. Submit re-
sults of testing the control using test vectors. (In order to reduce the amount submit-
ted simulation, please submit test vectors of the following paths only: ALU, TESTI,
LOAD, STORE, JALR, BTAKEN. However, you should prepare test vectors for all of
the paths.)

• Test your design to see if the correct RTL instruction is executed in each state. Write
short DLX programs that test every instruction. Note that some instructions must be
tested more than once (e.g. “branch taken” and “branch not taken”). Store these pro-
grams in the RAM of the I/O SIMUL module. Build a project from your DLX design
and the modified I/O SIMUL module. Simulate this project. Submit: (1) Your pro-
grams. For every instruction, list the states that are traversed. (2) Waveforms of a
simulation of your design. Add remarks to the waveforms that show the traversed
states, the RTL instruction that were executed, and what they did.

After completing these stages successfully, it is likely that your design can be run on the
RESA and monitored to see if it functions properly.

2. (submit at the beginning of your 12th lab meeting.) Implement and test your design on the
RESA.

• Implement your design. You should easily meet the timing requirements (clock rate at
least 5 MHz). Submit a report generated by the implementation software stating that
your design is fast enough and that implementation was successful.

• Re-use the test programs you used to test the RTL instructions on the RESA. Use
the Logic Analyzer to verify that the RTL instructions are executed properly. Submit
printouts of the monitoring with remarks explaining why you got the right results.

• Read the RESA test program. Describe how it tests the design.

• Run the RESA test procedure on your design. Your design should pass the test! Get
Marko’s approval of your design.

1

3. (submit at the beginning of your 13th lab meeting.) Try to design the fastest design you
can. You should at least meet the 10MHZ threshold. Implement your design and meet the
timing requirements (clock rate at least 10 MHz). There are a few ways to try to decrease
the feasible clock period.

• The first method is to try to reduce delays due to routing in the FPGA. This can be done
by “helping” the place & route tools. You will be told more on how this is done.

• The second method is to identify the critical path and try to shorten its delay. This
method is applicable provided that there are only a few critical paths.

• The third technique can be used if you failed in shortening the delay of critical paths.
Suppose the critical path includes the ALU. A way to solve this critical path is to
allow two cycles for the ALU. This requires a change in the control so that each of
the corresponding states are divided into two states. We do not recommend using this
method (for example, the software will still report timing problems because it does not
know that the signal is not sampled after one cycle). You should be able to solve the
timing problem without it.

After you meet the timing requirements, Implement and test your design on the RESA. Note
that the timing analysis done by the software tools is often too pessimistic. Your design may
be fast enough even if the software reports otherwise.

4. (submit at the beginning of your 14th lab meeting.)

The goal in this assignment is to write a DLX assembly program that computes a minimum
spanning tree (MST) in an undirected graph using Prim’s or Kruskal’s algorithms.
The input should be as follows (starting from address 0x00800003):

(a) n ∈ {2, 1024} - the number of nodes of the graph. The vertex set is {v0, . . . , vn−1}.

(b) m ∈ {1, 1024 · 11} - the number of edges of the graph.

(c) A list of edges and edge weights. For each edge, three numbers are given: i,j,w, where
(i, j), i < j, denotes an edge and w denotes the weight of an edge.

The output should be as follows (starting from address 0x0080C000):

(a) The MST weight.

(b) A list of edges (i, j) s.t. (i, j) ∈ MST . The list should be sorted by the value of i.
(remember: ∀(i, j).i < j).

Submit:

(a) A hand-written explanation of your program. In particular, describe your internal for-
mat, how your program runs, the memory organization in your program, and the com-
plexity of your algorithm.

(b) A printout of your DLX assembly program.

2

(c) Test your program on three graphs: (i) A path of 1024 nodes. All edges have unit
weight. (ii) A graph of your choice. (iii) A graph of our choice - will be given to you
by Marko.
Submit a printout of the first 60 words in the memory starting from address 0x0080C000
for each graph. Submit also a description of the graph you chose.

for example, the first few places in the memory starting from 0x00800000 as an in-
put to (i):

0x00800000: 0x--------
0x--------
0x--------
0x00000400 * number of nodes = 1024
0x000003ff * number of edges = 1023
0x00000000 * edge #1: (i,j)=(0,1), w=1
0x00000001
0x00000001
0x00000001 * edge #2: (i,j)=(1,2), w=1
0x00000002
0x00000001
0x00000002 * edge #3: (i,j)=(2,3), w=1
0x00000003
0x00000001
.
.
.

Remark: you cannot assume any kind of order of the input edges.

3

