
Covering Graphs
Using

Trees and Stars
Guy Even (Tel-Aviv), Naveen Garg (Delhi),

and

Jochen Könemann, R. Ravi and A. Sinha (Pittsburgh)

Third Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics

and Computing

– p.1

Motivation

Consider a TSP instance with a large
optimal tour, e.g. w(tour∗) > 1000.

Suppose regulation dictates: agent may
travel at most 100 km.

⇒ must employ multiple agents.

⇒ k-traveling salespeople problem.
Cover the vertices of a graph with k

tours.
Balance the load of the agents:
minimize the maximum tour.

MST is a constant ratio approx of a min
tour ⇒ k-Tree Cover Problem.

– p.2

Motivation

Consider a TSP instance with a large
optimal tour, e.g. w(tour∗) > 1000.

Suppose regulation dictates: agent may
travel at most 100 km.

⇒ must employ multiple agents.

⇒ k-traveling salespeople problem.
Cover the vertices of a graph with k

tours.
Balance the load of the agents:
minimize the maximum tour.

MST is a constant ratio approx of a min
tour ⇒ k-Tree Cover Problem.

– p.2

Motivation

Consider a TSP instance with a large
optimal tour, e.g. w(tour∗) > 1000.

Suppose regulation dictates: agent may
travel at most 100 km.

⇒ must employ multiple agents.

⇒ k-traveling salespeople problem.
Cover the vertices of a graph with k

tours.
Balance the load of the agents:
minimize the maximum tour.

MST is a constant ratio approx of a min
tour ⇒ k-Tree Cover Problem.

– p.2

Motivation

Consider a TSP instance with a large
optimal tour, e.g. w(tour∗) > 1000.

Suppose regulation dictates: agent may
travel at most 100 km.

⇒ must employ multiple agents.

⇒ k-traveling salespeople problem.

Cover the vertices of a graph with k

tours.
Balance the load of the agents:
minimize the maximum tour.

MST is a constant ratio approx of a min
tour ⇒ k-Tree Cover Problem.

– p.2

Motivation

Consider a TSP instance with a large
optimal tour, e.g. w(tour∗) > 1000.

Suppose regulation dictates: agent may
travel at most 100 km.

⇒ must employ multiple agents.

⇒ k-traveling salespeople problem.
Cover the vertices of a graph with k

tours.

Balance the load of the agents:
minimize the maximum tour.

MST is a constant ratio approx of a min
tour ⇒ k-Tree Cover Problem.

– p.2

Motivation

Consider a TSP instance with a large
optimal tour, e.g. w(tour∗) > 1000.

Suppose regulation dictates: agent may
travel at most 100 km.

⇒ must employ multiple agents.

⇒ k-traveling salespeople problem.
Cover the vertices of a graph with k

tours.
Balance the load of the agents:
minimize the maximum tour.

MST is a constant ratio approx of a min
tour ⇒ k-Tree Cover Problem.

– p.2

Motivation

Consider a TSP instance with a large
optimal tour, e.g. w(tour∗) > 1000.

Suppose regulation dictates: agent may
travel at most 100 km.

⇒ must employ multiple agents.

⇒ k-traveling salespeople problem.
Cover the vertices of a graph with k

tours.
Balance the load of the agents:
minimize the maximum tour.

MST is a constant ratio approx of a min
tour ⇒ k-Tree Cover Problem.

– p.2

k-Tree Cover Problem

Input: (i) integer k and (ii) G = (V,E) - an
undirected graph with positive integral
edge weights w : E → IN+.

k-tree cover: a set T of trees {Ti}i such that
V =

⋃k
i=1 V (Ti).

cost : cost(T) = maxTi∈T w(Ti).

goal : find a minimum cost k-tree cover.

remark : trees may share nodes & edges in a
tree cover.

– p.3

k-Tree Cover Problem

Input: (i) integer k and (ii) G = (V,E) - an
undirected graph with positive integral
edge weights w : E → IN+.

k-tree cover: a set T of trees {Ti}i such that
V =

⋃k
i=1 V (Ti).

cost : cost(T) = maxTi∈T w(Ti).

goal : find a minimum cost k-tree cover.

remark : trees may share nodes & edges in a
tree cover.

– p.3

k-Tree Cover Problem

Input: (i) integer k and (ii) G = (V,E) - an
undirected graph with positive integral
edge weights w : E → IN+.

k-tree cover: a set T of trees {Ti}i such that
V =

⋃k
i=1 V (Ti).

cost : cost(T) = maxTi∈T w(Ti).

goal : find a minimum cost k-tree cover.

remark : trees may share nodes & edges in a
tree cover.

– p.3

k-Tree Cover Problem

Input: (i) integer k and (ii) G = (V,E) - an
undirected graph with positive integral
edge weights w : E → IN+.

k-tree cover: a set T of trees {Ti}i such that
V =

⋃k
i=1 V (Ti).

cost : cost(T) = maxTi∈T w(Ti).

goal : find a minimum cost k-tree cover.

remark : trees may share nodes & edges in a
tree cover.

cost=9

1
2

2

8

5
1 2

11
2

5

– p.3

k-Tree Cover Problem

Input: (i) integer k and (ii) G = (V,E) - an
undirected graph with positive integral
edge weights w : E → IN+.

k-tree cover: a set T of trees {Ti}i such that
V =

⋃k
i=1 V (Ti).

cost : cost(T) = maxTi∈T w(Ti).

goal : find a minimum cost k-tree cover.

remark : trees may share nodes & edges in a
tree cover.

cost=9

1
2

2

8

5
1 2

11
2

5

– p.3

k-Tree Cover Problem

Input: (i) integer k and (ii) G = (V,E) - an
undirected graph with positive integral
edge weights w : E → IN+.

k-tree cover: a set T of trees {Ti}i such that
V =

⋃k
i=1 V (Ti).

cost : cost(T) = maxTi∈T w(Ti).

goal : find a minimum cost k-tree cover.

remark : trees may share nodes & edges in a
tree cover.

– p.3

k-Tree Cover Problem: the rooted case

Roots: Input contains also a set of roots:

R = {r1, r2, . . . , rk}.

k-rooted tree cover: a k-tree cover {Ti}i such
that

∀i : ri ∈ Ti.

motivation : agents start their tour in different
locations.

– p.4

k-Tree Cover Problem: the rooted case

Roots: Input contains also a set of roots:

R = {r1, r2, . . . , rk}.

k-rooted tree cover: a k-tree cover {Ti}i such
that

∀i : ri ∈ Ti.

motivation : agents start their tour in different
locations.

roots

– p.4

k-Tree Cover Problem: the rooted case

Roots: Input contains also a set of roots:

R = {r1, r2, . . . , rk}.

k-rooted tree cover: a k-tree cover {Ti}i such
that

∀i : ri ∈ Ti.

motivation : agents start their tour in different
locations.

roots

– p.4

k-Tree Cover Problem: the rooted case

Roots: Input contains also a set of roots:

R = {r1, r2, . . . , rk}.

k-rooted tree cover: a k-tree cover {Ti}i such
that

∀i : ri ∈ Ti.

motivation : agents start their tour in different
locations.

– p.4

k-Tree Cover Problem: the rooted case

Roots: Input contains also a set of roots:

R = {r1, r2, . . . , rk}.

k-rooted tree cover: a k-tree cover {Ti}i such
that

∀i : ri ∈ Ti.

motivation : agents start their tour in different
locations.

– p.4

k-Tree Cover Problem: the rooted case

Roots: Input contains also a set of roots:

R = {r1, r2, . . . , rk}.

k-rooted tree cover: a k-tree cover {Ti}i such
that

∀i : ri ∈ Ti.

motivation : agents start their tour in different
locations.

– p.4

k-Tree Cover Problem: the rooted case

Roots: Input contains also a set of roots:

R = {r1, r2, . . . , rk}.

k-rooted tree cover: a k-tree cover {Ti}i such
that

∀i : ri ∈ Ti.

motivation : agents start their tour in different
locations.

– p.4

Star Covers

k-Star Cover: a k-tree cover {Ti}i in which

∀i : Ti is a star

rooted/unrooted versions: in rooted version,
stars must be rooted at R. Namely, ri is
the root of Ti.

motivation : agents must return to base after
each visit.

– p.5

Star Covers

k-Star Cover: a k-tree cover {Ti}i in which

∀i : Ti is a star

rooted/unrooted versions: in rooted version,
stars must be rooted at R. Namely, ri is
the root of Ti.

motivation : agents must return to base after
each visit.

– p.5

Star Covers

k-Star Cover: a k-tree cover {Ti}i in which

∀i : Ti is a star

rooted/unrooted versions: in rooted version,
stars must be rooted at R. Namely, ri is
the root of Ti.

motivation : agents must return to base after
each visit.

– p.5

Star Covers

k-Star Cover: a k-tree cover {Ti}i in which

∀i : Ti is a star

rooted/unrooted versions: in rooted version,
stars must be rooted at R. Namely, ri is
the root of Ti.

motivation : agents must return to base after
each visit.

– p.5

Star Covers

k-Star Cover: a k-tree cover {Ti}i in which

∀i : Ti is a star

rooted/unrooted versions: in rooted version,
stars must be rooted at R. Namely, ri is
the root of Ti.

motivation : agents must return to base after
each visit.

– p.5

Star Covers

k-Star Cover: a k-tree cover {Ti}i in which

∀i : Ti is a star

rooted/unrooted versions: in rooted version,
stars must be rooted at R. Namely, ri is
the root of Ti.

motivation : agents must return to base after
each visit.

– p.5

Star Covers

k-Star Cover: a k-tree cover {Ti}i in which

∀i : Ti is a star

rooted/unrooted versions: in rooted version,
stars must be rooted at R. Namely, ri is
the root of Ti.

motivation : agents must return to base after
each visit.

– p.5

Star Covers

k-Star Cover: a k-tree cover {Ti}i in which

∀i : Ti is a star

rooted/unrooted versions: in rooted version,
stars must be rooted at R. Namely, ri is
the root of Ti.

motivation : agents must return to base after
each visit.

– p.5

Star Covers

k-Star Cover: a k-tree cover {Ti}i in which

∀i : Ti is a star

rooted/unrooted versions: in rooted version,
stars must be rooted at R. Namely, ri is
the root of Ti.

motivation : agents must return to base after
each visit.

– p.5

Related work

k-Traveling Repairman: Cover with tours, O(1)-approx
minimize average latency. [Fakcharoenphol, Harrelson,
Rao 2003]

k-Traveling Salesman: Cover with tours, O(1)-approx
minimize total length. [Haimovich, Rinooy Kan, Stougie
1988]

Vehicle Routing: Vast amount of work, e.g. Survey
[Toth, Vigo, 2002]

Clustering is like covering with stars: Minimize
maximum edge - k center [Dyer, Frieze, 1985], Minimize
sum of edge lengths k median [Arya, et al 2001],
Minimize sum of star radii [Charikar, Panigrahy, 2001].

– p.6

Related work

k-Traveling Repairman: Cover with tours, O(1)-approx
minimize average latency. [Fakcharoenphol, Harrelson,
Rao 2003]

k-Traveling Salesman: Cover with tours, O(1)-approx
minimize total length. [Haimovich, Rinooy Kan, Stougie
1988]

Vehicle Routing: Vast amount of work, e.g. Survey
[Toth, Vigo, 2002]

Clustering is like covering with stars: Minimize
maximum edge - k center [Dyer, Frieze, 1985], Minimize
sum of edge lengths k median [Arya, et al 2001],
Minimize sum of star radii [Charikar, Panigrahy, 2001].

– p.6

Related work

k-Traveling Repairman: Cover with tours, O(1)-approx
minimize average latency. [Fakcharoenphol, Harrelson,
Rao 2003]

k-Traveling Salesman: Cover with tours, O(1)-approx
minimize total length. [Haimovich, Rinooy Kan, Stougie
1988]

Vehicle Routing: Vast amount of work, e.g. Survey
[Toth, Vigo, 2002]

Clustering is like covering with stars: Minimize
maximum edge - k center [Dyer, Frieze, 1985], Minimize
sum of edge lengths k median [Arya, et al 2001],
Minimize sum of star radii [Charikar, Panigrahy, 2001].

– p.6

Related work - cont

Chandra Chekuri & Amit Kumar - similar results.

Arkin, Hassin, & Levin - approx algorithms for many
similar problems:

O(1)-approx for unrooted k-path cover.
O(1)-approx for unrooted B-star cover.
many other problems...

– p.7

Related work - cont

Chandra Chekuri & Amit Kumar - similar results.

Arkin, Hassin, & Levin - approx algorithms for many
similar problems:

O(1)-approx for unrooted k-path cover.
O(1)-approx for unrooted B-star cover.
many other problems...

– p.7

Related work - cont

Chandra Chekuri & Amit Kumar - similar results.

Arkin, Hassin, & Levin - approx algorithms for many
similar problems:

O(1)-approx for unrooted k-path cover.

O(1)-approx for unrooted B-star cover.
many other problems...

– p.7

Related work - cont

Chandra Chekuri & Amit Kumar - similar results.

Arkin, Hassin, & Levin - approx algorithms for many
similar problems:

O(1)-approx for unrooted k-path cover.
O(1)-approx for unrooted B-star cover.

many other problems...

– p.7

Related work - cont

Chandra Chekuri & Amit Kumar - similar results.

Arkin, Hassin, & Levin - approx algorithms for many
similar problems:

O(1)-approx for unrooted k-path cover.
O(1)-approx for unrooted B-star cover.
many other problems...

– p.7

Results

Hardness: All 4 problems are NP-complete. (reduction
from Bin-Packing).

k-tree cover: 4-approximation algorithm. Strongly
polynomial versions are (4 + ε)-approx.

k-star cover:
Unrooted version: (4, 4)-bicriteria approximation
algorithm (i.e. 4k stars of cost 4 · OPTk). Extend
method of [Shmoys, Tardos, & Aardal, 1997] for
capacitated facility location.
Rooted version: equivalent to min. makespan of k

machines and n jobs. 2-approximation of [Shmoys &
Tardos, 1993].

– p.8

Results

Hardness: All 4 problems are NP-complete. (reduction
from Bin-Packing).

k-tree cover: 4-approximation algorithm. Strongly
polynomial versions are (4 + ε)-approx.

k-star cover:
Unrooted version: (4, 4)-bicriteria approximation
algorithm (i.e. 4k stars of cost 4 · OPTk). Extend
method of [Shmoys, Tardos, & Aardal, 1997] for
capacitated facility location.
Rooted version: equivalent to min. makespan of k

machines and n jobs. 2-approximation of [Shmoys &
Tardos, 1993].

– p.8

Results

Hardness: All 4 problems are NP-complete. (reduction
from Bin-Packing).

k-tree cover: 4-approximation algorithm. Strongly
polynomial versions are (4 + ε)-approx.

k-star cover:

Unrooted version: (4, 4)-bicriteria approximation
algorithm (i.e. 4k stars of cost 4 · OPTk). Extend
method of [Shmoys, Tardos, & Aardal, 1997] for
capacitated facility location.
Rooted version: equivalent to min. makespan of k

machines and n jobs. 2-approximation of [Shmoys &
Tardos, 1993].

– p.8

Results

Hardness: All 4 problems are NP-complete. (reduction
from Bin-Packing).

k-tree cover: 4-approximation algorithm. Strongly
polynomial versions are (4 + ε)-approx.

k-star cover:
Unrooted version: (4, 4)-bicriteria approximation
algorithm (i.e. 4k stars of cost 4 · OPTk). Extend
method of [Shmoys, Tardos, & Aardal, 1997] for
capacitated facility location.

Rooted version: equivalent to min. makespan of k

machines and n jobs. 2-approximation of [Shmoys &
Tardos, 1993].

– p.8

Results

Hardness: All 4 problems are NP-complete. (reduction
from Bin-Packing).

k-tree cover: 4-approximation algorithm. Strongly
polynomial versions are (4 + ε)-approx.

k-star cover:
Unrooted version: (4, 4)-bicriteria approximation
algorithm (i.e. 4k stars of cost 4 · OPTk). Extend
method of [Shmoys, Tardos, & Aardal, 1997] for
capacitated facility location.
Rooted version: equivalent to min. makespan of k

machines and n jobs. 2-approximation of [Shmoys &
Tardos, 1993].

– p.8

approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.

1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) ∈ [B, 2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist ≤ B).

6. if not all subtrees are matched
⇒B < B∗.

7. else return ∀ri: leftover +
matched subtree.

– p.9

approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.

1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) ∈ [B, 2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist ≤ B).

6. if not all subtrees are matched
⇒B < B∗.

7. else return ∀ri: leftover +
matched subtree.

– p.9

approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.

1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) ∈ [B, 2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist ≤ B).

6. if not all subtrees are matched
⇒B < B∗.

7. else return ∀ri: leftover +
matched subtree.

– p.9

approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.

1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) ∈ [B, 2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist ≤ B).

6. if not all subtrees are matched
⇒B < B∗.

7. else return ∀ri: leftover +
matched subtree.

– p.9

approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.

1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) ∈ [B, 2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist ≤ B).

6. if not all subtrees are matched
⇒B < B∗.

7. else return ∀ri: leftover +
matched subtree.

– p.9

approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.

1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) ∈ [B, 2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist ≤ B).

6. if not all subtrees are matched
⇒B < B∗.

7. else return ∀ri: leftover +
matched subtree.

– p.9

approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.

1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) ∈ [B, 2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist ≤ B).

6. if not all subtrees are matched
⇒B < B∗.

7. else return ∀ri: leftover +
matched subtree.

– p.9

approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.

1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) ∈ [B, 2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist ≤ B).

6. if not all subtrees are matched
⇒B < B∗.

7. else return ∀ri: leftover +
matched subtree.

– p.9

approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.

1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) ∈ [B, 2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist ≤ B).

6. if not all subtrees are matched
⇒B < B∗.

7. else return ∀ri: leftover +
matched subtree.

– p.9

approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.

1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) ∈ [B, 2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist ≤ B).

6. if not all subtrees are matched
⇒B < B∗.

7. else return ∀ri: leftover +
matched subtree.

– p.9

approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.

1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) ∈ [B, 2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist ≤ B).

6. if not all subtrees are matched
⇒B < B∗.

7. else return ∀ri: leftover +
matched subtree.

– p.9

approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.

1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) ∈ [B, 2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist ≤ B).

6. if not all subtrees are matched
⇒B < B∗.

7. else return ∀ri: leftover +
matched subtree.

– p.9

approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.

1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) ∈ [B, 2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist ≤ B).

6. if not all subtrees are matched
⇒B < B∗.

7. else return ∀ri: leftover +
matched subtree.

– p.9

approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.

1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) ∈ [B, 2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist ≤ B).

6. if not all subtrees are matched
⇒B < B∗.

7. else return ∀ri: leftover +
matched subtree.

– p.9

4-approx algorithm : k-rooted tree cover

Claim: success ⇒ cost(cover) ≤ 4 · B.

Claim: fail ⇒ B < B∗.

Binary search on value of B ⇒ (weakly) polynomial
4-approx algorithm.

Scaling ⇒ strongly polynomial (4 + ε)-approx algorithm.

– p.10

4-approx algorithm : k-rooted tree cover

Claim: success ⇒ cost(cover) ≤ 4 · B.

Claim: fail ⇒ B < B∗.

Binary search on value of B ⇒ (weakly) polynomial
4-approx algorithm.

Scaling ⇒ strongly polynomial (4 + ε)-approx algorithm.

– p.10

4-approx algorithm : k-rooted tree cover

Claim: success ⇒ cost(cover) ≤ 4 · B.

Claim: fail ⇒ B < B∗.

Binary search on value of B ⇒ (weakly) polynomial
4-approx algorithm.

Scaling ⇒ strongly polynomial (4 + ε)-approx algorithm.

– p.10

4-approx algorithm : k-rooted tree cover

Claim: success ⇒ cost(cover) ≤ 4 · B.

Claim: fail ⇒ B < B∗.

Binary search on value of B ⇒ (weakly) polynomial
4-approx algorithm.

Scaling ⇒ strongly polynomial (4 + ε)-approx algorithm.

– p.10

Claim: success ⇒ cost(cover) ≤ 4 · B

Each tree in tree cover may consist of:

a rooted leftover subtree ⇒ cost(leftover) < B.

a matched subtree ⇒ cost(subtree) < 2 · B.

matching edge ⇒ cost(edge) ≤ B.

⇒ weight of every tree in solution is < 4 · B. QED

– p.11

Claim: success ⇒ cost(cover) ≤ 4 · B

Each tree in tree cover may consist of:

a rooted leftover subtree ⇒ cost(leftover) < B.

a matched subtree ⇒ cost(subtree) < 2 · B.

matching edge ⇒ cost(edge) ≤ B.

⇒ weight of every tree in solution is < 4 · B. QED

– p.11

Claim: success ⇒ cost(cover) ≤ 4 · B

Each tree in tree cover may consist of:

a rooted leftover subtree ⇒ cost(leftover) < B.

a matched subtree ⇒ cost(subtree) < 2 · B.

matching edge ⇒ cost(edge) ≤ B.

⇒ weight of every tree in solution is < 4 · B. QED

– p.11

Claim: success ⇒ cost(cover) ≤ 4 · B

Each tree in tree cover may consist of:

a rooted leftover subtree ⇒ cost(leftover) < B.

a matched subtree ⇒ cost(subtree) < 2 · B.

matching edge ⇒ cost(edge) ≤ B.

⇒ weight of every tree in solution is < 4 · B. QED

– p.11

Claim: success ⇒ cost(cover) ≤ 4 · B

Each tree in tree cover may consist of:

a rooted leftover subtree ⇒ cost(leftover) < B.

a matched subtree ⇒ cost(subtree) < 2 · B.

matching edge ⇒ cost(edge) ≤ B.

⇒ weight of every tree in solution is < 4 · B. QED

– p.11

Claim: fail ⇒ B < B∗

Assume for sake of contradiction:

B ≥ B∗ and matching failed.

Hall’s Theorem: if matching failed, then

∃S ⊆ subtrees : |S| > |N(S)|.

Fix OPT:

T ∗ 4

= {T ∗
1 , . . . , T ∗

k } where rj ∈ T ∗
j .

T ∗(S)
4

= {T ∗
j | ∃Si ∈ S : T ∗

j ∩ Si 6= ∅}.

Note: T ∗
j ∩ Si 6= ∅ ⇒ w(rj, Si) ≤ B∗ ≤ B.

⇒ |T ∗(S)| ≤ |N(S)|.

w(rj , Si) ≤ B

subtrees roots

Si
rj

T
∗

j

rj

Si

≤ B
∗

– p.12

Claim: fail ⇒ B < B∗

Assume for sake of contradiction:

B ≥ B∗ and matching failed.

Hall’s Theorem: if matching failed, then

∃S ⊆ subtrees : |S| > |N(S)|.

Fix OPT:

T ∗ 4

= {T ∗
1 , . . . , T ∗

k } where rj ∈ T ∗
j .

T ∗(S)
4

= {T ∗
j | ∃Si ∈ S : T ∗

j ∩ Si 6= ∅}.

Note: T ∗
j ∩ Si 6= ∅ ⇒ w(rj, Si) ≤ B∗ ≤ B.

⇒ |T ∗(S)| ≤ |N(S)|.

w(rj , Si) ≤ B

subtrees roots

Si
rj

T
∗

j

rj

Si

≤ B
∗

– p.12

Claim: fail ⇒ B < B∗

Assume for sake of contradiction:

B ≥ B∗ and matching failed.

Hall’s Theorem: if matching failed, then

∃S ⊆ subtrees : |S| > |N(S)|.

Fix OPT:

T ∗ 4

= {T ∗
1 , . . . , T ∗

k } where rj ∈ T ∗
j .

T ∗(S)
4

= {T ∗
j | ∃Si ∈ S : T ∗

j ∩ Si 6= ∅}.

Note: T ∗
j ∩ Si 6= ∅ ⇒ w(rj, Si) ≤ B∗ ≤ B.

⇒ |T ∗(S)| ≤ |N(S)|.

w(rj , Si) ≤ B

subtrees roots

Si
rj

T
∗

j

rj

Si

≤ B
∗

– p.12

Claim: fail ⇒ B < B∗

Assume for sake of contradiction:

B ≥ B∗ and matching failed.

Hall’s Theorem: if matching failed, then

∃S ⊆ subtrees : |S| > |N(S)|.

Fix OPT:

T ∗ 4

= {T ∗
1 , . . . , T ∗

k } where rj ∈ T ∗
j .

T ∗(S)
4

= {T ∗
j | ∃Si ∈ S : T ∗

j ∩ Si 6= ∅}.

Note: T ∗
j ∩ Si 6= ∅ ⇒ w(rj, Si) ≤ B∗ ≤ B.

⇒ |T ∗(S)| ≤ |N(S)|.

w(rj , Si) ≤ B

subtrees roots

Si
rj

T
∗

j

rj

Si

≤ B
∗

– p.12

Claim: fail ⇒ B < B∗

Assume for sake of contradiction:

B ≥ B∗ and matching failed.

Hall’s Theorem: if matching failed, then

∃S ⊆ subtrees : |S| > |N(S)|.

Fix OPT:

T ∗ 4

= {T ∗
1 , . . . , T ∗

k } where rj ∈ T ∗
j .

T ∗(S)
4

= {T ∗
j | ∃Si ∈ S : T ∗

j ∩ Si 6= ∅}.

Note: T ∗
j ∩ Si 6= ∅ ⇒ w(rj, Si) ≤ B∗ ≤ B.

⇒ |T ∗(S)| ≤ |N(S)|.

w(rj , Si) ≤ B

subtrees roots

Si
rj

T
∗

j

rj

Si

≤ B
∗

– p.12

Claim: fail ⇒ B < B∗

Assume for sake of contradiction:

B ≥ B∗ and matching failed.

Hall’s Theorem: if matching failed, then

∃S ⊆ subtrees : |S| > |N(S)|.

Fix OPT:

T ∗ 4

= {T ∗
1 , . . . , T ∗

k } where rj ∈ T ∗
j .

T ∗(S)
4

= {T ∗
j | ∃Si ∈ S : T ∗

j ∩ Si 6= ∅}.

Note: T ∗
j ∩ Si 6= ∅ ⇒ w(rj, Si) ≤ B∗ ≤ B.

⇒ |T ∗(S)| ≤ |N(S)|.

w(rj , Si) ≤ B

subtrees roots

Si
rj

T
∗

j

rj

Si

≤ B
∗

– p.12

Claim: fail ⇒ B < B∗ - (cont.)

recall:
B ≥ B∗ and |T ∗(S)| ≤ |N(S)| < |S|.

∀j : w(T ∗
j) ≤ B∗ ⇒ w(T ∗(S)) ≤ B∗ · |T ∗(S)|

∀i : w(Si) ∈ [B, 2B) ⇒ w(S) ≥ B · |S|.

⇒ w(S) > w(T ∗(S)).

But
T ′ 4

= MST + T ∗(S) − S

is a spanning tree and w(T ′) < w(MST), contradiction. QED

– p.13

Claim: fail ⇒ B < B∗ - (cont.)

recall:
B ≥ B∗ and |T ∗(S)| ≤ |N(S)| < |S|.

∀j : w(T ∗
j) ≤ B∗ ⇒ w(T ∗(S)) ≤ B∗ · |T ∗(S)|

∀i : w(Si) ∈ [B, 2B) ⇒ w(S) ≥ B · |S|.

⇒ w(S) > w(T ∗(S)).

But
T ′ 4

= MST + T ∗(S) − S

is a spanning tree and w(T ′) < w(MST), contradiction. QED

– p.13

Claim: fail ⇒ B < B∗ - (cont.)

recall:
B ≥ B∗ and |T ∗(S)| ≤ |N(S)| < |S|.

∀j : w(T ∗
j) ≤ B∗ ⇒ w(T ∗(S)) ≤ B∗ · |T ∗(S)|

∀i : w(Si) ∈ [B, 2B) ⇒ w(S) ≥ B · |S|.

⇒ w(S) > w(T ∗(S)).

But
T ′ 4

= MST + T ∗(S) − S

is a spanning tree and w(T ′) < w(MST), contradiction. QED

– p.13

Algorithm for Unrooted k-tree cover
1. Prune edges we > B.

Let {Gi}i be components.

2. MSTi = MST of Gi.
ki = bw(MSTi)

2B
c.

3. If
∑

i(ki + 1) > k, return “fail”.

4. Decompose each MSTi into at
most ki+1 trees S1

i +. . .+Ski

i +Li

such that w(Sj
i) ∈ [2B, 4B) and

w(Li) < 2B. Return “success”.

Long edges pruned

– p.14

Algorithm for Unrooted k-tree cover
1. Prune edges we > B.

Let {Gi}i be components.

2. MSTi = MST of Gi.
ki = bw(MSTi)

2B
c.

3. If
∑

i(ki + 1) > k, return “fail”.

4. Decompose each MSTi into at
most ki+1 trees S1

i +. . .+Ski

i +Li

such that w(Sj
i) ∈ [2B, 4B) and

w(Li) < 2B. Return “success”.

MST

– p.14

Algorithm for Unrooted k-tree cover
1. Prune edges we > B.

Let {Gi}i be components.

2. MSTi = MST of Gi.
ki = bw(MSTi)

2B
c.

3. If
∑

i(ki + 1) > k, return “fail”.

4. Decompose each MSTi into at
most ki+1 trees S1

i +. . .+Ski

i +Li

such that w(Sj
i) ∈ [2B, 4B) and

w(Li) < 2B. Return “success”.

MST

– p.14

Algorithm for Unrooted k-tree cover
1. Prune edges we > B.

Let {Gi}i be components.

2. MSTi = MST of Gi.
ki = bw(MSTi)

2B
c.

3. If
∑

i(ki + 1) > k, return “fail”.

4. Decompose each MSTi into at
most ki+1 trees S1

i +. . .+Ski

i +Li

such that w(Sj
i) ∈ [2B, 4B) and

w(Li) < 2B. Return “success”. Final solution

– p.14

Analysis

Claim: On success, each tree has weight no more than 4B.

Claim: On failure, B < B∗.

Alternatively, if B∗ ≤ B, then ki + 1 ≤ k∗i for all i.

– p.15

Analysis

Claim: On success, each tree has weight no more than 4B.

Claim: On failure, B < B∗.

Alternatively, if B∗ ≤ B, then ki + 1 ≤ k∗i for all i.

– p.15

Analysis

Claim: On success, each tree has weight no more than 4B.

Claim: On failure, B < B∗.

Alternatively, if B∗ ≤ B, then ki + 1 ≤ k∗i for all i.

– p.15

Proof: B∗ ≤ B ⇒ ki + 1 ≤ k∗
i

Let optimal solution cover Gi with {T ∗
1 , . . . , T ∗

k∗

i

}.
Augment it to span Gi by adding k∗i − 1 edges, so:

k∗

i∑

j=1

w(T ∗
i) + (k∗i − 1)B ≥ w(MSTi)

Since w(T ∗
i) ≤ B∗ ≤ B,

k∗i · B + (k∗i − 1)B ≥ w(MSTi).

⇒ k∗i ≥
w(MSTi)

2B
+

1

2
> ki.

2

– p.16

Proof: B∗ ≤ B ⇒ ki + 1 ≤ k∗
i

Let optimal solution cover Gi with {T ∗
1 , . . . , T ∗

k∗

i

}.

Augment it to span Gi by adding k∗i − 1 edges, so:

k∗

i∑

j=1

w(T ∗
i) + (k∗i − 1)B ≥ w(MSTi)

Since w(T ∗
i) ≤ B∗ ≤ B,

k∗i · B + (k∗i − 1)B ≥ w(MSTi).

⇒ k∗i ≥
w(MSTi)

2B
+

1

2
> ki.

2

– p.16

Proof: B∗ ≤ B ⇒ ki + 1 ≤ k∗
i

Let optimal solution cover Gi with {T ∗
1 , . . . , T ∗

k∗

i

}.
Augment it to span Gi by adding k∗i − 1 edges, so:

k∗

i∑

j=1

w(T ∗
i) + (k∗i − 1)B ≥ w(MSTi)

Since w(T ∗
i) ≤ B∗ ≤ B,

k∗i · B + (k∗i − 1)B ≥ w(MSTi).

⇒ k∗i ≥
w(MSTi)

2B
+

1

2
> ki.

2

– p.16

Proof: B∗ ≤ B ⇒ ki + 1 ≤ k∗
i

Let optimal solution cover Gi with {T ∗
1 , . . . , T ∗

k∗

i

}.
Augment it to span Gi by adding k∗i − 1 edges, so:

k∗

i∑

j=1

w(T ∗
i) + (k∗i − 1)B ≥ w(MSTi)

Since w(T ∗
i) ≤ B∗ ≤ B,

k∗i · B + (k∗i − 1)B ≥ w(MSTi).

⇒ k∗i ≥
w(MSTi)

2B
+

1

2
> ki.

2

– p.16

Proof: B∗ ≤ B ⇒ ki + 1 ≤ k∗
i

Let optimal solution cover Gi with {T ∗
1 , . . . , T ∗

k∗

i

}.
Augment it to span Gi by adding k∗i − 1 edges, so:

k∗

i∑

j=1

w(T ∗
i) + (k∗i − 1)B ≥ w(MSTi)

Since w(T ∗
i) ≤ B∗ ≤ B,

k∗i · B + (k∗i − 1)B ≥ w(MSTi).

⇒ k∗i ≥
w(MSTi)

2B
+

1

2
> ki.

2

– p.16

	Motivation
	k-Tree Cover Problem
	k-Tree Cover Problem: the rooted case
	Star Covers
	Related work
	Related work - cont
	Results
	
ormalsize approximation algorithm: k-rooted tree cover
	
ormalsize 4-approx algorithm : k-rooted tree cover
	Claim: success $Rightarrow 	ext {emph {cost(cover)}}
leq 4cdot B$
	Claim: fail $Rightarrow B < B^*$
	
ormalsize Claim: fail $Rightarrow B < B^*$ - (cont.)
	Algorithm for Unrooted k-tree cover
	Analysis
	Proof: $B^*leq B ~Rightarrow ~ k_i+1leq k^*_i$

