Covering Graphs Using Trees and Stars

Guy Even (Tel-Aviv), Naveen Garg (Delhi),

and

Jochen Könemann, R. Ravi and A. Sinha (Pittsburgh)

Third Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics and Computing

Consider a TSP instance with a large optimal tour, e.g. $w(tour^*) > 1000$.

- Consider a TSP instance with a large optimal tour, e.g. $w(tour^*) > 1000$.
- Suppose regulation dictates: agent may travel at most 100 km.

- Consider a TSP instance with a large optimal tour, e.g. $w(tour^*) > 1000$.
- Suppose regulation dictates: agent may travel at most 100 km.
- \blacksquare \Rightarrow must employ multiple agents.

- Consider a TSP instance with a large optimal tour, e.g. $w(tour^*) > 1000$.
- Suppose regulation dictates: agent may travel at most 100 km.
- \blacksquare \Rightarrow must employ multiple agents.
- $\blacksquare \Rightarrow k$ -traveling salespeople problem.

- Consider a TSP instance with a large optimal tour, e.g. $w(tour^*) > 1000$.
- Suppose regulation dictates: agent may travel at most 100 km.
- \blacksquare \Rightarrow must employ multiple agents.
- $\blacksquare \Rightarrow k$ -traveling salespeople problem.
 - Cover the vertices of a graph with k tours.

- Consider a TSP instance with a large optimal tour, e.g. $w(tour^*) > 1000$.
- Suppose regulation dictates: agent may travel at most 100 km.
- \blacksquare \Rightarrow must employ multiple agents.
- $\blacksquare \Rightarrow k$ -traveling salespeople problem.
 - Cover the vertices of a graph with k tours.
 - Balance the load of the agents: minimize the maximum tour.

- Consider a TSP instance with a large optimal tour, e.g. $w(tour^*) > 1000$.
- Suppose regulation dictates: agent may travel at most 100 km.
- \blacksquare \Rightarrow must employ multiple agents.
- $\blacksquare \Rightarrow k$ -traveling salespeople problem.
 - Cover the vertices of a graph with k tours.
 - Balance the load of the agents: minimize the maximum tour.
- MST is a constant ratio approx of a min tour \Rightarrow *k*-Tree Cover Problem.

Input: (i) integer k and (ii) G = (V, E) - an undirected graph with positive integral • edge weights $w : E \to I N^+$.

 \bigcirc

 \bigcirc

Input: (i) integer k and (ii) G = (V, E) - an undirected graph with positive integral edge weights $w : E \to I N^+$.

k-tree cover: a set \mathcal{T} of trees $\{T_i\}_i$ such that $V = \bigcup_{i=1}^k V(T_i)$.

Input: (i) integer k and (ii) G = (V, E) - an undirected graph with positive integral edge weights $w : E \to IN^+$.

k-tree cover: a set \mathcal{T} of trees $\{T_i\}_i$ such that $V = \bigcup_{i=1}^k V(T_i)$.

cost : $COSt(\mathcal{T}) = \max_{T_i \in \mathcal{T}} w(T_i).$

Input: (i) integer k and (ii) G = (V, E) - an undirected graph with positive integral edge weights $w : E \to I N^+$.

k-tree cover: a set \mathcal{T} of trees $\{T_i\}_i$ such that $V = \bigcup_{i=1}^k V(T_i)$.

 $cost: COSt(\mathcal{T}) = \max_{T_i \in \mathcal{T}} w(T_i).$

goal : find a minimum cost *k*-tree cover.

Input: (i) integer k and (ii) G = (V, E) - an undirected graph with positive integral edge weights $w : E \to I N^+$.

k-tree cover: a set \mathcal{T} of trees $\{T_i\}_i$ such that $V = \bigcup_{i=1}^k V(T_i)$.

 $cost: cost(\mathcal{T}) = \max_{T_i \in \mathcal{T}} w(T_i).$

goal : find a minimum cost *k*-tree cover.

remark : trees may share nodes & edges in a tree cover.

Roots: Input contains also a set of roots:

$$R = \{r_1, r_2, \ldots, r_k\}.$$

Roots: Input contains also a set of roots:

$$R = \{r_1, r_2, \ldots, r_k\}.$$

k-rooted tree cover: a *k*-tree cover $\{T_i\}_i$ such that

$$\forall i : r_i \in T_i.$$

 \bigcirc

 \bigcirc

 \bigcirc

Roots: Input contains also a set of roots:

$$R = \{r_1, r_2, \ldots, r_k\}.$$

k-rooted tree cover: a *k*-tree cover $\{T_i\}_i$ such that

$$\forall i : r_i \in T_i$$

 \bigcirc

 \bigcirc

Roots: Input contains also a set of roots:

$$R = \{r_1, r_2, \ldots, r_k\}.$$

k-rooted tree cover: a *k*-tree cover $\{T_i\}_i$ such that

$$\forall i : r_i \in T_i.$$

Roots: Input contains also a set of roots:

$$R = \{r_1, r_2, \ldots, r_k\}.$$

k-rooted tree cover: a *k*-tree cover $\{T_i\}_i$ such that

$$\forall i : r_i \in T_i.$$

Roots: Input contains also a set of roots:

$$R = \{r_1, r_2, \ldots, r_k\}.$$

k-rooted tree cover: a *k*-tree cover $\{T_i\}_i$ such that

$$\forall i : r_i \in T_i$$

motivation : agents start their tour in different locations.

k-Star Cover: a *k*-tree cover $\{T_i\}_i$ in which

 $\forall i : T_i \text{ is a star}$

k-Star Cover: a *k*-tree cover $\{T_i\}_i$ in which

 $\forall i : T_i \text{ is a star}$

k-Star Cover: a *k*-tree cover $\{T_i\}_i$ in which

 $\forall i : T_i \text{ is a star}$

 $\forall i : T_i \text{ is a star}$

rooted/unrooted versions: in rooted version, stars must be rooted at R. Namely, r_i is the root of T_i .

 $\forall i : T_i \text{ is a star}$

rooted/unrooted versions: in rooted version, stars must be rooted at R. Namely, r_i is the root of T_i .

k-Star Cover: a *k*-tree cover $\{T_i\}_i$ in which

 $\forall i : T_i \text{ is a star}$

rooted/unrooted versions: in rooted version, stars must be rooted at R. Namely, r_i is the root of T_i .

motivation : agents must return to base after each visit.

Related work

k-Traveling Repairman: Cover with tours, O(1)-approx minimize average latency. [Fakcharoenphol, Harrelson, Rao 2003]

Related work

- k-Traveling Repairman: Cover with tours, O(1)-approx minimize average latency. [Fakcharoenphol, Harrelson, Rao 2003]
- k-Traveling Salesman: Cover with tours, O(1)-approx minimize total length. [Haimovich, Rinooy Kan, Stougie 1988]

Related work

- k-Traveling Repairman: Cover with tours, O(1)-approx minimize average latency. [Fakcharoenphol, Harrelson, Rao 2003]
- k-Traveling Salesman: Cover with tours, O(1)-approx minimize total length. [Haimovich, Rinooy Kan, Stougie 1988]
- Vehicle Routing: Vast amount of work, e.g. Survey [Toth, Vigo, 2002]

Related work - cont

Chandra Chekuri & Amit Kumar - similar results.

Related work - cont

- Chandra Chekuri & Amit Kumar similar results.
- Arkin, Hassin, & Levin approx algorithms for many similar problems:

Related work - cont

Chandra Chekuri & Amit Kumar - similar results.

- Arkin, Hassin, & Levin approx algorithms for many similar problems:
 - O(1)-approx for unrooted k-path cover.

Related work - cont

Chandra Chekuri & Amit Kumar - similar results.

- Arkin, Hassin, & Levin approx algorithms for many similar problems:
 - O(1)-approx for unrooted k-path cover.
 - O(1)-approx for unrooted *B*-star cover.

Related work - cont

Chandra Chekuri & Amit Kumar - similar results.

- Arkin, Hassin, & Levin approx algorithms for many similar problems:
 - O(1)-approx for unrooted k-path cover.
 - O(1)-approx for unrooted *B*-star cover.
 - many other problems...

Hardness: All 4 problems are NP-complete. (reduction from Bin-Packing).

- Hardness: All 4 problems are NP-complete. (reduction from Bin-Packing).
- *k*-tree cover: 4-approximation algorithm. Strongly polynomial versions are $(4 + \varepsilon)$ -approx.

- Hardness: All 4 problems are NP-complete. (reduction from Bin-Packing).
- *k*-tree cover: 4-approximation algorithm. Strongly polynomial versions are $(4 + \varepsilon)$ -approx.

■ *k*-star cover:

Hardness: All 4 problems are NP-complete. (reduction from Bin-Packing).

■ *k*-tree cover: 4-approximation algorithm. Strongly polynomial versions are $(4 + \varepsilon)$ -approx.

■ *k*-star cover:

Unrooted version: (4,4)-bicriteria approximation algorithm (i.e. 4k stars of cost 4 · OPT_k). Extend method of [Shmoys, Tardos, & Aardal, 1997] for capacitated facility location.

Hardness: All 4 problems are NP-complete. (reduction from Bin-Packing).

■ *k*-tree cover: 4-approximation algorithm. Strongly polynomial versions are $(4 + \varepsilon)$ -approx.

■ *k*-star cover:

- Unrooted version: (4,4)-bicriteria approximation algorithm (i.e. 4k stars of cost 4 · OPT_k). Extend method of [Shmoys, Tardos, & Aardal, 1997] for capacitated facility location.
- Rooted version: equivalent to min. makespan of k machines and n jobs. 2-approximation of [Shmoys & Tardos, 1993].

Input: graph, roots, and *B* - "guess" of opt. cost. 1. contract roots.

Input: graph, roots, and *B* - "guess" of opt. cost. 1. contract roots.

- 1. contract roots.
- 2. compute MST.

- 1. contract roots.
- 2. compute MST.

- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.

- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.

- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.
- 4. edge-decompose trees: $w(subtrees) \in [B, 2B),$ w(leftovers) < B.

- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.
- 4. edge-decompose trees: $w(subtrees) \in [B, 2B),$ w(leftovers) < B.

- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.
- 4. edge-decompose trees: $w(subtrees) \in [B, 2B),$ w(leftovers) < B.
- 5. max match subtrees to roots (if $dist \leq B$).

- Input: graph, roots, and B "guess" of opt. cost.
- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.
- 4. edge-decompose trees: $w(subtrees) \in [B, 2B),$ w(leftovers) < B.
- 5. max match subtrees to roots (if $dist \leq B$).

- Input: graph, roots, and B "guess" of opt. cost.
- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.
- 4. edge-decompose trees: $w(subtrees) \in [B, 2B),$ w(leftovers) < B.
- 5. max match subtrees to roots (if $dist \leq B$).
- 6. if not all subtrees are matched $\Rightarrow B < B^*$.

- 1. contract roots.
- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.
- 4. edge-decompose trees: $w(subtrees) \in [B, 2B),$ w(leftovers) < B.
- 5. max match subtrees to roots (if $dist \leq B$).
- 6. if not all subtrees are matched $\Rightarrow B < B^*$.

Input: graph, roots, and *B* - "guess" of opt. cost. 1. contract roots.

- 2. compute MST.
- 3. un-contract roots: forest of trees rooted at roots.
- 4. edge-decompose trees: $w(subtrees) \in [B, 2B),$ w(leftovers) < B.
- 5. max match subtrees to roots (if $dist \leq B$).
- 6. if not all subtrees are matched $\Rightarrow B < B^*$.
- 7. else return $\forall r_i$: leftover + matched subtree.

Claim: success \Rightarrow *cost(cover*) $\leq 4 \cdot B$.

Claim: success \Rightarrow *cost(cover*) $\leq 4 \cdot B$. Claim: fail $\Rightarrow B < B^*$.

- Claim: success \Rightarrow *cost(cover*) $\leq 4 \cdot B$.
- Claim: fail $\Rightarrow B < B^*$.
- Binary search on value of $B \Rightarrow$ (weakly) polynomial 4-approx algorithm.

- Claim: success \Rightarrow *cost(cover*) $\leq 4 \cdot B$.
- Claim: fail $\Rightarrow B < B^*$.
- Binary search on value of $B \Rightarrow$ (weakly) polynomial 4-approx algorithm.
- **Scaling** \Rightarrow strongly polynomial $(4 + \varepsilon)$ -approx algorithm.

Each tree in tree cover may consist of:

a rooted leftover subtree \Rightarrow *cost(leftover)* < *B*.

Each tree in tree cover may consist of:

a rooted leftover subtree \Rightarrow *cost(leftover)* < *B*.

• a matched subtree \Rightarrow *cost(subtree)* < 2 \cdot *B*.

Each tree in tree cover may consist of:

- **a** rooted leftover subtree \Rightarrow *cost(leftover)* < *B*.
- a matched subtree \Rightarrow *cost(subtree)* < 2 \cdot *B*.
- matching edge \Rightarrow *cost(edge)* $\leq B$.

Each tree in tree cover may consist of:

- **a** rooted leftover subtree \Rightarrow *cost(leftover)* < *B*.
- a matched subtree \Rightarrow *cost(subtree)* < 2 \cdot *B*.
- matching edge \Rightarrow *cost(edge)* $\leq B$.
- \Rightarrow weight of every tree in solution is $< 4 \cdot B$.

Assume for sake of contradiction:

 $B \ge B^*$ and matching failed.

Assume for sake of contradiction:

 $B \ge B^*$ and matching failed.

Hall's Theorem: if matching failed, then

 $\exists S \subseteq \text{subtrees} : |S| > |N(S)|.$

Assume for sake of contradiction:

 $B \ge B^*$ and matching failed.

Hall's Theorem: if matching failed, then

 $\exists S \subseteq \text{subtrees} : |S| > |N(S)|.$

Fix OPT:

$$\mathcal{T}^* \stackrel{\scriptscriptstyle \Delta}{=} \{T_1^*, \ldots, T_k^*\}$$
 where $r_j \in T_j^*$.

 $\mathcal{T}^*(\mathcal{S}) \stackrel{\scriptscriptstyle \triangle}{=} \{T_j^* \mid \exists S_i \in \mathcal{S} : T_j^* \cap S_i \neq \emptyset\}.$

Assume for sake of contradiction:

 $B \ge B^*$ and matching failed.

Hall's Theorem: if matching failed, then

 $\exists S \subseteq \text{subtrees} : |S| > |N(S)|.$

Fix OPT:

 $\mathcal{T}^* \stackrel{\triangle}{=} \{T_1^*, \dots, T_k^*\} \text{ where } r_j \in T_j^*.$ $\mathcal{T}^*(\mathcal{S}) \stackrel{\triangle}{=} \{T_j^* \mid \exists S_i \in \mathcal{S} : T_j^* \cap S_i \neq \emptyset\}.$ Note: $T_j^* \cap S_i \neq \emptyset \implies w(r_j, S_i) \leq B^* \leq B.$

Assume for sake of contradiction:

 $B \ge B^*$ and matching failed.

Hall's Theorem: if matching failed, then

 $\exists S \subseteq \text{subtrees} : |S| > |N(S)|.$

Fix OPT:

 $\mathcal{T}^* \stackrel{\triangle}{=} \{T_1^*, \dots, T_k^*\} \text{ where } r_j \in T_j^*.$ $\mathcal{T}^*(\mathcal{S}) \stackrel{\triangle}{=} \{T_j^* \mid \exists S_i \in \mathcal{S} : T_j^* \cap S_i \neq \emptyset\}.$ Note: $T_j^* \cap S_i \neq \emptyset \implies w(r_j, S_i) \leq B^* \leq B.$

 $\Rightarrow |\mathcal{T}^*(\mathcal{S})| \le |N(\mathcal{S})|.$

– p.12

Claim: fail $\Rightarrow B < B^*$ - (cont.)

recall:

$B \ge B^*$ and $|\mathcal{T}^*(\mathcal{S})| \le |N(\mathcal{S})| < |\mathcal{S}|.$

Claim: fail $\Rightarrow B < B^*$ - (cont.)

recall:

 $B \ge B^*$ and $|\mathcal{T}^*(\mathcal{S})| \le |N(\mathcal{S})| < |\mathcal{S}|.$

 $\forall j : w(T_j^*) \le B^* \Rightarrow w(\mathcal{T}^*(\mathcal{S})) \le B^* \cdot |\mathcal{T}^*(\mathcal{S})|$ $\forall i : w(S_i) \in [B, 2B) \Rightarrow w(\mathcal{S}) \ge B \cdot |\mathcal{S}|.$ $\Rightarrow w(\mathcal{S}) > w(\mathcal{T}^*(\mathcal{S})).$

Claim: fail $\Rightarrow B < B^*$ - (cont.)

recall:

$$B \ge B^*$$
 and $|\mathcal{T}^*(\mathcal{S})| \le |N(\mathcal{S})| < |\mathcal{S}|.$

$$\begin{aligned} \forall j : w(T_j^*) &\leq B^* \Rightarrow w(\mathcal{T}^*(\mathcal{S})) \leq B^* \cdot |\mathcal{T}^*(\mathcal{S})| \\ \forall i : w(S_i) \in [B, 2B) \Rightarrow w(\mathcal{S}) \geq B \cdot |\mathcal{S}|. \\ \Rightarrow w(\mathcal{S}) > w(\mathcal{T}^*(\mathcal{S})). \end{aligned}$$

But

$$T' \stackrel{\scriptscriptstyle \Delta}{=} MST + \mathcal{T}^*(\mathcal{S}) - \mathcal{S}$$

is a spanning tree and w(T') < w(MST), contradiction. QED

1. Prune edges $w_e > B$. Let $\{G_i\}_i$ be components.

1. Prune edges $w_e > B$. Let $\{G_i\}_i$ be components.

2. $MST_i = MST \text{ of } G_i$. $k_i = \lfloor \frac{w(MST_i)}{2B} \rfloor$.

1. Prune edges $w_e > B$. Let $\{G_i\}_i$ be components.

2.
$$MST_i = MST \text{ of } G_i.$$

 $k_i = \lfloor \frac{w(MST_i)}{2B} \rfloor.$

3. If $\sum_{i} (k_i + 1) > k$, return "fail".

1. Prune edges $w_e > B$. Let $\{G_i\}_i$ be components.

2.
$$MST_i = MST \text{ of } G_i$$
.
 $k_i = \lfloor \frac{w(MST_i)}{2B} \rfloor$.

- **3.** If $\sum_{i} (k_i + 1) > k$, return "fail".
- 4. Decompose each MST_i into at most k_i+1 trees $S_i^1+\ldots+S_i^{k_i}+L_i$ such that $w(S_i^j) \in [2B, 4B)$ and $w(L_i) < 2B$. Return "success".

Claim: On success, each tree has weight no more than 4B.

Claim: On success, each tree has weight no more than 4B.

Claim: On failure, $B < B^*$.

Claim: On success, each tree has weight no more than 4B.

Claim: On failure, $B < B^*$.

Alternatively, if $B^* \leq B$, then $k_i + 1 \leq k_i^*$ for all *i*.

Let optimal solution cover G_i with $\{T_1^*, \ldots, T_{k_i^*}^*\}$.

Proof: $B^* \leq B \implies k_i + 1 \leq k_i^*$

Let optimal solution cover G_i with $\{T_1^*, \ldots, T_{k_i^*}^*\}$. Augment it to span G_i by adding $k_i^* - 1$ edges, so:

$$\sum_{j=1}^{k_i^*} w(T_i^*) + (k_i^* - 1)B \ge w(MST_i)$$

Let optimal solution cover G_i with $\{T_1^*, \ldots, T_{k_i^*}^*\}$. Augment it to span G_i by adding $k_i^* - 1$ edges, so:

$$\sum_{j=1}^{k_i^*} w(T_i^*) + (k_i^* - 1)B \ge w(MST_i)$$

Since $w(T_i^*) \leq B^* \leq B$,

$$k_i^* \cdot B + (k_i^* - 1)B \ge w(MST_i).$$

Let optimal solution cover G_i with $\{T_1^*, \ldots, T_{k_i^*}^*\}$. Augment it to span G_i by adding $k_i^* - 1$ edges, so:

$$\sum_{j=1}^{k_i^*} w(T_i^*) + (k_i^* - 1)B \ge w(MST_i)$$

Since $w(T_i^*) \leq B^* \leq B$,

$$k_i^* \cdot B + (k_i^* - 1)B \ge w(MST_i).$$

$$\Rightarrow k_i^* \ge \frac{w(MST_i)}{2B} + \frac{1}{2} > k_i.$$