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Motivation

m Consider a TSP instance with a large
optimal tour, e.g. w(tour®) > 1000.

m Suppose regulation dictates: agent may
travel at most 100 km.

B — must employ multiple agents.

m = k-traveling salespeople problem.

Cover the vertices of a graph with &
tours.

Balance the load of the agents:
minimize the maximum tour.

m MST is a constant ratio approx of a min
tour = k-Tree Cover Problem.

W,
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Input: (i) integer £ and (i) G = (V,E) - an
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k-Tree Cover Problem

Input: (i) integer £ and (i) G = (V,E) - an
undirected graph with positive integral
edge weights w : £ — IN ™.

k-tree cover: a set 7 of trees {T;}; such that
V= U§=1 V(T3).

cost : COSt(7) = maxp.c7 w(T;).

goal : find a minimum cost k-tree cover.

remark : trees may share nodes & edges in a
free cover.
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k-Tree Cover Problem: the rooted case

Roots: Input contains also a set of roots:
R = {7"1,7‘2, e ,Tk}.

k-rooted tree cover: a k-tree cover {7;}; such

that
Vi : r; €715,
motivation : agents start their tour in different
locations.
d
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Star Covers

k-Star Cover: a k-tree cover {T;}; in which
Vi . T;lis a star

rooted/unrooted versions: in rooted version,
stars must be rooted at R. Namely, r; is
the root of 7;.

motivation : agents must return to base after
each visit.

Z .

N
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Related work

m k-Traveling Repairman: Cover with tours, O(1)-approx
minimize average latency. [Fakcharoenphol, Harrelson,
Rao 2003]
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m k-Traveling Repairman: Cover with tours, O(1)-approx
minimize average latency. [Fakcharoenphol, Harrelson,
Rao 2003]

m k-Traveling Salesman: Cover with tours, O(1)-approx
minimize total length. [Haimovich, Rinooy Kan, Stougie
1988]

m Vehicle Routing: Vast amount of work, e.g. Survey
[Toth, Vigo, 2002]
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m Chandra Chekuri & Amit Kumar - similar results.
m Arkin, Hassin, & Levin - approx algorithms for many
similar problems:
O(1)-approx for unrooted k-path cover.
O(1)-approx for unrooted B-star cover.
many other problems...
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m ;-tree cover: 4-approximation algorithm. Strongly
polynomial versions are (4 + ¢)-approx.

m k-star cover:
Unrooted version: (4, 4)-bicriteria approximation
algorithm (i.e. 4k stars of cost 4 - OPT},). Extend
method of [Shmoys, Tardos, & Aardal, 1997] for
capacitated facility location.
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Results

m Hardness: All 4 problems are NP-complete. (reduction
from Bin-Packing).

m ;-tree cover: 4-approximation algorithm. Strongly
polynomial versions are (4 + ¢)-approx.

m t-star cover:

Unrooted version: (4, 4)-bicriteria approximation
algorithm (i.e. 4k stars of cost 4 - OPT},). Extend
method of [Shmoys, Tardos, & Aardal, 1997] for
capacitated facility location.

Rooted version: equivalent to min. makespan of &
machines and n jobs. 2-approximation of [Shmoys &
Tardos, 1993].
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approximation algorithm: k-rooted tree cover

Input: graph, roots, and B - “guess” of opt. cost.
1. contract roots.

2. compute MST.

3. un-contract roots: forest of trees
rooted at roots.

4. edge-decompose trees: °.
w(subtrees) € [B,2B), )
w(leftovers) < B.

5. max match subtrees to roots (if
dist < B).

6. if not all subtrees are matched
=B < B*.

/. else return Vr;: leftover +
matched subtree.
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4-approx algorithm : k-rooted tree cover

m Claim: success = cost(cover) < 4 - B.
m Claim: fail = B < B*.

m Binary search on value of B = (weakly) polynomial
4-approx algorithm.

m Scaling = strongly polynomial (4 + ¢)-approx algorithm.
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Claim: success = cost(cover) < 4 - B

Each tree in tree cover may consist of:
m a rooted leftover subtree = cost(leftover) < B.
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Claim: success = cost(cover) < 4 - B

Each tree in tree cover may consist of:
m a rooted leftover subtree = cost(leftover) < B.
® a matched subtree = cost(subtree) < 2 - B.
®m matching edge = cost(edge) < B.

= weight of every tree in solution is < 4 - B. QED
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Assume for sake of contradiction:

subtrees roots
B > B* and matching failed. fuz(rj,si) gg:

Si Ty
Hall's Theorem: if matching failed, then ° °
o e

1S C subtrees : [S| > |N(5)].
Fix OPT:

T ={I7,...,T;} where r; € T*.

TS)={T; |38, €S:TFNS; #0}.

Note: 77 NS; #0 = w(r;,S;i)
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Claim: fail = B < B*

Assume for sake of contradiction: subtrees roots
o (]
. . w\Tr;, SZ S B

B > B* and matching failed. s-'( 5 >e,.
[ ) (]

Hall's Theorem: if matching failed, then

1S C subtrees : [S| > |N(5)].
Fix OPT:

T ={I7,...,T;} where r; € T*.

TS)={T; |38, €S:TFNS; #0}.
Note: T; NS, #0 = w(rj,SZ-) < B* < B.

= |T7(S)| < [N(S)I.
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Claim: fail = B < B* - (cont.)

recall:
B> B* and |7T7(S)|<|N(S)| <|S|.

Vi:w(l;) < B = w(T(S)) < B*-|T*(S)|
Vi:w(S;) € [B,2B) = w(S) > B-|S|.
= w(S) > w(T*(S)).



Claim: fail = B < B* - (cont.)

recall:
B> B* and |7T7(S)|<|N(S)| <|S|.
Vi w(T;“) < B*=w(T"(S)) < B"-|T7(S)|
Vi:w(S;) € |B,2B) = w(S) > B-|S|.
= w(S) > w(T"(S))
But

T'=MST+T*S) -8

is a spanning tree and w(7") < w(M ST), contradiction. QED
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Algorithm for Unrooted £-tree cover

1. Prune edges w. > B. e —
Let {G;}; be components. e

2. MST I\/ISTof Gi.

3. If > (ki +1) > k, return “fail”.
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Algorithm for Unrooted £-tree cover

1. Prune edges w. > B.
Let {G;}; be components.

2. MST; = MST of G;.
lﬁ — L ]V{fgjﬁ).J.

3. If > (ki +1) > k, return “fail”.

4. Decompose each MST; into at
most k;+1trees S} +...+SFi 4 L,
such that w($?) € [2B,4B) and
w(L;) < 2B. Return “success”.

\ :
\ | .
\ Il
\\ /
~ ! .

- ;
~~ - ,
S - - / .
- S

S

T R 3
-7 RN :
. <
7 N .
’ \ .
/ \
/ \
\ | .
\ ;o
AN .
\\ //
~ 7 .
< . :
- . ‘
. - 3
. . :
Final solution
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Claim: On success, each tree has weight no more than 45.
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Claim: On failure, B < B*.
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Analysis

Claim: On success, each tree has weight no more than 45.
Claim: On failure, B < B*.

Alternatively, if B* < B, then k; +1 < k7 for all s.
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Proof: B* < B = ki + 1<k
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Proof: " < B = k;+1 <k

Let optimal solution cover G; with {77, ... T} }.
Augment it to span G; by adding £ — 1 edges, so:

K
> w(Ty) + (kf —1)B > w(MST;)
j=1

Since w(T}) < B* < B,
k;k - B + (k;k — l)B Z w(MSTZ)
w(MST;) 1

= kI > — > k;.
b 2B +2>Z
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