Covering Graphs
Using
Trees and Stars

Guy Even (Tel-Aviv), Naveen Garg (Delhi),
and

Jochen Konemann, R. Ravi and A. Sinha (Pittsburgh)

Third Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics
and Computing

_p1



Motivation

m Consider a TSP instance with a large
optimal tour, e.qg. w(tour*) > 1000.

— p2



Motivation

m Consider a TSP instance with a large
optimal tour, e.qg. w(tour*) > 1000.

B Suppose regulation dictates: agent may
travel at most 100 km.

e

5

— p2



Motivation

m Consider a TSP instance with a large
optimal tour, e.qg. w(tour*) > 1000.

B Suppose regulation dictates: agent may
travel at most 100 km.

®m = must employ multiple agents.

— p2



Motivation

m Consider a TSP instance with a large
optimal tour, e.qg. w(tour*) > 1000.

B Suppose regulation dictates: agent may
travel at most 100 km.

®m = must employ multiple agents.
B = k-traveling salespeople problem.

N

\

-

— p2



Motivation

m Consider a TSP instance with a large
optimal tour, e.qg. w(tour*) > 1000.

B Suppose regulation dictates: agent may
travel at most 100 km.

®m = must employ multiple agents.

B = k-traveling salespeople problem.

Cover the vertices of a graph with &
tours.

N

\

-

— p2



Motivation

m Consider a TSP instance with a large
optimal tour, e.qg. w(tour*) > 1000.

B Suppose regulation dictates: agent may
travel at most 100 km.

®m = must employ multiple agents.

B = k-traveling salespeople problem.

Cover the vertices of a graph with &
tours.

Balance the load of the agents:
minimize the maximum tour.

\
.
A

— p2



Motivation

m Consider a TSP instance with a large
optimal tour, e.g. w(tour®) > 1000.

m Suppose regulation dictates: agent may
travel at most 100 km.

B — must employ multiple agents.

m = k-traveling salespeople problem.

Cover the vertices of a graph with &
tours.

Balance the load of the agents:
minimize the maximum tour.

m MST is a constant ratio approx of a min
tour = k-Tree Cover Problem.

W,

é

— p2



k-Tree Cover Problem



k-Tree Cover Problem

Input: (i) integer £ and (i) G = (V,E) - an
undirected graph with positive integral
edge weights w : £ — IN ™.

©

— p3



k-Tree Cover Problem

Input: (i) integer £ and (i) G = (V,E) - an
undirected graph with positive integral
edge weights w : £ — IN ™.

k-tree cover: a set 7 of trees {T;}; such that
V= U§=1 V(T3).

™

— p3



k-Tree Cover Problem

Input: (i) integer £ and (i) G = (V,E) - an
undirected graph with positive integral 1
edge weights w : £ — IN ™. I

k-tree cover: a set 7 of trees {T;}; such that | 2
k
v =Ur, V(T @)g

cost : COSt(7) = maxp.c7 w(T;). 2
MR

— p3



k-Tree Cover Problem

Input: (i) integer £ and (i) G = (V,E) - an
undirected graph with positive integral 1
edge weights w : £ — IN ™. 1

k-tree cover: a set 7 of trees {T;}; such that | 2
k
v =Ur, V(T @)g

cost : COSt(7) = maxp.c7 w(T;). 2
goal : find a minimum cost k-tree cover. ¥ 9

— p3



k-Tree Cover Problem

Input: (i) integer £ and (i) G = (V,E) - an
undirected graph with positive integral
edge weights w : £ — IN ™.

k-tree cover: a set 7 of trees {T;}; such that
V= U§=1 V(T3).

cost : COSt(7) = maxp.c7 w(T;).

goal : find a minimum cost k-tree cover.

remark : trees may share nodes & edges in a
free cover.

— p3



k-Tree Cover Problem: the rooted case



k-Tree Cover Problem: the rooted case

Roots: Input contains also a set of roots: o ©
R={ry,ro,...,1%}. o
(@)
(@)
(@)
o @
oo
(@)
(@)
roots



k-Tree Cover Problem: the rooted case

Roots: Input contains also a set of roots:

R={ry,ro,...,1%}.

k-rooted tree cover: a k-tree cover {T;}; such ©
that

Vi @ r; €T;.




k-Tree Cover Problem: the rooted case

Roots: Input contains also a set of roots:

R={ry,ro,...,1%}.

k-rooted tree cover: a k-tree cover {T;}; such ©
that ®

Vi @ r; €T;. °




k-Tree Cover Problem: the rooted case

Roots: Input contains also a set of roots:

R={ry,ro,...,1%}.

k-rooted tree cover: a k-tree cover {7;}; such
that

Vi @ r; €T;.




k-Tree Cover Problem: the rooted case

Roots: Input contains also a set of roots:

R={ry,ro,...,1%}.

k-rooted tree cover: a k-tree cover {7;}; such
that

Vi : r; €715,




k-Tree Cover Problem: the rooted case

Roots: Input contains also a set of roots:
R = {7"1,7‘2, e ,Tk}.

k-rooted tree cover: a k-tree cover {7;}; such

that
Vi : r; €715,
motivation : agents start their tour in different
locations.
d

— p4



Star Covers



Star Covers

k-Star Cover: a k-tree cover {T;}; in which

Vi : T; IS a star

— p5



Star Covers

k-Star Cover: a k-tree cover {T;}; in which

Vi : T; IS a star

©

©

@)
@)
@)

(@)

— p5



Star Covers

k-Star Cover: a k-tree cover {T;}; in which

Vi : T; IS a star

Al



Star Covers

k-Star Cover: a k-tree cover {T;}; in which
Vi . T;lis a star

rooted/unrooted versions: in rooted version,
stars must be rooted at R. Namely, r; is e
the root of 7;.

— p5



Star Covers

k-Star Cover: a k-tree cover {T;}; in which
Vi . T;lis a star

rooted/unrooted versions: in rooted version,
stars must be rooted at R. Namely, r; is
the root of 7;.

— p5



Star Covers

k-Star Cover: a k-tree cover {T;}; in which
Vi . T;lis a star

rooted/unrooted versions: in rooted version,
stars must be rooted at R. Namely, r; is
the root of 7;.

— p5



Star Covers

k-Star Cover: a k-tree cover {T;}; in which
Vi . T;lis a star

rooted/unrooted versions: in rooted version,
stars must be rooted at R. Namely, r; is
the root of 7;.

Z .

N

— p5



Star Covers

k-Star Cover: a k-tree cover {T;}; in which
Vi . T;lis a star

rooted/unrooted versions: in rooted version,
stars must be rooted at R. Namely, r; is
the root of 7;.

motivation : agents must return to base after
each visit.

Z .

N

— p5



Related work

m k-Traveling Repairman: Cover with tours, O(1)-approx
minimize average latency. [Fakcharoenphol, Harrelson,
Rao 2003]

— pG



Related work

m k-Traveling Repairman: Cover with tours, O(1)-approx
minimize average latency. [Fakcharoenphol, Harrelson,
Rao 2003]

m k-Traveling Salesman: Cover with tours, O(1)-approx
minimize total length. [Haimovich, Rinooy Kan, Stougie
1988]

— pG



Related work

m k-Traveling Repairman: Cover with tours, O(1)-approx
minimize average latency. [Fakcharoenphol, Harrelson,
Rao 2003]

m k-Traveling Salesman: Cover with tours, O(1)-approx
minimize total length. [Haimovich, Rinooy Kan, Stougie
1988]

m Vehicle Routing: Vast amount of work, e.g. Survey
[Toth, Vigo, 2002]

— pG



Related work - cont

m Chandra Chekuri & Amit Kumar - similar results.



Related work - cont

m Chandra Chekuri & Amit Kumar - similar results.

m Arkin, Hassin, & Levin - approx algorithms for many
similar problems:

— p7



Related work - cont

m Chandra Chekuri & Amit Kumar - similar results.

m Arkin, Hassin, & Levin - approx algorithms for many
similar problems:

O(1)-approx for unrooted k-path cover.

— p7



Related work - cont

m Chandra Chekuri & Amit Kumar - similar results.

m Arkin, Hassin, & Levin - approx algorithms for many
similar problems:
O(1)-approx for unrooted k-path cover.

O(1)-approx for unrooted B-star cover.

— p7



Related work - cont

m Chandra Chekuri & Amit Kumar - similar results.
m Arkin, Hassin, & Levin - approx algorithms for many
similar problems:
O(1)-approx for unrooted k-path cover.
O(1)-approx for unrooted B-star cover.
many other problems...

— p7



Results

m Hardness: All 4 problems are NP-complete. (reduction
from Bin-Packing).

— p8



Results

m Hardness: All 4 problems are NP-complete. (reduction
from Bin-Packing).

m ;-tree cover: 4-approximation algorithm. Strongly
polynomial versions are (4 + ¢)-approx.

— p8



Results

m Hardness: All 4 problems are NP-complete. (reduction
from Bin-Packing).

m ;-tree cover: 4-approximation algorithm. Strongly
polynomial versions are (4 + ¢)-approx.

m t-star cover:

— p8



Results

m Hardness: All 4 problems are NP-complete. (reduction
from Bin-Packing).

m ;-tree cover: 4-approximation algorithm. Strongly
polynomial versions are (4 + ¢)-approx.

m k-star cover:
Unrooted version: (4, 4)-bicriteria approximation
algorithm (i.e. 4k stars of cost 4 - OPT},). Extend
method of [Shmoys, Tardos, & Aardal, 1997] for
capacitated facility location.

— p8



Results

m Hardness: All 4 problems are NP-complete. (reduction
from Bin-Packing).

m ;-tree cover: 4-approximation algorithm. Strongly
polynomial versions are (4 + ¢)-approx.

m t-star cover:

Unrooted version: (4, 4)-bicriteria approximation
algorithm (i.e. 4k stars of cost 4 - OPT},). Extend
method of [Shmoys, Tardos, & Aardal, 1997] for
capacitated facility location.

Rooted version: equivalent to min. makespan of &
machines and n jobs. 2-approximation of [Shmoys &
Tardos, 1993].

— p8



approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt.

o) o
(@)

[®) (@)
® ®
® ()

(@) ® °
o
o o o

COSt.

— pg



approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt.
1. contract roots.

o) o
(@)

[®) (@)
® ®
® ()

(@) ® °
o
o o o

COSt.

— pg



approximation algorithm: k-rooted tree cover

Input: graph, roots, and B - “guess” of opt.
1. contract roots.

COSt.

— pg



approximation algorithm: k-rooted tree cover

Input: graph, roots, and B - “guess” of opt.
1. contract roots.
@)
2. compute MST. o ©
(@)
[®) @)
(@)
@) © °
o o o
@)
(@) @)

COSt.

— pg



approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt.

1. contract roots.

2. compute MST.

COSt.

— pg



approximation algorithm: k-rooted tree cover

Input: graph, roots, and B - “guess” of opt. cost.
1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

— pg



approximation algorithm: k-rooted tree cover

Input: graph, roots, and B - “guess” of opt. cost.
1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

— pg



approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.
1. contract roots.
2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) € |B,2B),
w(leftovers) < B.

— pg



approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.
1. contract roots.
2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) € |B,2B),
w(leftovers) < B.

— pg



approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.
1. contract roots.
2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) € |B,2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist < B).

— pg



approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.
1. contract roots.

2. compute MST.
3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) € |B,2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist < B). 1\
o

o

— pg



approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.
1. contract roots.

2. compute MST.
3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees:
w(subtrees) € |B,2B),
w(leftovers) < B.

5. max match subtrees to roots (if
dist < B).

6. if not all subtrees are matched J
=B < B*. °

— pg



approximation algorithm: k-rooted tree cover
Input: graph, roots, and B - “guess” of opt. cost.
1. contract roots.

2. compute MST.
3. un-contract roots: forest of trees

rooted at roots.

4. edge-decompose trees:
w(subtrees) € |B,2B),
w(leftovers) < B.

5. max match subtrees to roots (if |
dist < B).

6. if not all subtrees are matched J
=B < B*. ©

— pg



approximation algorithm: k-rooted tree cover

Input: graph, roots, and B - “guess” of opt. cost.
1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees: °.
w(subtrees) € [B,2B), )
w(leftovers) < B.

5. max match subtrees to roots (if
dist < B).

6. if not all subtrees are matched
=B < B*.

/. else return Vr;: leftover +
matched subtree.

— pg



4-approx algorithm : k-rooted tree cover

m Claim: success = cost(cover) < 4 - B.

—p.10



4-approx algorithm : k-rooted tree cover

m Claim: success = cost(cover) < 4 - B.
m Claim: fail = B < B*.

—p.10



4-approx algorithm : k-rooted tree cover

m Claim: success = cost(cover) < 4 - B.
m Claim: fail = B < B*.

m Binary search on value of B = (weakly) polynomial
4-approx algorithm.

—p.10



4-approx algorithm : k-rooted tree cover

m Claim: success = cost(cover) < 4 - B.
m Claim: fail = B < B*.

m Binary search on value of B = (weakly) polynomial
4-approx algorithm.

m Scaling = strongly polynomial (4 + ¢)-approx algorithm.

—p.10



Claim: success = cost(cover) < 4- B



Claim: success = cost(cover) < 4 - B

Each tree in tree cover may consist of:
m a rooted leftover subtree = cost(leftover) < B.



Claim: success = cost(cover) < 4 - B

Each tree in tree cover may consist of:
m a rooted leftover subtree = cost(leftover) < B.
® a matched subtree = cost(subtree) < 2 - B.



Claim: success = cost(cover) < 4 - B

Each tree in tree cover may consist of:
m a rooted leftover subtree = cost(leftover) < B.
® a matched subtree = cost(subtree) < 2 - B.
®m matching edge = cost(edge) < B.

-p.11



Claim: success = cost(cover) < 4 - B

Each tree in tree cover may consist of:
m a rooted leftover subtree = cost(leftover) < B.
® a matched subtree = cost(subtree) < 2 - B.
®m matching edge = cost(edge) < B.

= weight of every tree in solution is < 4 - B. QED

-p.11



Claim: fail = B < B*



Claim: fail = B < B*

Assume for sake of contradiction:

subtrees roots

: : o ®

B > B* and matching failed. w(ry, 8i) < B
S Ty

-p.12



Claim: fail = B < B*

Assume for sake of contradiction:

subtrees roots
B > B* and matching failed. fuz(rj,si) gg:

Si Ty
Hall's Theorem: if matching failed, then ° °
o e

1S C subtrees : [S| > |N(5)].

-p.12



Claim: fail = B < B*

Assume for sake of contradiction:

subtrees roots
B > B* and matching failed. fuz(rj,si) gg:

Si Ty
Hall's Theorem: if matching failed, then ° °
o e

1S C subtrees : [S| > |N(5)].
Fix OPT:

T ={I7,...,T;} where r; € T*.

TS)={T; |38, €S:TFNS; #0}.

-p.12



Claim: fail = B < B*

Assume for sake of contradiction:

subtrees roots
B > B* and matching failed. fuz(rj,si) gg:

Si Ty
Hall's Theorem: if matching failed, then ° °
o e

1S C subtrees : [S| > |N(5)].
Fix OPT:

T ={I7,...,T;} where r; € T*.

TS)={T; |38, €S:TFNS; #0}.

Note: 77 NS; #0 = w(r;,S;i)

-p.12



Claim: fail = B < B*

Assume for sake of contradiction: subtrees roots
o (]
. . w\Tr;, SZ S B

B > B* and matching failed. s-'( 5 >e,.
[ ) (]

Hall's Theorem: if matching failed, then

1S C subtrees : [S| > |N(5)].
Fix OPT:

T ={I7,...,T;} where r; € T*.

TS)={T; |38, €S:TFNS; #0}.
Note: T; NS, #0 = w(rj,SZ-) < B* < B.

= |T7(S)| < [N(S)I.

-p.12



Claim: fail = B < B* - (cont.)

recall:
B> B* and |7T7(S)|<|N(S)| <|S|.



Claim: fail = B < B* - (cont.)

recall:
B> B* and |7T7(S)|<|N(S)| <|S|.

Vi:w(l;) < B = w(T(S)) < B*-|T*(S)|
Vi:w(S;) € [B,2B) = w(S) > B-|S|.
= w(S) > w(T*(S)).



Claim: fail = B < B* - (cont.)

recall:
B> B* and |7T7(S)|<|N(S)| <|S|.
Vi w(T;“) < B*=w(T"(S)) < B"-|T7(S)|
Vi:w(S;) € |B,2B) = w(S) > B-|S|.
= w(S) > w(T"(S))
But

T'=MST+T*S) -8

is a spanning tree and w(7") < w(M ST), contradiction. QED

-p.13



Algorithm for Unrooted £-tree cover

1. Prune edges w. > B. S
Let {G;}; be components. o
| N
-
o
°
N ® //’
@
® O
@

—p.14



Algorithm for Unrooted £-tree cover

1. Prune edges w. > B. e —
Let {G;}; be components. e

2. VST, = MST of G;.
]{ _\_ MST)J-

—p.14



Algorithm for Unrooted £-tree cover

1. Prune edges w. > B. e —
Let {G;}; be components. e

2. MST I\/ISTof Gi.

3. If > (ki +1) > k, return “fail”.

-p.14



Algorithm for Unrooted £-tree cover

1. Prune edges w. > B.
Let {G;}; be components.

2. MST; = MST of G;.
lﬁ — L ]V{fgjﬁ).J.

3. If > (ki +1) > k, return “fail”.

4. Decompose each MST; into at
most k;+1trees S} +...+SFi 4 L,
such that w($?) € [2B,4B) and
w(L;) < 2B. Return “success”.

\ :
\ | .
\ Il
\\ /
~ ! .

- ;
~~ - ,
S - - / .
- S

S

T R 3
-7 RN :
. <
7 N .
’ \ .
/ \
/ \
\ | .
\ ;o
AN .
\\ //
~ 7 .
< . :
- . ‘
. - 3
. . :
Final solution

-p.14



Analysis

Claim: On success, each tree has weight no more than 45.

-p.15



Analysis

Claim: On success, each tree has weight no more than 45.

Claim: On failure, B < B*.

-p.15



Analysis

Claim: On success, each tree has weight no more than 45.
Claim: On failure, B < B*.

Alternatively, if B* < B, then k; +1 < k7 for all s.

-p.15



Proof: B* < B = ki + 1<k



Proof: " < B = k;+1 <k

Let optimal solution cover G; with {77, ... T} }.



Proof: " < B = k;+1 <k

Let optimal solution cover G; with {77, ... T} }.
Augment it to span G; by adding £ — 1 edges, so:

K
> w(Ty) + (kf —1)B > w(MST;)
j=1

—p.16



Proof: " < B = k;+1 <k

Let optimal solution cover G; with {77, ... T} }.
Augment it to span G; by adding £ — 1 edges, so:

K
> w(Ty) + (kf —1)B > w(MST;)
j=1

Since w(T}) < B* < B,

k;k - B + (k;k — l)B Z w(MSTZ)

—p.16



Proof: " < B = k;+1 <k

Let optimal solution cover G; with {77, ... T} }.
Augment it to span G; by adding £ — 1 edges, so:

K
> w(Ty) + (kf —1)B > w(MST;)
j=1

Since w(T}) < B* < B,
k;k - B + (k;k — l)B Z w(MSTZ)
w(MST;) 1

= kI > — > k;.
b 2B +2>Z

—p.16



	Motivation
	$k$-Tree Cover Problem
	$k$-Tree Cover Problem: the rooted case
	Star Covers
	Related work
	Related work - cont
	Results
	
ormalsize approximation algorithm: $k$-rooted tree cover
	
ormalsize $4$-approx algorithm : $k$-rooted tree cover
	Claim: success $Rightarrow 	ext {emph {cost(cover)}}
leq 4cdot B$
	Claim: fail $Rightarrow B < B^*$
	
ormalsize Claim: fail $Rightarrow B < B^*$ - (cont.)
	Algorithm for Unrooted $k$-tree cover
	Analysis
	Proof: $B^*leq B ~Rightarrow ~ k_i+1leq k^*_i$

