Covering Graphs Using Trees and Stars

Guy Even (Tel-Aviv), Naveen Garg (Delhi),

and

Jochen Könemann, R. Ravi and A. Sinha (Pittsburgh)

Third Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics and Computing

Consider a TSP instance with ^a large optimal tour, e.g. $w(tour^*) > 1000$.

- Consider a TSP instance with ^a large optimal tour, e.g. $w(tour^*) > 1000$.
- **B** Suppose regulation dictates: agent may travel at most 100 km.

- Consider a TSP instance with ^a large optimal tour, e.g. $w(tour^*) > 1000$.
- Suppose regulation dictates: agent may travel at most 100 km.
- \Rightarrow must employ multiple agents.

- Consider a TSP instance with ^a large optimal tour, e.g. $w(tour^*) > 1000$.
- Suppose regulation dictates: agent may travel at most 100 km.
- \Rightarrow must employ multiple agents.
- \Rightarrow k -traveling salespeople problem.

- Consider a TSP instance with ^a large optimal tour, e.g. $w(tour^*) > 1000$.
- Suppose regulation dictates: agent may travel at most 100 km.
- \Rightarrow must employ multiple agents.
- \Rightarrow k -traveling salespeople problem.
	- \blacksquare Cover the vertices of a graph with k tours.

- Consider a TSP instance with ^a large optimal tour, e.g. $w(tour^*) > 1000$.
- Suppose regulation dictates: agent may travel at most 100 km.
- \Rightarrow must employ multiple agents.
- \Rightarrow k -traveling salespeople problem.
	- \blacksquare Cover the vertices of a graph with k tours.
	- Balance the load of the agents: minimize the maximum tour.

- Consider a TSP instance with ^a large optimal tour, e.g. $w(tour^*) > 1000$.
- Suppose regulation dictates: agent may travel at most 100 km.
- \Rightarrow must employ multiple agents.
- \Rightarrow k -traveling salespeople problem.
	- \blacksquare Cover the vertices of a graph with k tours.
	- Balance the load of the agents: minimize the maximum tour.
- MST is ^a constant ratio approx of ^a min tour \Rightarrow k -Tree Cover Problem.

Input: (i) integer k and (ii) $G = (V, E)$ - an undirected graph with positive integral \bigcirc edge weights $w : E \to I\!N^+$.

 \bigcirc

 \bullet

 \bigcirc

Input: (i) integer k and (ii) $G = (V, E)$ - an undirected graph with positive integral edge weights $w : E \to I\!N^+$.

 k **-tree cover:** a set $\mathcal T$ of trees $\{T_i\}_i$ such that $V = \bigcup_{i=1}^k V(T_i).$

Input: (i) integer k and (ii) $G~=~(V,E)$ - an undirected graph with positive integral edge weights $w : E \to I\!\!N^+$.

 k **-tree cover:** a set $\mathcal T$ of trees $\{T_i\}_i$ such that $V = \bigcup_{i=1}^k V(T_i).$

cost : $cost(T) = max_{T_i \in T} w(T_i)$.

Input: (i) integer k and (ii) $G = (V, E)$ - an undirected graph with positive integral edge weights $w : E \to I\!N^+$.

 k **-tree cover:** a set $\mathcal T$ of trees $\{T_i\}_i$ such that $V = \bigcup_{i=1}^k V(T_i).$

cost : $cost(T) = max_{T_i \in T} w(T_i)$.

goal : find ^a minimum cost k-tree cover.

Input: (i) integer k and (ii) $G = (V, E)$ - an undirected graph with positive integral edge weights $w : E \to I\!N^+$.

 k **-tree cover:** a set $\mathcal T$ of trees $\{T_i\}_i$ such that $V = \bigcup_{i=1}^k V(T_i).$

cost : $cost(T) = max_{T_i \in T} w(T_i)$.

goal : find ^a minimum cost k-tree cover.

remark : trees may share nodes & edges in ^a tree cover.

Roots: Input contains also ^a set of roots:

$$
R = \{r_1, r_2, \ldots, r_k\}.
$$

Roots: Input contains also ^a set of roots:

$$
R = \{r_1, r_2, \ldots, r_k\}.
$$

 k **-rooted tree cover:** a k -tree cover $\{T_i\}_i$ such that

$$
\forall i : r_i \in T_i.
$$

 \bigcirc

 \bigcirc

 \bullet

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bullet

 \bullet

 \bullet

Roots: Input contains also ^a set of roots:

$$
R = \{r_1, r_2, \ldots, r_k\}.
$$

 k **-rooted tree cover:** a k -tree cover $\{T_i\}_i$ such that

$$
\forall i \; : \; r_i \in T_i.
$$

Roots: Input contains also ^a set of roots:

$$
R = \{r_1, r_2, \ldots, r_k\}.
$$

 k **-rooted tree cover:** a k -tree cover $\{T_i\}_i$ such that

$$
\forall i \;:\; r_i \in T_i.
$$

Roots: Input contains also ^a set of roots:

 $R = \{r_1, r_2, \ldots, r_k\}.$

 k **-rooted tree cover:** a k -tree cover $\{T_i\}_i$ such that

$$
\forall i \; : \; r_i \in T_i.
$$

Roots: Input contains also ^a set of roots:

$$
R = \{r_1, r_2, \ldots, r_k\}.
$$

 k **-rooted tree cover:** a k -tree cover $\{T_i\}_i$ such that

$$
\forall i : r_i \in T_i.
$$

motivation : agents start their tour in different locations.

 k -Star Cover: a k -tree cover $\{T_i\}_i$ in which

 $\forall i$ $:$ T_i is a star

 k -Star Cover: a k -tree cover $\{T_i\}_i$ in which

 $\forall i$ $:$ T_i is a star

 k -Star Cover: a k -tree cover $\{T_i\}_i$ in which

 $\forall i$ $:$ T_i is a star

 \bigcirc

 $\forall i$ $:$ T_i is a star

rooted/unrooted versions: in rooted version, stars must be rooted at R . Namely, r_i is the root of T_i .

 k -Star Cover: a k-tree cover $\{T_i\}_i$ in which

 $\forall i$ $:$ T_i is a star

rooted/unrooted versions: in rooted version, stars must be rooted at R . Namely, r_i is the root of T_i .

 k -Star Cover: a k-tree cover $\{T_i\}_i$ in which

 $\forall i$ $:$ T_i is a star

rooted/unrooted versions: in rooted version, stars must be rooted at R . Namely, r_i is the root of T_i .

motivation : agents must return to base after each visit.

Related work

 \blacksquare k-Traveling Repairman: Cover with tours, $O(1)$ -approx minimize average latency. [Fakcharoenphol, Harrelson, Rao 2003]

Related work

- \blacksquare k-Traveling Repairman: Cover with tours, $O(1)$ -approx minimize average latency. [Fakcharoenphol, Harrelson, Rao 2003]
- \blacksquare k-Traveling Salesman: Cover with tours, $O(1)$ -approx minimize total length. [Haimovich, Rinooy Kan, Stougie 1988]

Related work

- \blacksquare k-Traveling Repairman: Cover with tours, $O(1)$ -approx minimize average latency. [Fakcharoenphol, Harrelson, Rao 2003]
- \blacksquare k-Traveling Salesman: Cover with tours, $O(1)$ -approx minimize total length. [Haimovich, Rinooy Kan, Stougie 1988]
- Vehicle Routing: Vast amount of work, e.g. Survey [Toth, Vigo, 2002]

Related work - cont

Chandra Chekuri & Amit Kumar - similar results.

Related work - cont

- Chandra Chekuri & Amit Kumar similar results.
- Arkin, Hassin, & Levin approx algorithms for many similar problems:

Related work - cont

- Chandra Chekuri & Amit Kumar similar results.
- Arkin, Hassin, & Levin approx algorithms for many similar problems:
	- $O(1)$ -approx for unrooted k-path cover.
Related work - cont

- Chandra Chekuri & Amit Kumar similar results.
- Arkin, Hassin, & Levin approx algorithms for many similar problems:
	- $O(1)$ -approx for unrooted k-path cover.
	- \blacksquare O(1)-approx for unrooted B-star cover.

Related work - cont

Chandra Chekuri & Amit Kumar - similar results.

- Arkin, Hassin, & Levin approx algorithms for many similar problems:
	- $O(1)$ -approx for unrooted k-path cover.
	- \blacksquare O(1)-approx for unrooted B-star cover.
	- **n** many other problems...

Hardness: All 4 problems are NP-complete. (reduction from Bin-Packing).

- **Hardness:** All 4 problems are NP-complete. (reduction from Bin-Packing).
- \blacksquare k-tree cover: 4-approximation algorithm. Strongly polynomial versions are $(4 + \varepsilon)$ -approx.

Hardness: All 4 problems are NP-complete. (reduction from Bin-Packing).

 \blacksquare k-tree cover: 4-approximation algorithm. Strongly polynomial versions are $(4 + \varepsilon)$ -approx.

 \blacksquare k-star cover:

Hardness: All 4 problems are NP-complete. (reduction from Bin-Packing).

 \blacksquare k-tree cover: 4-approximation algorithm. Strongly polynomial versions are $(4 + \varepsilon)$ -approx.

 \blacksquare k-star cover:

Unrooted version: $(4, 4)$ -bicriteria approximation algorithm (i.e. $4k$ stars of cost $4 \cdot OPT_k$). Extend method of [Shmoys, Tardos, & Aardal, 1997] for capacitated facility location.

Hardness: All 4 problems are NP-complete. (reduction from Bin-Packing).

 \blacksquare k-tree cover: 4-approximation algorithm. Strongly polynomial versions are $(4 + \varepsilon)$ -approx.

 \blacksquare k-star cover:

- **Unrooted version:** $(4, 4)$ -bicriteria approximation algorithm (i.e. $4k$ stars of cost $4 \cdot OPT_k$). Extend method of [Shmoys, Tardos, & Aardal, 1997] for capacitated facility location.
- **Rooted version: equivalent to min. makespan of** k machines and n jobs. 2-approximation of [Shmoys & Tardos, 1993].

Input: graph, roots, and B - "guess" of opt. cost. 1. contract roots.

Input: graph, roots, and B - "guess" of opt. cost. 1. contract roots.

- 1. contract roots.
- 2. compute MST.

- 1. contract roots.
- 2. compute MST.

- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.

- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.

- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.
- 4. edge-decompose trees: $w(\textit{subtrees}) \in [B, 2B),$ w (*leftovers*) $<$ B .

- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.
- 4. edge-decompose trees: $w(\textit{subtrees}) \in [B, 2B),$ w (*leftovers*) $<$ B .

- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.
- 4. edge-decompose trees: $w(\textit{subtrees}) \in [B, 2B),$ w (*leftovers*) $<$ B .
- 5. max match subtrees to roots (if $\textbf{dist} \leq B$).

- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.
- 4. edge-decompose trees: $w(\textit{subtrees}) \in [B, 2B),$ w (leftovers) $<$ B.
- 5. max match subtrees to roots (if $\textbf{dist} \leq B$).

- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.
- 4. edge-decompose trees: $w(\textit{subtrees}) \in [B, 2B),$ w (*leftovers*) $<$ B .
- 5. max match subtrees to roots (if $\textsf{dist} \leq B$).
- 6. if not all subtrees are matched $\Rightarrow B < B^*$.

- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.
- 4. edge-decompose trees: $w(\textit{subtrees}) \in [B, 2B),$ w (*leftovers*) $<$ B .
- 5. max match subtrees to roots (if $\textsf{dist} \leq B$).
- 6. if not all subtrees are matched $\Rightarrow B < B^*$.

Input: graph, roots, and B - "guess" of opt. cost. 1. contract roots.

- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.
- 4. edge-decompose trees: $w(\textit{subtrees}) \in [B, 2B),$ w (leftovers) $< B$.
- 5. max match subtrees to roots (if $\textbf{dist} \leq B$).
- 6. if not all subtrees are matched $\Rightarrow B < B^*$.
- 7. else return $\forall r_i$: leftover + matched subtree.

Claim: success $\Rightarrow \textit{cost}(\textit{cover}) \leq 4 \cdot B.$

Claim: success $\Rightarrow \textit{cost}(\textit{cover}) \leq 4 \cdot B.$ Claim: fail \Rightarrow $B < B^* .$

- Claim: success $\Rightarrow \textit{cost}(\textit{cover}) \leq 4 \cdot B.$
- Claim: fail \Rightarrow $B < B^* .$
- Binary search on value of $B \Rightarrow$ (weakly) polynomial ⁴-approx algorithm.

- Claim: success $\Rightarrow \textit{cost}(\textit{cover}) \leq 4 \cdot B.$
- Claim: fail \Rightarrow $B < B^* .$
- Binary search on value of $B \Rightarrow$ (weakly) polynomial ⁴-approx algorithm.
- Scaling \Rightarrow strongly polynomial $(4 + \varepsilon)$ -approx algorithm.

Each tree in tree cover may consist of:

a rooted leftover subtree \Rightarrow $cost(let tover) < B.$

Each tree in tree cover may consist of:

a rooted leftover subtree \Rightarrow $cost(let tover) < B.$

a matched subtree \Rightarrow $cost(subtree) < 2 \cdot B.$

Each tree in tree cover may consist of:

- a rooted leftover subtree \Rightarrow $cost(let tover) < B.$
- a matched subtree \Rightarrow $cost(subtree) < 2 \cdot B.$
- matching edge $\Rightarrow cost(edge) \leq B$.

Each tree in tree cover may consist of:

- a rooted leftover subtree \Rightarrow $cost(let tover) < B.$
- a matched subtree \Rightarrow $cost(subtree) < 2 \cdot B.$
- matching edge $\Rightarrow cost(edge) \leq B$.
- \Rightarrow weight of every tree in solution is $< 4\cdot B.$ QED

Assume for sake of contradiction:

 $B \geq B^*$ and matching failed.

Assume for sake of contradiction:

 $B \geq B^*$ and matching failed.

Hall's Theorem: if matching failed, then

 $\exists \mathcal{S} \subseteq \mathsf{subtrees} : |\mathcal{S}| > |N(\mathcal{S})|.$

Assume for sake of contradiction:

 $B \geq B^*$ and matching failed.

Hall's Theorem: if matching failed, then

 $\exists \mathcal{S} \subseteq \mathsf{subtrees} : |\mathcal{S}| > |N(\mathcal{S})|.$

Fix OPT:

$$
\mathcal{T}^* \triangleq \{T_1^*, \ldots, T_k^*\} \text{ where } r_j \in T_j^*.
$$

 $\mathcal{T}^*(\mathcal{S})\stackrel{\scriptscriptstyle\triangle}{=}\{T_j^*\mid\exists S_i\in\mathcal{S}: T_j^*\cap S_i\neq\emptyset\}.$

Assume for sake of contradiction:

 $B \geq B^*$ and matching failed.

Hall's Theorem: if matching failed, then

 $\exists \mathcal{S} \subseteq \mathsf{subtrees} : |\mathcal{S}| > |N(\mathcal{S})|.$

Fix OPT:

 $\mathcal{T}^* \triangleq \{T^*_1, \ldots, T^*_k\}$ where $r_j \in T^*_j$. $\mathcal{T}^*(\mathcal{S})\stackrel{\scriptscriptstyle\triangle}{=}\{T_j^*\mid\exists S_i\in\mathcal{S}: T_j^*\cap S_i\neq\emptyset\}.$ Note: $T_j^* \cap S_i \neq \emptyset \Rightarrow w(r_j, S_i) \leq B^* \leq B$.

Assume for sake of contradiction:

 $B \geq B^*$ and matching failed.

Hall's Theorem: if matching failed, then

 $\exists \mathcal{S} \subseteq \mathsf{subtrees} : |\mathcal{S}| > |N(\mathcal{S})|.$

Fix OPT:

 $\mathcal{T}^* \triangleq \{T^*_1, \ldots, T^*_k\}$ where $r_j \in T^*_j$. $\mathcal{T}^*(\mathcal{S})\stackrel{\scriptscriptstyle\triangle}{=}\{T_j^*\mid\exists S_i\in\mathcal{S}: T_j^*\cap S_i\neq\emptyset\}.$ Note: $T_j^* \cap S_i \neq \emptyset \Rightarrow w(r_j, S_i) \leq B^* \leq B$.

 $\Rightarrow |{\mathcal T}^*({\mathcal S})| \leq |N({\mathcal S})|.$

$$

recall:

$B \ge B^*$ and $|{\cal T}^*({\cal S})| \le |N({\cal S})| < |{\cal S}|$.

$$

recall:

 $B \ge B^*$ and $|{\cal T}^*({\cal S})| \le |N({\cal S})| < |{\cal S}|$.

 $\forall j: w(T^*_i) \leq B^* \Rightarrow w(\mathcal{T}^*(\mathcal{S})) \leq B^* \cdot |\mathcal{T}^*(\mathcal{S})|$ $\forall i: w(S_i) \in [B, 2B) \Rightarrow w(S) \geq B \cdot |\mathcal{S}|.$ $\Rightarrow w(\mathcal{S}) > w(\mathcal{T}^*(\mathcal{S})).$

$$

recall:

$$
B \ge B^* \quad \text{and} \quad |T^*(\mathcal{S})| \le |N(\mathcal{S})| < |\mathcal{S}|.
$$

$$
\forall j: w(T_j^*) \leq B^* \Rightarrow w(\mathcal{T}^*(\mathcal{S})) \leq B^* \cdot |\mathcal{T}^*(\mathcal{S})|
$$

$$
\forall i: w(S_i) \in [B, 2B) \Rightarrow w(\mathcal{S}) \geq B \cdot |\mathcal{S}|.
$$

$$
\Rightarrow w(\mathcal{S}) > w(\mathcal{T}^*(\mathcal{S})).
$$

But

$$
T' \stackrel{\triangle}{=} MST + \mathcal{T}^*(\mathcal{S}) - \mathcal{S}
$$

is a spanning tree and $w(T') < w(MST)$, contradiction. QED

Algorithm for Unrooted k**-tree cover**

1. Prune edges $w_e > B$. Let ${G_i}_i$ be components.

Algorithm for Unrooted k**-tree cover**

1. Prune edges $w_e > B$. Let ${G_i}_i$ be components.

2. MST_i = MST of G_i . $k_i = \lfloor \frac{w(MST_i)}{2B} \rfloor.$

– p.14

Algorithm for Unrooted k**-tree cover**

- 1. Prune edges $w_e > B$. Let ${G_i}_i$ be components.
- 2. MST_i = MST of G_i . $k_i = \lfloor \frac{w(MST_i)}{2B} \rfloor.$
- 3. If $\sum_i (k_i + 1) > k$, return "fail".

– p.14

Algorithm for Unrooted k**-tree cover**

- 1. Prune edges $w_e > B$. Let ${G_i}_i$ be components.
- 2. MST_i = MST of G_i . $k_i = \lfloor \frac{w(MST_i)}{2B} \rfloor.$
- 3. If $\sum_i (k_i + 1) > k$, return "fail".
- 4. Decompose each MST_i into at most $k_i\!+\!1$ trees $S_i^1\!+\!\ldots\!+\!S_i^{k_i}\!+\!L_i$ such that $w(S_i^j) \in [2B, 4B)$ and $w(L_i) < 2B$. Return "success". Final solution

Claim: On success, each tree has weight no more than $4B$.

Claim: On success, each tree has weight no more than 4B.

Claim: On failure, $B < B^*$.

Claim: On success, each tree has weight no more than $4B$.

Claim: On failure, $B < B^*$.

Alternatively, if $B^*\leq B,$ then $k_i+1\leq k_i^*$ for all $i.$

Let optimal solution cover G_i with $\{T^*_1,\ldots,T^*_{k^*_i}\}.$

Let optimal solution cover G_i with $\{T^*_1,\ldots,T^*_{k^*_i}\}.$ Augment it to span G_i by adding $k_i^\ast-1$ edges, so:

$$
\sum_{j=1}^{k_i^*} w(T_i^*) + (k_i^* - 1)B \ge w(MST_i)
$$

Let optimal solution cover G_i with $\{T^*_1,\ldots,T^*_{k^*_i}\}.$ Augment it to span G_i by adding $k_i^\ast-1$ edges, so:

$$
\sum_{j=1}^{k_i^*} w(T_i^*) + (k_i^* - 1)B \ge w(MST_i)
$$

Since $w(T^*_i) \leq B^* \leq B,$

$$
k_i^* \cdot B + (k_i^* - 1)B \ge w(MST_i).
$$

Let optimal solution cover G_i with $\{T^*_1,\ldots,T^*_{k^*_i}\}.$ Augment it to span G_i by adding $k_i^\ast-1$ edges, so:

$$
\sum_{j=1}^{k_i^*} w(T_i^*) + (k_i^* - 1)B \ge w(MST_i)
$$

Since $w(T^*_i) \leq B^* \leq B,$

$$
k_i^* \cdot B + (k_i^* - 1)B \ge w(MST_i).
$$

$$
\Rightarrow k_i^* \ge \frac{w(MST_i)}{2B} + \frac{1}{2} > k_i.
$$

 $\mathcal{L}_{\mathcal{A}}$